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Abstract 
Chromatin accessibility identifies active regions of the genome, often at transcription factor (TF) 

binding sites, enhancers, and promoters, and contains regulatory genetic variation. Functionally 

related accessible sites have been reported to be co-accessible; however, the prevalence and 

range of co-accessibility is unknown. We perform ATAC-seq in induced pluripotent stem cells 

from 134 individuals and integrate it with RNA-seq, WGS, and ChIP-seq, providing the first long-

range chromosome-length analysis of co-accessibility. We show that co-accessibility is highly 

connected, with sites having a median of 24 co-accessible partners up to 250Mb away. We also 

show that co-accessibility can de novo identify known and novel co-expressed genes, and co-

regulatory TFs and chromatin states. We perform a cis and trans-caQTL, a trans-eQTL, and 

examine allelic effects of co-accessibility, identifying tens of thousands of trans-caQTLs, and 

showing that trans genetic effects can be propagated through co-accessibility to gene 

expression for cell-type and disease relevant genes. 
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Introduction 

Regulatory genetic variation that affects gene expression and human disease is often found 

within accessible chromatin sites1-6. These accessible sites, measured by either DNase-seq7,8 or 

ATAC-seq9,10, identify functional regions of the genome including active promoters and 

enhancers8,11,12, as well as the transcription factor (TF) binding sites within them8,13-15. However, 

it is difficult to determine the function of accessible sites as they can be distal from their targets1. 

In order to identify the functionality of accessible sites, previous studies have examined co-

accessibility: the coordination of specific chromatin accessibility sites.  These studies have 

examined co-accessibility at fine-scale (ie specific accessible sites) for local cis interactions 

within 10kb (ie co-binding TFs, promoter regulation, and local enhancer regulation)5,6,16, and 

long-range cis interactions between 10kb and 1.5Mb (i.e. chromatin looping and distal enhancer 

regulation)5,16. They have mainly applied supervised approaches to show that co-accessibility 

occurs between regulatory regions and their targets, as well as co-binding TFs, and that the 

majority of cis acting, genetically associated co-accessibility occurs at sites <20kb apart16. 

However, due to computational and statistical power, these studies limited their examination of 

co-accessibility either to fine-scale resolution and local structure, or higher order properties 

across long-ranges at low resolution5. It is thus unclear if co-accessibility extends to cis (ie 

physical co-regulation such as a TF co-binding or looping) and trans (ie sequential co-regulation 

such as a gene network) relationships across long distances (10s-100s of megabases), how 

many sites across a chromosome are co-accessible with one another (ie how highly connected 

is co-accessibility), and whether accessible sites can mediate genetic effects on highly distal 

sites via co-accessibility. A more comprehensive understanding of the co-accessible chromatin 

landscape and its genetic associations could provide novel insights into the effects of regulatory 

genetic variation across short and long distances. 

 

As gene regulation involves many distal regulatory components, it is expected that genetic 

variation could exert trans long range regulatory effects. The omnigenic model17 of gene 

regulation has recently estimated that 70% of the heritability of gene expression is due to trans 

effects18. However, these genetic effects are thought to have effect sizes orders of magnitude 

smaller than cis effects18, and as they are distal from their targets, they are extremely difficult to 

identify (creating a power problem due to multiple-testing burden) and delineate from 

confounded cis effects. One possible solution to this statistical power problem could be to 

leverage chromatin co-accessibility to reduce search space, as gene expression and 

accessibility of the gene’s promoter are known to be correlated19. To overcome confounded cis 

effects, it could be possible to use mediator analyses in which one specifically tests for an 

intermediate effector rather than two independent associations. Additionally, studies examining 

chromatin accessibility quantitative trait loci (caQTLs) have found moderate overlap between 

cis-caQTLs and cis-eQTLs (~30-40%)3,5. Thus, it is possible that co-accessibility could be used 

to tie regulatory elements to their distal co-regulators or gene targets, and then subsequently 

identify trans genetic effects. As this strategy would greatly reduce the number of variant-target 

pairs tested for trans effects (thus reducing multiple testing burden), it may be possible to 

observe hundreds or thousands of more trans effects than previous studies. Identifying co-

accessible chromatin regions across entire chromosomes, and the genetic variation associated 

with these accessible regions, could therefore better elucidate the extent to which genetic 

variants exert long range trans effects, and how these effects may be mediated via co-

accessibility.  
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Here, we perform ATAC-seq in 152 induced pluripotent stem cells (iPSCs) from 134 individuals 

from iPSCORE20-23, and integrate this data with available WGS and RNA-seq for the same 

individuals. We call over 1 million accessible chromatin sites and utilize population-level 

information to identify co-accessible sites by testing for correlation in accessibility between all 

sites chromosome-wide. We show co-accessibility is highly connected, with sites being co-

accessible with an average of 24 other sites, and can span long distances (up to hundreds of 

megabases). We then use these significant relationships to create co-accessibility networks, 

and show that neighbors in these networks are enriched for TF co-binding partners, functionally 

related TFs, spatially colocalized loci (ie loci in a chromatin loop), and co-expressed genes up to 

100Mb apart, and can also be used to infer novel TF functionality. Next, we examine the genetic 

architecture of co-accessibility by measuring allele specific effects (ASE) and performing one of 

the largest caQTLs studies to date. We show that genetic effects spread through co-

accessibility, with highly connected sites being more likely to have a cis-caQTL or exhibit ASE; 

additionally, strong ASE explains 52% of co-accessible weaker ASE. Finally, we leverage these 

networks to identify more than 92,000 trans-caQTLs greater than 1.5Mb from their target, 9 of 

which are also trans-eQTLs for cell type and disease relevant genes. Overall, our data reveals 

that chromatin co-accessibility is highly connected, spans the length of entire chromosomes, 

can de novo identify co-regulatory TFs, is a mechanism underlying trans genetic effects, and 

can give insight into trans-eQTL mechanisms. 

