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Abstract 

Background: Alterations in the structural connectome of schizophrenia patients have been 

widely characterized, but the mechanisms leading to those alterations remain largely unknown. 

Generative network models have recently been introduced as a tool to test the biological 

underpinnings of the formation of altered structural brain networks. 

Methods: We evaluated different generative network models to investigate the formation of 

structural brain networks in healthy controls (n=152), schizophrenia patients (n=66) and their 

unaffected first-degree relatives (n=32), and we identified spatial and topological factors 

contributing to network formation. We further investigated the association of these factors to 

cognition and to polygenic risk for schizophrenia.  

Results: Structural brain networks can be best accounted for by a two-factor model combining 

spatial constraints and topological neighborhood structure. The same wiring model explained 

brain network formation for all groups analyzed. However, relatives and schizophrenia patients 

exhibited significantly lower spatial constraints and lower topological facilitation compared to 

healthy controls. The model parameter for spatial constraint was correlated with the polygenic 

risk for schizophrenia and predicted reduced cognitive performance.  

Conclusions: Our results identify spatial constraints and local topological structure as two 

interrelated mechanisms contributing to normal brain development as well as altered 

connectomes in schizophrenia. Spatial constraints were linked to the genetic risk for 

schizophrenia and general cognitive functioning, thereby providing insights into their biological 

basis and behavioral relevance. 
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INTRODUCTION 

Schizophrenia is a highly heritable neurodevelopmental disorder (1-3) characterized by 

abnormalities in perception, cognition, affect, behavior and social functioning (4). Converging 

evidence supports the notion that wiring disruptions of brain networks may partially underlie 

these abnormalities (5-7). Indeed, previous studies have found marked differences in the brain 

network architecture in schizophrenia (8, 9) and delineated alterations in their structural 

development (10). More generally, human brain networks show a complex architecture 

favoring topologically advantageous properties while still being sparsely connected, in line with 

the proposal that the developmental architecture of the human brain connectome results from 

an economic trade-off between minimizing wiring costs and allowing adaptively valuable 

topological features (11). Indeed, there is evidence for alterations in both connection distance 

(12, 13) and network topology including reduced local clustering and modularity (14, 15) in 

schizophrenia, consistent with a biased trade-off between wiring cost and topology (11). 

However, the potential processes by which brain networks develop and their disturbances in 

schizophrenia are poorly understood. 

Current network neuroscience predominantly approaches focus on descriptive individual or 

population-level differences, offering little insight into the mechanisms that give rise to network 

alterations in brain disorders (16-18). A recent adaption of these methods from the branch of 

generative network models (GNMs) may help address some of these limitations. GNM-based 

approaches model the stepwise formation of networks based on wiring rules reflecting potential 

neurodevelopmental constraints. One can then compare synthetic networks generated by the 

model to empirical brain networks reconstructed from neuroimaging data, thereby explicitly 

testing different mechanistic explanations that might govern their (disordered) structural 

formation (16, 19). Two recent examples have tested different wiring rules in the formation of 

healthy brain networks, finding converging evidence for a two factor model where one factor 

accounts for the spatial embedding of brain networks by penalizing spatially distant 

connections while the other factor enhances a complex local topological organization (20, 21). 
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The model parameters have a high degree of biological plausibility as they account for the 

metabolic cost of wiring and the strength of a „Hebbian-like“ wiring rule, in part buttressed by 

the fact that they undergo progressive changes over the lifespan and show alterations in 

disease states (20, 21). 

In addition to their biological plausibility and developmental sensitivity, an appropriate model 

of brain network architecture might help to illuminate genetic aspects underlying network 

alterations and formation in mental disorders. An important strategy is the examination of 

unaffected first-degree relatives of patients, who have an increased familial risk for developing 

the disorder (22-24). This allows for the identification of intermediate brain phenotypes linked 

to psychiatric risk independent of potential disease-related confounders (25). In addition, the 

genetic contributions to these phenotypes can be studied with modern genetic approaches 

utilizing the potential of cumulative genetic risk scores. 

Here, we combined GNMs with imaging genetics analyses to identify potential developmental 

mechanisms promoting the altered formation of structural brain networks in schizophrenia 

(Figure 1). Building on a family of previously described and validated generative models (20), 

we first replicated their best-fitting model in a healthy sample, and we subsequently applied it 

to a group of unaffected first-degree relatives and schizophrenia patients. Following the 

hypothesis that there exists an aberrant balance between wiring cost and topological 

properties during network formation in schizophrenia, we tested whether these model 

parameters show the quality of an intermediate phenotype, relate to schizophrenia polygenic 

risk and are relevant for cognitive function. 

 

METHODS AND MATERIALS 

Participants 

We studied 152 healthy controls (HC) without a first-degree relative with mental illness (mean 

[SD] age, 30.32 [10.28] years; 94 women), 32 unaffected first-degree relatives (REL) of 
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schizophrenia patients (33.25 [11.50] years, 19 women) and 66 unrelated patients satisfying 

DSM-IV-TR criteria (see Supplement) for schizophrenia (SZ, 32.77 [9.26] years; 20 women) in 

Mannheim, Germany. All participants provided written informed consent for the protocols 

approved by the local Ethics Committee of the University of Heidelberg. 

Neuroimaging data acquisition and processing 

Diffusion Tensor Imaging (DTI) data were acquired with a 3-T Siemens Trio scanner using two 

echo planar imaging (EPI) sequences with different parameters (see Supplement for details). 

DTI data were preprocessed with standard routines implemented in the software package FSL 

(https://fsl.fmrib.ox.ac.uk/fsl/). The full pipeline included the following steps: correction for head 

motion and eddy currents by affine registration to b0 image, extraction of non-brain tissues 

(26), and linear diffusion tensor fitting. After estimating the diffusion tensor, we performed 

deterministic whole-brain fiber tracking using a modified FACT algorithm (27). Further methods 

details are provided in the Supplement. 

Construction of generative network models  

We constructed synthetic networks using generative models. After defining a seed network 

consisting of those edges common across all subjects, edges were added one at a time until 

the number of edges in the synthetic network conformed to that of the observed network. The 

relative probability of edge formation was evaluated at each step according to the equation: 

(1)       𝑃(𝑢, 𝑣	) = 	𝐸(𝑢, 𝑣)* ∗ 	𝐾(𝑢, 𝑣)-. 

Here 𝐸(𝑢, 𝑣) denotes the fiber distance between brain areas 𝑢 and 𝑣, and η controls the edge 

length. When η is negative, short-distance edges are favored, while a positive η favors long-

distance edges. The term 𝐾(𝑢, 𝑣) represents the topological relationship between brain areas 

𝑢 and 𝑣, and 𝛾	represents its relative importance. Notably, 𝐾(𝑢, 𝑣) can be varied to realize 

different wiring rules. 
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In this study, we limited our analysis to four generative models, each representing one of four 

previously-studied classes: the geometric model, the degree-product model, the clustering-

product model and the matching index (MI) model (20). In the geometric model, the probability 

of connectivity 𝑃(𝑢, 𝑣	) between regions u and 𝑣 is a function of the distance 𝐸(𝑢, 𝑣) between 

them. In the degree-product and the clustering-product model, the connection probability 

function includes an additional topological term 𝐾(𝑢, 𝑣),  which is the product of degrees 

(number of connections of a brain region) or clustering coefficients (fraction of connection 

triangles around a brain region) between nodes u and 𝑣 respectively. In the matching index 

model, 𝐾(𝑢, 𝑣) denotes the normalized number of nearest neighbors in common between two 

nodes (homophily). The topological parameters were computed using the Brain Connectivity 

Toolbox (https://sites.google.com/site/bctnet/Home) as implemented in MATLAB. 

To evaluate the fitness of synthetic networks and to optimize models, we define an energy 

function that measures how dissimilar a synthetic network is to the observed network: 

(2)      	𝐸 = max 	(𝐾𝑆4, 	𝐾𝑆5, 𝐾𝑆6, 	𝐾𝑆7)	,                                                        

Here, each term is a Kolmogorov-Smirnov statistic that compares degree (𝑘 ), clustering 

coefficient (𝑐), betweenness centrality (𝑏) and edge length (𝑒) distributions of synthetic and 

observed networks. Since we defined energy as the maximum of the four statistics, smaller 

energy indicated greater fitness. 