 

Results 
 

Samples, ATAC-seq data generation, and ATAC peak characterization 

To measure chromatin co-accessibility, accessible sites were identified from ATAC-seq 

performed on 152 iPSC lines. These lines were generated from 134 individuals (Supplementary 

Table 1) from iPSCORE and have previously been shown to be pluripotent and to have high 

genomic integrity20 (Figure 1A). We obtained a total of 5.5 billion reads, and after QC, filtering, 

and merging individual samples (see methods; Supplemental Table 1), inspected the quality of 

this data by examining its overlap and consistency with higher order chromatin structure at low-

resolution, chromatin states, and H3K27ac peaks. To examine higher order structure (Figure 

1B), we compared the correlation between ATAC-seq signal in 500kb bins across chromosome 

18 to the correlation in Hi-C (from iPSCORE iPSCs24), and observed a similar pattern between 

the two as previously reported5. We next used MACS2 to call ATAC-seq peaks (obtaining a total 

of 1.01 million peaks), and examined the overlap of chromatin states from the iPSC 

ROADMAP12 with the peaks. We found peaks to be enriched for active TSS, transcribed 

regions, enhancers, polycomb-repressed, bivalent TSS, and bivalent enhancers, and depleted 

for repressed chromatin (heterochromatin and quiescent chromatin, Figure 1C). These findings 

are consistent with properties of accessible chromatin and known specialized use of bivalent 

and polycomb chromatin in maintaining iPSC pulirpotency25-28. Next, we examined the 

distribution of ATAC-seq reads at H3K27ac peaks from iPSCORE iPSCs and observed an 

enrichment at the centers of these H3K27ac peaks (Figure 1D). Together, these results show 

that this ATAC-seq data follows known characteristics of accessible chromatin and cell type 

specific characteristics of iPSCs.  
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Figure 1: (A) Overview of experimental design. iPSCs from 134 individuals from the iPSCORE cohort were selected 

for ATAC-seq sequencing (152 samples total). After QC and filtering, all individual’s data was utilized to call peaks, 

and the coverages of each peak and summit were calculated. Peaks were subsequently filtered based on summit 

coverage, and co-accessible summits were found from summit data. Finally, genetic associations with co-accessibility 

were examined. (B) Correlation of total reads in 500kb bins for ATAC (left), compared to Hi-C Pearson matrix (right), 

across chromosome 18. Broadly similar patterns can be observed. (C) Heatmap of the log2(Odds Ratio) of chromatin 

state enrichments within ATAC-seq peaks relative to the genome, measured in number of base pairs in each state. 

(D) Histogram of the average tag count of ATAC-seq reads at H3K27ac peaks across all samples. (E) Histogram 

showing the number of peaks that have a given number of summits. (F) Boxplot (middle two quantiles and median 

shown as box and line within box; outliers not shown) and regression line on raw data (dashed line) for the number of 

summits vs the length of the peak in base pairs. (G) Genome browser picture of the combined ATAC-seq data across 

all individuals (raw data), summit Calls (Summits), and peak calls (Peaks). Three peaks were called in this window, 

shown in red, blue, and green; summits are colored by the peak to which they belong. Both the red and green peak 

calls contain two seemingly distinct peaks, which were identified by their summit calls. The blue peak, while lower, is 

still peak-shaped and has high coverage (105 reads). (H) Genome browser picture for the combined ATAC-seq data 

across all individuals (raw data) at a single peak call with 15 summits (labeled a-o). Lines for summits are extended 

through the raw data, and connect to their label on the heatmap. Heatmap shows the negative natural log of the p-
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value of correlation between these summits. Correlation quickly decays as a function of distance, and notably, most 

summits are not strongly correlated. 

 

Peaks contain multiple non-co-accessible summits 

As part of ATAC-seq data processing, reads are used to call peaks and their sub-peak structure 

(summits). As summits represent individual TF binding sites within peaks 

(https://github.com/taoliu/MACS), we examined the number of summits within peaks and found 

that while the majority of peaks contained a single summit, 31% (315,901) contained multiple 

summits, with some containing up to 26 (Figure 1E). Additionally, we found a strong relationship 

between the length of peak and the number of summits identified (Pearson Correlation p < 10-32; 

Figure 1F). These patterns are consistent with MACS2’s documentation 

(https://github.com/taoliu/MACS) stating that nearby individual binding sites are called as 

summits and binned together as a single peak call (Figure 1G). We tested whether the summits 

acted independently by examining the correlation between summit heights in the same peak 

across individuals, and found that 97.5% of summits were not significantly correlated with other 

summits within the peak (see methods). Further, the significance of correlation between 

summits within the same peak decayed with distance (Figure 1H). Together, these data indicate 

that many peak calls contained multiple independent accessible sites; we therefore utilized the 

1.21 million summits ATAC summits from peaks that passed QC for downstream analyses of 

accessible chromatin sites. 