We used classical Monte Carlo methods to find the parameters (𝜂, 𝛾) that generated networks 

with minimal energy. The procedure starts from randomly sampling 2000 points from the 

defined parameter space. Then, by computing the energy at each point and dividing the whole 

parameter space into Voronoi cells, we sample points preferentially within Voronoi cells with 

low energy. We repeated this procedure five times until it converged to a (locally) optimal 

solution (20).  

Cognitive assessment and factor construction 
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In a subset of 120 individuals from all three groups, we assessed a range of cognitive 

subdomains frequently impaired in schizophrenia (including attention and psychomotor speed, 

executive function, memory, impulsivity and social emotional cognition) using the Cambridge 

Neuropsychological Test Automated Battery (CANTAB) (28, 29). Considering that the 

CANTAB measures were correlated with each other, we performed a principal component 

analysis (PCA) to reduce the redundancies and minimize potential for Type I error (30). The 

first component accounted for 27.1% of the variance and factor loadings were consistently 

negatively correlated with correct response rates and positively correlated with latency (or 

reaction times) across the seven test domains, suggesting that lower factor values indicate 

better individual cognitive performance. The detailed description of methods and a full list of 

included outcome measures across tasks and the resulting cognitive factors are provided in 

the Supplementary Information. 

Polygenic risk score     

We used standard methods to extract genomic DNA from EDTA blood to perform genome-

wide SNP (single nucleotide polymorphism) genotyping of all individuals using the Infinium 

PsychArray (Illumina Inc). Quality control and imputation was performed with Gimpute (31) 

(see Supplement for details). To control for population stratification, we performed a PCA on 

the linkage-disequilibrium pruned set of autosomal SNPs using GCTA (32). Then we excluded 

outliers and used the first five principal components as covariates in the following association 

analyses of model parameters. We computed the polygenic risk score with PRSice v-2, while 

the expected value of the missing genotypes were imputed based on the sample allele 

frequency (33). In this study, genome-wide association (34) nominal P < 0.05, was used to 

achieve a balance between the number of false-positive and true-positive risk alleles (35, 36). 

The association analyses were repeated for thresholds of nominal P < 0.01 and of nominal P 

< 0.1.        

Statistical analysis 
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For each participant, we tuned the parameters (𝜂, 𝛾) to the space where the generative model 

always produced synthetic networks with near-lowest energy. Within this space, we analyzed 

the top 1% minimal-energy synthetic networks. We compared the individual averaged energy 

of 1% lowest-energy synthetic networks between different types of generative models and 

different groups of participants using a one-way analysis of variance (ANOVA) with the 

Statistical Package for the Social Sciences (SPSS) 24. Then, we compared the parameters of 

the best-fitting model between groups using a general linear model. To investigate the genetic 

association of the model factors and to circumvent the potential effect of confounding factors 

not related to the genetic risk for the disorder in patient populations (37), we assessed the 

correlation between the parameters of the best-fitting model and polygenic risk scores in 

healthy controls only while controlling for age, sex, DTI protocol, temporal signal to noise ratio 

(tSNR) (38) and the first five principal components of population structure. To investigate the 

behavioral relevance of the identified model parameters, we assessed the correlation between 

the parameters of the best-fitting model and individual cognitive factor loadings while 

controlling for age, sex and tSNR in the three groups separately. To investigate whether our 

best-fitting model could capture other structural network abnormalities in schizophrenia, we 

also computed the global efficiency, modularity and hub degree (the degree of the top 10% 

highest-degree nodes) using the Brain Connectivity Toolbox. We also investigated the effect 

of antipsychotics on our model parameters (see Supplement). 

 

RESULTS 

Sample characterization 

The groups were matched for age, education, tSNR and head motion, but not for sex and 

acquisition protocol (see detailed demographic and clinical characteristics as well as image 

quality control parameters in Table 1). To account for the group differences in these latter 

variables, we included sex and DTI protocol as covariates of no-interest in all analyses that 

included multiple groups. 
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Generative Network models 

Comparison between the four network models revealed significant differences in mean energy 

(repeated measure ANOVA: F(3,453) = 2964.277, p < 0.001) in HC, with the matching index 

(MI) model showing the lowest energy level (see Figure 2A). Importantly, when including all 

diagnostic groups in the analysis, the group by model type interaction was not significant 

(repeated measure ANOVA with group as between-subjects factor, sex and DTI protocol as 

covariates of no-interest: F(6,735) = 0.870, p = 0.516), arguing for the same pattern across all 

groups. Hence, in our following investigation we focused on the analysis of the MI model, as it 

provided the best fit to the individual, experimentally-derived structural networks across 

diagnostic groups.  