 

Co-accessibility is predominantly distal and highly connected, spanning entire 

chromosomes 

We set out to characterize the local and long-range co-accessibility landscape at fine-scale 

resolution (ie site-by-site co-accessibility) for each of the 22 autosomes chromosome-wide. We 

tested the quantile normalized trimmed mean of M values (TMMs29) of coverage for each site 

with every other site pairwise on each chromosome using a Linear Mixed Model to account for 

covariates and kinship. For each pair, we obtained a regression coefficient (β) and a p-value. 

We performed FDR correction of the p-values by chromosome, obtaining between 45 thousand 

and 3 million significant co-accessible relationships per chromosome (FDR q < 0.05). We 

observed similar numbers of co-accessible pairs normalized to chromosome length, except for 

chromosome 19 (Supplemental Figure 1A) which was ~4x higher. This increase may have been 

driven by a large cluster of Znf genes known to be highly coordinated30. We first examined the 

distribution of the number of sites each site is co-accessible with (connectivity) across all sites 

for each chromosome, and found the level of connectivity to vary (Figure 2A), ranging from sites 

with no co-accessible partners to those with ~3,000, and a mean of 24.46 partners. Surprisingly, 

we found that 96.6% of all ATAC sites were co-accessible with at least one other site, 

suggesting that the vast majority of regulatory sites interact with at least one other regulatory 

site. We next measured the distances between co-accessible sites (Figure 2B). As expected, 

the most commonly observed distances (i.e. modes of the data) were within the ranges 

previously studied for local, likely cis, co-accessibility (<1.5 Mb Figure 2B). However, the vast 

majority of co-accessible sites were further than 1.5Mb apart, with some pairs extending up to 

250Mb distal from one another and a mean distance of 48.94Mb. Additionally, we found the 

strength of association to be consistent across distances (Supplemental Figure 1B). Finally, to 

better understand these data, we visualized the specific site-by-site correlations across 

chromosome 18 (Figure 2C), and found that, as Figures 2A and 2B suggested, sites on 

opposing ends of the chromosome were co-accessible. Further, we zoomed in to eight different 
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resolutions, and at each resolution, we found co-accessible sites spanning almost the entire 

window (Figure 2C). Together, these data indicate that fine-scale co-accessibility extends 

beyond the local cis structure of 1.5Mb that has been previously examined, to sites that are 

highly distal from one another and likely trans in nature (up to hundreds of Mb). Overall, these 

data reveal that co-accessibility is highly distal and inter-connected. 
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Figure 2: (A) Histogram showing the number of sites with a given number of co-accessible partners. The mean of 

24.46 partners is highlighted by the dashed black line. (B) Histogram showing the distance between sites that are co-

accessible. The mean of 48.94Mb is plotted with the dashed black line. The area highlighted in gray shows all co-

accessible pairs at distance <1.5 Mb (ie previously studied distances). (C) Heatmap of regression q-values for various 

resolutions, ranging from the whole chromosome (top left) to 200 sites (bottom right), with 200x200 bins in each 

heatmap. Each box in red shows the region on the next zoom, starting in the top left and snaking to the bottom right. 

Each resolution is double the number of sites from the corresponding finer resolution. In the bottom right, each pixel 

in the heatmap is a single site (the grid is 200x200); in other panels, each pixel is the most significant q-value for all 

sites within the bin (ie for 400 sites, each pixel is 2-sites; for the entire chromosome, each pixel is ~70 sites). Arrows 

on each color bar indicate color of a significant correlation (q = 0.05). At each resolution both local and distal 

significant associations can be seen. (D) QQ plot showing enrichments of p-values of co-accessibility combined 

across all chromosomes. (Left) Cartoon showing types of sites within each class: Ezh2-Suz12 TF pairs within 500bp 

of one another (blue), promoter capture HiC (red; avg 207kb apart) and CTCF ChIA-PET (teal; avg 314kb apart). 

Enrichments for local cis (blue) are above those for long-range cis (teal and red). 

 

Co-accessible sites are enriched for known biological processes 

To determine whether calling co-accessibility across entire chromosomes reduced our power to 

identify cis co-accessibility, and/or resulted in technical artifacts, we examined the enrichment of 

co-accessibility for previously associated cis biological processes. First, using all co-accessible 

pairs from all chromosomes, we measured the enrichment for a local cis process: TF co-binding 

partners in the same protein complex (EZH2 and SUZ12 from PRC231,32). We found that EZH2-

SUZ12 sites within 500bp of one another were highly enriched (Figure 2D, blue). Next, we 

examined enrichment for a long-range cis process: chromatin looping6. We found that opposing 

anchors of promoter centric chromatin loops measured via iPSC promoter capture HiC33 (mean 

207kb apart; Figure 2D red), as well as structural chromatin loops measured via CTCF ChIA-

PET34 from GM12878 (mean 314kb apart, Figure 2D teal), were also enriched. However, the 

enrichment for the long-range looping was lower than the local protein co-binding, consistent 

with cis effects being distance-dependent. Overall, these results show that the subset of co-

accessibility within previously studied distances (<1.5Mb) recapitulates known cis 

characteristics of iPSCs. 

 

Co-accessibility intrinsically captures and predicts co-expression and chromatin state 

interactions 

We performed unsupervised analyses to examine whether co-accessibility captures co-

regulatory regions and genes, and if these relationships could be learned directly from co-

accessibility. Since gene/protein regulation naturally has a network-like structure35, we modeled 

the co-accessibility as a network (Figure 3A). For each chromosome, we built an undirected 

graph with accessible sites as nodes, and edges between FDR q < 0.05 co-accessible sites 

weighted by their regression coefficient. We then annotated each site based on its overlap with 

gene promoters from GENCODE36, ROADMAP12 chromatin states for iPSC, and TF binding 

sites from ChIP-seq data in ESCs31 (see methods; Figure 3A). We first examined the correlation 

in gene expression (co-expression) for genes with co-accessible promoters using RNA seq 

data from the 154 iPSC lines37. We compared both the enrichment of co-expression correlation 

p-value (Figure 3B), as well as the proportion of tests that were significant (Figure 3C), across 

gene pairs that were stratified by distance up to 100Mb. As expected, we observed a high 

proportion (35%) of the examined cis gene pairs (<1.5Mb) whose promoters were co-accessible 

to be significantly co-expressed. Interestingly, we also observed a strong-enrichment for co-

expression in pairs of genes with co-accessible promoters that were highly distal to one another 

(at least 10-100Mb apart, 27-30%). This enrichment was far greater than random distance 

matched genes (3%, Figure 3C, dashed line). Further, we found the proportion of significant 
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tests to decay more quickly for genes within 1.5Mb of one another (slope = -0.26), compared to 

genes between 1.5Mb and 10Mb apart (slope = -0.03), suggesting the observed co-expression 

was largely driven by trans effects (as cis, but not trans, effects would be expected to decay 

with distance; Supplemental Figure 1C). These results reveal that co-accessible sites can de 

novo identify co-expressed gene pairs, and that while co-expression occurs most frequently in 

cis, it also occurs frequently across long ranges (including hundreds of megabases). 

 

We next used the chromatin state annotations (Figure 3A) to examine co-accessibility between 

states (see methods). Due to computational constraints we focused on chromosome 18, 

observing three distinct clusters which highlighted known chromatin state interactions and iPSC 

specific biology12,24,26-28 (Figure 3D, Supplemental Figure 2 as a walkthrough): 1) genic 

enhancers and transcribed chromatin (active or weak; Supplemental Figure 2A); 2) enhancers, 

bivalent enhancers, and TSS flanking chromatin (Supplemental Figure 2B); and 3) active 

TSSes, bivalent TSSes, repressed/weak repressed, and heterochromatin (Supplemental Figure 

2C). In addition to these 3 clusters, we found crossover between: 1) two different clusters 

(clusters 2 and 3) through Promoter-Promoter-Flanking interactions (Supplemental Figure 2D); 

and 2) two different subclusters (repressed and promoter in cluster 3) through active and 

bivalent TSS interactions with either strong or weak repressed polycomb (Supplemental Figure 

2E). Overall, the observed gene co-expression and chromatin state clustering from 

unsupervised analyses suggest that co-accessibility can be used to de novo identify co-

regulatory genes and chromatin states. 

 

Co-accessibility identifies novel co-regulatory TFs, as well as distance-dependent TF co-

regulation  

We sought to identify novel TF co-regulatory information captured by co-accessibility, and use it 

to derive new insights into the transcription factor landscape of iPSC gene regulation. Using the 

51 ChIP-seq TF annotations on the co-accessibility networks (Figure 3A), we examined which 

pairs of TFs tended to be co-accessible more often than by chance (see methods). These 

transcription factor pair enrichments separated into five main clusters, (Figure 3E, Supplemental 

Figure 3 for a walkthrough) each of which contained numerous TFs that were known to be co-

regulatory or functionally related: 1) pluripotency factors, including OCT4 (POU5F1), NANOG, 

and TEAD4 (Supplemental Figure 3A); 2) cell proliferation and organogenesis related TFs, 

including BRCA1, JARID1A, FOSL1, and SIX5 (Supplemental Figure 3B); 3) transcription and 

proliferation, including CtBP2, GABP, SP4, CHD2, and SRF for transcription, and c-Myc, AFT3, 

MXI1 and NRF1 for proliferation (Supplemental Figure 3C); 4) chromatin loop factors/structural 

factors, including Rad21, CTCF, YY1, SP1, JUND1, and Znf143 (Supplemental Figure 3D); and 

5) transcription, including the promoter binding factors Pol2, TAF1&7, RBBP5, and TBP 

(Supplemental Figure 3E). While these five clusters recapitulated known TF groupings and 

functionality, we identified novel functions for TFs from cluster membership, subclustering, and 

cluster cross-over. As an example for cluster membership, RFX5 was a member of the 

proliferation/growth cluster (Supplemental Figure 3F), suggesting it may play a role in cancer; 

this is consistent with previous studies that found RFX5 upregulated in liver cancer, which 

results in the activation of genes associated with poor prognosis38. As a subclustering example, 

although Znf143 has been observed in promoter enhancer loops, it was not a member of the 

subcluster of the promoter enhancer specific loop TFs JunD, YY1, and SP139,40 (Supplemental 

Figure 3G); rather, it had patterns similar to the broad loop factors Rad21 and CTCF, 

suggesting it may play a broad role in loop formation. As a crossover example, in the 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 9, 2019. ; https://doi.org/10.1101/604371doi: bioRxiv preprint 

https://doi.org/10.1101/604371


10 
 

pluripotency cluster, we found some TFs (ex TEAD4, HDAC2) to have cross-over with the loop 

cluster, and others to not cross-over (ex BCL11A, NANOG; Supplemental Figure 3H), 

suggesting that some factors may have a more distal regulatory role than others. Overall, these 

analyses reveal that chromatin co-accessibility de novo recapitulates known gene regulation 

patterns and interacting TFs (including those that are cell type specific), and suggests that it 

may be possible to infer TF functionality from co-accessibility data.  