In Figure 3B, we illustrate the synthetic network structure of a single subject at different 

parameter values, thereby offering an intuition regarding the roles of each parameter in the MI 

model. As expected, the two parameters h and γ are strongly anti-correlated (Pearson 

correlation: r = -0.613, p < 0.001) in HC, a relation that was conserved across diagnostic groups 

(relatives: r = -0.535, p = 0.002, patients: r = -0.492, p < 0.001). Investigating the between-

group difference of the two parameters, we found a significant between-group effect on the 

distance parameter h (ANOVA, sex and DTI protocol as covariates of no-interest; F(2,245) = 

4.777, p = 0.009) and also on the topological parameter γ (ANOVA, same covariates of no-

interest; F(2,245) = 3.054, p = 0.049, see Figure 2B). Post-hoc analysis confirmed significant 

differences between HC and SZ (h: F(1,214) = 3.956, p = 0.048; γ: F(1,214) = 4.707, p = 0.031) 

as well as between HC and REL in h (F(1,180) = 8.970, p = 0.003), but not in γ (F(1,180) = 

2.609, p= 0.108). We found no significant correlation between individual olanzapine 

equivalents and model parameters (h: r = -0.121, p = 0.393; γ: r = 0.092, p = 0.517).  

When comparing global efficiency, modularity and hub degree between HC and SZ, we 

detected significant between-group differences in global efficiency (ANOVA, same covariates 

of no-interest; F(1,214) = 11.143, p = 0.001) and in hub degree (ANOVA; F(1,214) = 8.602, p 

= 0.004) in the observed networks. In the synthetic networks, we also detected a trend-wise 
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significant between-group difference in hub degree (ANOVA; F(1,214) = 3.218, p = 0.074), and 

a significant difference in global efficiency (ANOVA; F(1,214) = 8.082, p = 0.005). 

No group differences were found in modularity for neither the observed data (ANOVA; F(1,214) 

= 0.100, p = 0.752) nor the synthetic network (ANOVA; F(1,214) = 0.251, p = 0.617, see Figure 

3A).  

Polygenic risk score 

To characterize the influence of genetic risk for schizophrenia on both model parameters, we 

correlated the individual participants’ risk scores with h and γ. We found a significant positive 

association for the distance parameter h (rpar = 0.173, p = 0.045) and a weaker, trend-wise 

negative association for the topological parameter γ (rpar = -0.154, p = 0.073, Figure 2C) in HC 

for all genetic variants with a nominal genome-wide significant association to schizophrenia (P 

< 0.05, uncorrected). Supplemental analyses confirmed the robustness of this finding to the 

choice of significance threshold used for polygenic risk score computation: nominal P < 0.01: 

h (rpar = 0.154, p = 0.074), γ  (rpar = -0.156, p = 0.071); P < 0.1: h (rpar = 0.196, p = 0.022), γ (rpar 

= -0.174, p = 0.043).   

CANTAB 

Exploring the correlation between the individual participants’ scores of the first component and 

the distance parameter h  (or the topological parameter γ), we found a significantly negative 

association for h (r = -0.261, p = 0.029) and no association for γ (r = 0.108, p = 0.374) in HC. 

No association was found in relatives (h: r = -0.137, p = 0.589; γ: r = 0.035, p = 0.890) and in 

patients (h: r = 0.261, p = 0.240; γ: r = -0.133, p = 0.556, Figure 2D). As expected, healthy 

controls showed lower factor loadings compared to relatives and patients (F(2, 115) = 7.680, 

p = 0.001). We did not detect any correlation between the other four cognitive components and 

the network model parameters.  

DISCUSSION 
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Converging evidence points towards alterations in the structural connectome of schizophrenia 

patients, but the mechanistic disturbances in the process of network formation leading to those 

remain poorly understood. Here we replicate prior work on the performance of generative 

network models (20) and thereby demonstrate that this approach yields synthetic networks 

that simulate many properties of structural brain networks in health and disease. We further 

identify significant differences between healthy controls, first-degree relatives and 

schizophrenia patients for the two best-fitting model parameters in a pattern that aligns with 

the increasing risk for schizophrenia. Specifically, these differences imply lesser geometrical 

constraints and lesser complexity of topological facilitation of network formation in 

schizophrenia. Moreover, by demonstrating differential associations between polygenetic risk 

score and the network formation parameters, we provide a potential mechanistic explanation 

of how genetic risk contributes to the malformation of brain networks. These parameters also 

demonstrated behavioral relevance by predicting latent features of cognitive functioning. 

Firstly, our data replicate previous accounts of a superior performance of a model – 

parameterized by spatial distance and a matching index – in capturing several topological 

features of structural brain networks in comparison to other models (20). This observation 

aligns well with the current theory that brain networks are shaped by a mixture of geometrical 

constraints and topological complexity. The human brain is physically expensive and the 

metabolic cost of building and maintaining the axonal connections increases with connection 

length (39). Therefore, cost minimization seems to be an important evolutionary rule for many 

aspects of brain anatomy (40-42). However, cost minimization alone only poorly accounts for 

some of the adaptive properties of the human connectome, such as the capacity for information 

processing (43), which should therefore result from a trade-off between wiring cost and 

formation of topological features (11). In our best-fitting model, this trade-off is represented by 

the two generative factors: the distance parameter h penalizes the formation of long 

connections by imposing a spatial constraint, while the topological parameter γ favors 

connections between regions sharing similar neighbors, meaning that cortical areas that have 

similar inputs and outputs tend to be connected, compatible with Hebb’s law. Interestingly and 
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in contrast to a previous study (20), we observe a negative correlation between our model 

parameters h and γ, suggesting that connectomes that are less constrained by spatial distance 

also exhibit a lower topological neighborhood structure. Together, our findings thus rather 

argue against a simple trade-off between both parameters. Instead our data may indicate that 

connectomes may be better modeled with a single, to-be-discovered latent factor that could 

account for both parameters simultaneously. 

Secondly, when extending this framework to model mechanisms of connectome formation in 

schizophrenia patients and first-degree relatives, we detected no significant between-group 

differences in the fit between the synthetic networks and the observed networks across models. 

Importantly, these results suggest that the same wiring rules can equally well describe both 

normal and abnormal brain network formation. Previous studies have found increased 

connection distance of brain networks (12, 13) and changed network topology including 

reduced clustering and modularity (14, 15, 44) in schizophrenia (see Figure 3A). In line with 

this, theoretical accounts suggest that the abnormal organization of brain networks in 

schizophrenia may result from a biased trade-off between generative factors of homophilic 

attraction and distance penalization in the process of brain network formation (11). To probe 

further, we tested whether individual model parameters contributed differently to network 

formation in all three study groups. We identify smaller values of the distance parameter h in 

HC than in relatives and patients, while values of the topological parameter γ were higher in 

HC than in relatives and patients. This said, larger h values in relatives and patients indicate a 

lower distance penalization, thus increasing the edge length distribution, which is consistent 

with the increased connection distance of brain networks in schizophrenia (12, 13). Since the 

topological parameter mainly influences the degree distribution (21) (see Figure 3B), smaller 

γ values in patients and relatives indicate the presence of fewer and smaller hubs. This 

corroborates previous findings that suggested brain networks in schizophrenia are less 

clustered and have fewer hubs (9, 13). Notably, the presence of decreased spatial constraints 

and homophilic association in a sample of unaffected first-degree relatives suggests that these 

network mechanisms may resemble intermediate phenotypes, i.e., brain phenotypes that 
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relate to the increased familial risk for schizophrenia rather than being epiphenomena of 

potential confounds such antipsychotic medication. 

Thirdly, we examined the associations between model parameters and schizophrenia 

polygenic risk in healthy individuals. We identified a positive correlation between polygenic risk 

and the distance parameter h. In addition, we showed a trend-wise negative association 

between polygenic risk and the topological parameter γ , suggesting that increasing genetic 

risk load for schizophrenia leads to a diminished distance penalization and local homophily of 

the structural brain connectome. In general, two interconnected factors are thought to 

contribute to the formation of long distance connections in the brain: a) neurons connect to 

each other at an early stage of neurodevelopment when the neural system is small in scale, 

and b) at later stages, axons follow developmental pathways already established by earlier 

pioneer neurons (fasciculation) (45). Studies in C. elegans show that 70% of long distance 

connections are already present at the time of hatching (46). This observation suggests that 

most neurons already form early connections in a spatially localized system where guidance 

through differential expression of guidance molecules, such as netrin (47) and slit (48), is 

feasible. In contrast, these molecules will not be the preferred driver to guide axons at later 

stages of development because source and projection neurons are further away (45). 