 

As the examined networks contained co-accessible pairs at many different distances (from 

kilobases to megabases), we sought to find TF interactions unique to different regulatory 

distances. We stratified the network to interactions within 10kb (local cis; Figure 3F), between 

10kb and 1.5Mb (long-range cis; Figure 3G), and greater than 1.5Mb (distal; Figure 3H). For 

the local and long-range cis networks, we used all chromosomes; for distal, we utilized 

chromosome 18 due to computational constraints. Across all three distance-stratified networks, 

we observed promoter binding, proliferation, pluripotency, and looping clusters; however, the 

specificity of these clusters, and the cross-overs between them, were different (Supplemental 

Figure 4 for walkthrough). For instance, in the local cis network, looping only contained CTCF 

and Rad21, whereas in the long-range cis network, the looping cluster also included Znf143, 

suggesting that Znf143 may act only on one anchor side for loop formation (Supplemental 

Figure 4A). Further, in both cis networks, the promoter cluster was separate from the loop 

cluster, consistent with only some of cis regulation involving chromatin looping; however, in the 

distal network, the promoter and loop clusters were combined, consistent with the majority of 

highly distal cis regulation utilizing chromatin loops. This suggests that the distal network 

contained cis interactions in addition to the interactions which span hundreds of megabases and 

are likely trans (Supplemental Figure 4A). We also observed stronger cross-over between the 

proliferation and promoter clusters in both the long-range cis and distal networks, compared to 

the local cis network (Supplemental Figure 4B), suggesting these TFs (ex JARID1A, GTF2F1) 

may mainly act through long-range and/or trans regulation. Finally, we observed more negative 

associations in the distal network than either cis network, suggesting that trans regulation may 

be comprised of more antagonistic regulation than cis regulation (Supplemental Figure 4C). 

Overall, these analyses suggest that TFs have different co-regulatory partners and directional 

relationships across different distances. 
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Figure 3: (A) Cartoon of a co-accessibility network. Accessible sites are represented as nodes, and FDR q < 0.05 co-

accessible relationships are edges. For example, site 1 and 6 have a significant output from the LMM and thus have 

an edge; 1 and 3 do not. Edges are weighted by their regression coefficient (β). Nodes are labelled by their chromatin 

state (shown as colors), the genes whose TSS they overlap (shown as black boxes with arrows), and by the TF ChIP-

seq peaks from ESC they overlap (shown as motifs). (B) QQ plot showing enrichments of p-values of correlation for 

co-expression of genes whose promoters are neighbors in the co-accessible network. Gene pairs are stratified by 

those that are at most 1.5Mb apart (cis) or those that are at least a given distance apart (colors; overlapping 

stratifications). Cis is enriched above all other distances, which are overlapping. (C) Bar plot showing the percent of 

co-expressed pairs that are FDR q < 0.05 at each distance threshold. Colors are shared between (B) and (C). (D-I) 

Heatmaps showing the signed empirical p-values of connectivity for (D) chromatin states, (E-H) TF ChIP-seqs, or (I) 

TF ChIP-seqs and predicted motifs. All distances (cis through 100Mb) shown for D, E, and I. (F) uses the local cis 

subnetwork induced from sites that are within 10kb of one another. (G) uses the long-range cis subnetwork induced 

from sites between 10kb and 1.5Mb apart. (H) uses the distal subnetwork induced from sites that are at least 1.5Mb 

apart. (D), (E), and (I) use chromosome 18. (F) and (G) use all edges from the genome-wide network. Clusters are 

labelled using the most common functionality of the included genes. 

 

Incorporation of motif predictions in identifying TF co-regulation reveals distinct 

promoter and enhancer clusters 

To further examine what novel TF biology could be learned from co-accessibility, we expanded 

the network TF annotations to include predicted binding sites for TFs that were expressed and 

enriched in iPSCs (Figure 3I, Supplemental Figure 5 for a walkthrough). We identified two 

superclusters (Supplemental Figure 5A) which were composed of seven clusters that we named 

as follows: looping, promoter centric proliferation (proliferation-P), promoter binding, enhancers, 

promoter and enhancer centric pluripotency (pluripotency-PE), proliferation, and enhancer 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 9, 2019. ; https://doi.org/10.1101/604371doi: bioRxiv preprint 

https://doi.org/10.1101/604371


12 
 

centric pluripotency (pluripotency-E). The two superclusters were separated by ETS1, with the 

top supercluster (containing Pol2) having a negative association. ETS1 has been shown to be a 

TF at sites occupied by Pol3 and involved in enhancer RNA transcription41. These observations 

suggest that TFs in the three clusters composing the supercluster anti-associated with ETS1 are 

primarily located at promoters (Supplemental Figure 5B), and TFs in the other supercluster 

(composed of four clusters; Supplemental Figure 5C) are primarily located at enhancers. 