Importantly, the genes coding for such guidance molecules have been repeatedly implicated 

in the pathophysiology of schizophrenia (49-51). It is interesting to speculate that altered spatial 

expression of guidance molecules imposes less spatial constraints on brain network formation, 

and these fine-scale mechanisms are reflected in our large-scale model parameters. 

Moreover, we found a negative correlation between the distance parameter h  and individual 

scores of the first principal cognitive factor, predominantly capturing converging aspects of 

executive function and memory, in HC. In particular, we observed that larger values of h 

(reflecting less geometric constraints, thus a higher probability of long distance connections) 

were associated with better cognitive performance. Healthy human brain networks usually 

contain only a small fraction of long-distance shortcuts preferentially linking hub regions (12, 
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52). Although these long-distance connections are expensive in terms of material and 

metabolic cost, they greatly reduce the path-length of information transfer between spatially 

remote regions, thus increasing the potential for efficient information processing (11, 53), but 

not in weighted networks with weights based on streamline density (54). A number of previous 

studies have shown that more topologically efficient structural and functional networks are 

associated with increased IQ (55, 56) and cognitive performance (57, 58). Therefore, while 

long-range connections are beneficial for brain function (59), they may also be subject to 

increased vulnerability to disease (60). Indeed, previous studies have shown an increased 

proportion of long-range connections in schizophrenia resulting in brain networks shifted 

towards random networks (61). The association of the distance parameter h and cognition was 

not detectable in schizophrenia patients and first-degree relatives, suggesting an optimum in 

the number of long-range connections potentially exceeded in those populations. 

There are a number of methodological considerations that deserve discussion. Firstly, since 

our goal was to investigate the mechanisms underlying the abnormal brain network formation 

in schizophrenia with GNM, we restricted our analysis to an already validated model framework 

(20). In principle, other wiring rules may be used to model connectome formation and evaluate 

the fitness of the resulting models. However, such an exploration is beyond the scope of this 

paper and would require extensive prior validation in healthy control datasets. Secondly, even 

complete correspondence of two networks does not necessarily imply that both models have 

been shaped by the same biological mechanism(s). While we have attempted to limit 

interpretational restraints by external validation with other well-established network features, it 

is important to note that generative models can be used to offer candidate mechanisms for an 

observed topology, but cannot conclusively prove that a given candidate mechanism actually 

occurred in the developing organism (16). Thirdly, while GNMs can provide insights into the 

formation of structural brain networks, they do not explicitly model neurodevelopmental 

processes. Such investigations are warranted, and will require longitudinal datasets as well as 

the use of an advanced GNM framework explicitly modeling variant developmental processes 

within subjects. 
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In conclusion, we show that the distinct wiring rules can simulate normal and abnormal network 

formation in humans, identify intermediate connectomic phenotypes for schizophrenia familial 

risk manifesting as altered spatial and topological characteristics of brain connectome 

formation in schizophrenia and first-degree relatives. We further corroborate the link of these 

network mechanisms to schizophrenia polygenic risk and demonstrate their relevance for 

individual cognitive function in a domain frequently disturbed in schizophrenia. Together, these 

data suggest that brain network formation is under strong genetic control, is optimized to 

support cognitive functioning and disturbed in heritable developmental disorders such as 

schizophrenia. While these results provide important insight into the wiring mechanisms in 

health and schizophrenia, longitudinal studies in developmental cohorts are needed to further 

elucidate successful and aberrant brain connectome formation. 
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FIGURES: 

 

Figure 1. Overview of generative network models. Deterministic whole-brain fiber tracking was 

performed to reconstruct white mater pathways, from which we constructed structural networks 
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linking 180 regions of interest. By retaining edges present in all subjects, a seed network was 

created and then edges were added stepwise with the probability of edge formation P(u, v	) 

until the number of connections in the synthetic network was the same as that in the observed 

structural network. The fitness of the synthetic network was evaluated by comparing the degree, 

clustering coefficient, betweenness centrality and edge length distributions between the 

synthetic network and the observed structural network.     
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Figure 2. Generative model networks in health and disease. (A) Individual energy was 

significantly different among the four types of models (repeated-measure ANOVA: F(3,453) = 

2964.277, p < 0.001) without a significant model by group interaction (F(6,735) = 0.870, p = 

0.516). The matching index model showed the lowest energy. (B) In the matching index model, 

there was a significant between-group effect on the distance parameter h (ANOVA, F(2,245) 

= 4.777, p = 0.009) and on the topological parameter g (ANOVA, F(2,245) = 3.054, p = 0.049) 

correcting for sex and DTI protocol. Red lines indicate mean values and boxes indicate one 

standard deviation of the mean. Asterisks denote significant difference between all diagnostic 

groups. (C) Individual polygenic risk score for schizophrenia was significantly positively 

associated with the distance parameter h (rpar = 0.173, p = 0.045) and trend-wise negatively 

associated with the topological parameter g (rpar = -0.154, p = 0.073). (D) After performing 

principal component analysis on 13 main outcome measures of the neuropsychological test 

battery, we obtained five components whose eigenvalues were larger than 1, and we found a 
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significant negative correlation between the first component and h (r = -0.261, p = 0.029) in 

healthy controls.  
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Figure 3. Topological characteristics in health and disease. (A) Comparison of several network 

characteristics in data and model between healthy controls (HC) and schizophrenia patients 

(SZ). The matching index model captured the abnormal hubness and global efficiency in 

schizophrenia patients well, while also adequately modeling no modularity difference between 

groups. The deep blue bars represent the clustering coefficient, modularity and hub degree of 

the synthetic network (model) and observed network (data) in healthy controls, respectively, 

while the light blue bars represent schizophrenia patients. Bars indicate mean values. Error 

bars indicate standard errors. Asterisks denote significant difference between diagnostic 

groups. Note that raw data is displayed. (B) Visualization of parameter effects on network 

structure for a single subject. The topological parameter g mainly influences the degree 

distribution with larger g corresponding to the occurrence of more and larger hubs, while the 
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distance parameter h appears to tune the spatial position of hubs in the network. Here, h = -

1.2 and g = 0.24 correspond to the best-fitting model.  

 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 10, 2019. ; https://doi.org/10.1101/604322doi: bioRxiv preprint 

https://doi.org/10.1101/604322


 28 

TABLES 

Table 1: Demographic, clinical and neuroimaging characteristics 

 Healthy 
controls 
(n = 152) 

First-degree 
relatives 
(n = 32) 

Schizophrenia 
patients 
 (n = 66) 

F or χ² 
value 

P value 

Demographic 
characteristics 

     

Age (years) 30.32 ± 10.28 33.25 ± 11.50 32.77 ± 9.26 1.977 0.141 

Sex (male / female) 58/94 13/19 46/20 18.95 < 0.001 

Acquisition protocol 
(32/12 channel coil) 

76/76 21/11 66/0 50.71 < 0.001 

Education (years)  15.40 ± 1.60 15.19 ± 2.34 14.86 ± 2.17 1.881 0.155 

Clinical 
characteristics 

     

PANSS positive n.a n.a. 14.61 ± 7.54 - - 

PANSS negative n.a n.a 14.51 ± 8.27 - - 

PANSS general n.a n.a 31.70 ± 11.42 - - 

PANSS total n.a n.a 60.82 ± 23.51 - - 

Duration of illness 
(years) 

n.a. n.a. 10.44 ± 8.34 - - 

Olanzapine 
equivalents (n= 52) 

n.a. n.a. 15.04 ± 8.91   

QC parameters      

DTI: mean relative 
root-mean-square 
displacement (mm) 

0.31 ± 0.10 0.33 ± 0.12 0.35 ± 0.18 1.844 0.160 

DTI: tSNR 5.85 ± 0.29 5.76 ± 0.25 5.85 ± 0.26 1.491 0.227 

PANSS = Positive and Negative Syndrome Scale (62). tSNR = temporal signal to noise ratio, QC = 
quality control 
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