Interestingly, we found proliferation clusters both in the promoter (ex TFs: NRF1, SRF) and the 

enhancer (ex TFs: JARID1, BRCA1) superclusters (Supplemental Figure 5D), as well as two 

different pluripotency clusters within the enhancer supercluster (ex TFs: OCT4, NANOG in 

pluripotency-E; TEAD4, HDAC2 in pluripotency-PE) (Supplemental Figure 5E). This suggests 

that TFs with similar functions may act across different genomic distances. While most of the 

promoter supercluster TFs were anti-associated with ETS1, and most of the enhancer 

supercluster TFs were not associated with ETS1, one cluster in the enhancer supercluster was 

anti-associated with ETS1 (Pluripotency-PE; Supplemental Figure 5F). This cluster 

(pluripotency-PE) also had a strong cross-over with the loop cluster (Supplemental Figure 5G), 

which in turn has a cross-over with the promoter binding cluster (Supplemental Figure 5H), 

suggesting that the TFs in the pluripotency-PE cluster regulate locally at promoters and distally 

through looping. Overall, these results show that co-accessibility can help delineate TFs that 

have primarily distal regulatory roles (Pluripotency-E and Proliferation-E clusters; Supplemental 

Figure 5I) from those that have primarily promoter regulatory roles (Proliferation-P and Promoter 

Binding clusters; Supplemental Figure 5J) from those which do both (Looping and Pluripotency-

PE clusters; Supplemental Figure 5K).  

 

Identification of caQTLs and relation to co-accessibility 

We sought to provide an in-depth characterization of how genetics is associated with total 

accessibility of sites (QTLs), as well as allele specific effects (ASE), in the context of cis and 

trans effects. We obtained genotypes for the 134 individuals from iPSCORE that had been 

previously identified using 50X WGS37, and tested for associations between the height of the 

accessible site and all genetic variants within 100kb3,5 of it using a linear mixed model. Across 

all chromosomes, we found 235k sites with an associated genetic variant within 100kb (cis-

caSites) with an FDR q < 0.05 (21%; Supplemental Table 2), which is consistent with previous 

estimates of the fraction of accessibility that is explained by variation5. We examined the 

enriched motifs at these cis-caSites, and found the top motifs enriched to be OCT4, CTCF, 

NANOG, SOX-family, and TEAD-family, consistent with iPSC gene regulation (Supplemental 

Table 3). We next examined the chromatin states enriched at these sites, and found an 

enrichment for non-promoter chromatin states (Figure 4A), suggesting that genetically 

associated sites were more likely to be distal regulatory in nature than located at gene TSSes or 

flanking chromatin. Next, we examined the association between co-accessibility and genetics by 

measuring the proportion of sites with a given connectivity that were significant cis-caSites 

(Figure 4B). We found that higher site connectivity corresponded to a higher proportion of 

significant cis-caSites, indicating that having more co-accessible partners increases the 

likelihood of having a cis genetic variant. This result suggests that having co-accessible partners 

allows for compensation against changes in a site due to genetic effects. Overall, these 

analyses identify sites whose total accessibility is genetically associated, and show that they are 

more likely to occur at iPSC distal-regulatory elements and to have high connectivity. 
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Figure 4: (A) Heatmap showing the log2 of the odds ratio of enrichment for chromatin states at cis-caSites compared 

to all accessible sites, with odds ratios set to 1 if the enrichment was non-significant. (B) Barplot showing the 

proportion of significant caSites as a function of the number of co-accessible partners in their networks. As sites have 

more co-accessible partners, they are more likely to have a cis-caQTL. Bars are colored by connectivity. (C) 

Workflow for identifying ASE for chromatin accessibility. Individual imbalance measurements were obtained per 

individual at sites with at least 10 reads. Z scores were calculated, and then combined across individuals for a single 

meta Z score per site. (D) Barplot showing the proportion of significant sites with ASE as a function of connectivity. As 

sites have more co-accessible partners, they are more likely to have exhibit ASE. Bars are colored by connectivity. 

(E) QQ-plot and (F) Proportion of significant tests for ASE at sites that are co-accessible and caSites (blue), co-

accessible and non-caSites (teal), singleton and caSites (red), or singleton and non-caSites (grey). Differences 

associated with caSites status can be seen by comparing blue to teal and red to grey. Differences associated with co-

accessibility can be seen by comparing blue to red and teal to grey. (G) Boxplot of Z score relationship between co-
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accessible sites where both sites have heterozygous variants. Larger Z scores are plotted on the x-axis, and the 

paired smaller Z-score is on the y-axis. The regression line (calculated on the raw data) is plotted as a dashed black 

line. (H) Line plot showing the r2
 value of larger ASE predicting co-accessible smaller ASE (as in panel G), restricting 

the analyses to sites at least X distance apart (up to 100Mb). The r2 holds consistent across all distances. 

 

Co-accessibility explains a large fraction of variation in ASE 

To further probe the extent to which genetic effects were mediated by co-accessibility, we 

examined ASE. We measured ASE by calculating imbalance within each individual at all 

heterozygous variants within 200bp of an accessible site, and then meta-analyzing across 

individuals using Stouffer’s method (Figure 4C). This analysis identified >48,000 significant ASE 

sites at an FDR q < 0.05 (Supplemental Table 4) – notably, while ASE identifies regions 

associated with genetic effects, it does not delineate whether the imbalanced variant is causal 

for the effect, or neutral but in phase with a causal variant (ie proxy variant). We examined if 

sites with higher connectivity were more likely to exhibit ASE, and found that the proportion of 

significant ASE sites increased with connectivity (Figure 4D). This result suggests that co-

accessibility may allow for a cis genetic effect to be mediated in trans to a co-accessible site (ie 

co-accessibility could be one of the processes which causes a proxy variant to be imbalanced). 

 

To compare the relative effects of co-accessibility and cis genetic variation on ASE, we next we 

compared the distribution of ASE p-values (Figure 4E) and proportion of significant tests (Figure 

4F) across four distinct sets of sites: 1) co-accessible cis-caSites (blue); 2) single cis-caSites 

(red); 3) co-accessible non-caSites (teal); and 4) single non-caSites (grey). As expected, we 

found both sets of caSites to be more enriched for ASE than their non-associated counterparts 

(Figure 4E,F blue vs teal, and red vs grey). Additionally, we found both sets of co-accessible 

sites to be more enriched for ASE than non-co-accessible sites (Figure 4E,F, blue vs red, and 

teal vs grey), consistent with Figure 4D. Interestingly, we found co-accessibility status to be 

more enriched for ASE than cis-caSite status (Figure 4F, both blue and teal are enriched above 

red). This result further supports trans genetic effects being mediated through co-accessibility, 

as these sites do not have a significant cis-caQTL, but do show significant allelic effects. To 

make sure that this observation was not predominantly driven by false negative caQTLs, we 

examined whether ASE in one site could explain ASE in co-accessible sites by regressing the 

lead Z score of a co-accessible network against each partner Z score en masse across all 

chromosomes simultaneously (see methods). We found a large fraction of variation in ASE to 

be explained by the single most imbalanced co-accessible site (r2=0.52, p < 10-32; Figure 4G), 

showing that genetic variants can exert trans effects via co-accessibility. Finally, we examined 

whether this high predictability was consistent across varying genomic distances. We found the 

r2 to hold surprisingly constant up to 100Mb apart, ranging between 0.51 and 0.53 (Figure 4H), 

despite a large difference in the number of pairs used in the model (between 250k and 1.25M). 

Together, these results suggest that an accessible site can be influenced in trans by a distal 

genetic variant through intermediate effects on a co-accessible partner. 

 

Identification of trans-caQTLs by leveraging co-accessibility network 

We set out to identify genetic variants that indirectly affect distal sites by mediating their cis 

effects through co-accessibility (ie trans-caQTLs). To identify trans-caQTLs within the same 

chromosome, we leveraged the co-accessibility network to perform targeted association tests, 

thereby reducing multiple hypothesis testing. To perform these analyses, we restricted our tests 

to variants that were cis-caQTLs, and tested them against neighbors of the respective cis-caSite 

in the co-accessibility network that were at least 1.5Mb away (Figure 5A). This identified 
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368,639 putative trans-caQTL-caSite pairs out of a tested 9,967,402 pairs (3.7%) at an FDR q < 

0.05 (Supplemental Table 5). Notably, many of these putative trans-caQTLs were highly distal 

to their targets (Figure 5B), with some hundreds of megabases away. However, this regression 

analysis cannot delineate a true trans interaction in which the variant’s effect on an accessible 

site is mediated through a co-accessible partner (Figure 5C left) from two independent cis 

effects driven by the same variant (Figure 5C right). We thus further probed these putative 

trans-caQTLs by performing a mediator analysis to identify variants with a statistically significant 

fraction of their association with the trans-caSite explained by the height of the cis-caSite42. For 

these analyses, we tested all genotypes in the 134 individuals (ie if the site was multiallelic, we 

included all alleles; 80% of multiallelic sites were indels). Out of the 934,136 putative trans-

caQTL genotypes, the mediator analysis found 92,638 to be significantly mediated at an FDR q 

< 0.05 (9.9% of the putative, ~1% of all tests; Supplemental Table 6). As sites have high 

connectivity, it is possible that a given cis-caSite which mediates a trans effect (cis-mediator-

caSite) exerts its effects on multiple co-accessible partners. We thus examined whether cis-

mediator-caSites affected multiple co-accessible trans-caSites, and found the 92,638 trans-

caSites to be mediated by 29,362 cis-mediator-caSites, with a mean of 3.16 trans-caSites per 

mediator (Figure 5D). This suggests that when a variant affects an accessible site, the effects 

are mediated throughout its co-accessibility network, rather than in a pair-wise fashion with only 

one of the co-accessible partners. We compared the motifs underlying cis-mediator-caSites and 

trans-caSites, and found both to be similarly enriched for OCT4, CTCF, NANOG, SOX-family, 

and TEAD-family motifs (Supplemental Table 3). We next examined the chromatin states at cis-

mediator-caSites and trans-caSites, and found both to be enriched for promoter and gene 

centric chromatin states (Fisher’s Exact FDR q < 0.05; Figure 5E); however, only trans-caSites 

were depleted at enhancers and bivalent enhancers. The fact that these enrichments are 

different suggests that genetic effects have a directionality within co-accessibility networks. 

Together, these analyses identified tens of thousands of trans-caQTLs, suggests that trans 

effects are directionally mediated throughout a network, and shows that co-accessibility can be 

leveraged to identify trans-caQTLs from a relatively small sample size. 

 

To gain better insight into the mechanisms underlying these trans-caQTLs, we characterized 

two large co-accessibility networks centered on cis-mediator-caSites. These networks were 

chosen because their cis-mediator-caSite was at the promoter of a TF, and their trans-caSite 

contained a binding site for that TF. The smaller of these two networks was on chromosome 17 

(Figure 5F) with 77 total sites, 30 of which overlapped gene promoters. One of these 30 sites 

was at the RARA gene promoter, and was a cis-mediator-caSite whose trans-caSite overlapped 

a RARA binding motif. Four other sites were also at RARA binding sites. The RARA gene has 

been implicated in development, differentiation, and transcription of clock genes43; we therefore 

examined the network for iPSC TFs, and found three sites overlapping ChIP-seq binding sites 

for the core pluripotency TFs (OCT4, NANOG, and TEAD4). Finally, we examined the function 

of the 30 genes whose promoters were in the RARA network, and found their proteins to be 

statistically enriched for having protein-protein interactions (PPIs) in StringDB (StringDB 

enrichment p = 9.65x10-3; Supplemental Figure 6A). Further, the functionality of these genes 

was enriched for gene sets for multiple cancer types, including acute myeloid leukemia (AML) 

and Breast Cancer (Supplemental Figure 6A), suggesting co-accessibility network dysregulation 

may play role in cell-type relevant disease. The second example, on chromosome 18, was a co-

accessibility network comprised of 261 sites, of which 130 were at gene promoters (Figure 5G). 

One of these 130 sites was at the PLAG1 promoter, and was a cis-mediator-caSite for a trans-
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caSite at a PLAG1 motif. In addition to the trans-caSite, 23 other sites contained PLAG1 motifs. 

PLAG1 is developmentally regulated43; we therefore also examined iPSC TFs, and found 24 

sites overlapping a ChIP-seq peak for NANOG, OCT4, or TEAD4. Finally, the proteins 

transcribed by the genes in the network were significantly enriched for being having PPIs 

(StringDB enrichment p = 8.12x10-4; Supplemental Figure 6B), but not for any StringDB gene 

sets. Notably, this set proteins contained 19 experimentally validated PPIs. Overall, these 

analyses show that co-accessibility can be used to identify novel trans regulatory modules 

which can be disease-associated. 
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Figure 5: (A) Cartoon illustrating how putative trans-caQTLs were tested. Cis-caQTLs (star) were tested as trans-

caQTLs against the neighbors (sites 3,4, and 5) of the cis-caSite (site 2) in the co-accessibility network. (B) 

Histogram showing the distance distribution of significant putative trans-caQTLs to their target trans-caSite. (C) 

Cartoon illustrating mediator analysis, which tests whether a variant exerts a trans effect on a site (site 4) through an 

intermediate site (site 2; left), or whether the variant exerts two independent effects (right). (D) Distribution of the 

number of mediated trans-caSites per cis-mediator-caSite. (E) Heatmaps showing the log2 of the odds ratio of 

enrichment for chromatin states at (left) cis-mediator-caSites or (right) trans-caSites compared to all cis-caSites, with 

odds ratios set to 1 if the enrichment was non-significant. (F and G) Co-accessibility networks centered on two 

particular sites: (F) an accessible site at the RARA promoter, and (G) an accessible site at the PLAG1 promoter. 

Nodes are accessible sites, edges show significant co-accessibility. Node color indicates whether the node is the cis-

medaitor-caSites which defines the network (teal), the trans-caSite containing the TF for the respective gene (purple), 

a non-associated site containing the respective TF (red), a site containing an iPSC ChIP-seq factor (blue), or a 

different site (grey). The caQTL is shown as the star, with a solid red line for its cis-effect, and a dashed red line 

showing the mediated effect from the cis-mediator-caSite to the trans-caSite. (H) Cartoon illustrating tests for co-

accessibility at GTEx trans-eQTLs. Sites within 100kb of the trans-eQTL variant were tested against sites at the 

eGene promoter. (I) Cartoon illustrating how trans eQTLs were tested. Sites with a significant mediator q value (site 

2) had their cis-caQTLs (star) tested as an eQTL against the genes which had co-accessible promoters (site 4). 

 

Identification of trans-eQTLs from trans-caQTLs at promoters 

It is possible that some of variants affecting chromatin accessibility could propagate their effects 

to changes in gene expression. We hypothesized that some of the variants underlying trans-

caQTLs whose trans-caSite was at a promoter for a gene were also trans-eQTLs for that gene. 

As previous studies have shown that a large cohort is required for sufficient power to detect 

trans-eQTLs4, we initially examined whether trans-eQTLs previously identified in GTEx (in 

different tissues and inter-chromosomally) exhibited co-accessibility with their eGene in our data 

(Figure 5H). We performed a targeted inter-chromosomal analysis (as our networks were all 

intra-chromosomal), examining the 32 non-MHC trans-eQTLs in GTEx for genes expressed in 

the iPSCORE iPSCs. Surprisingly, we found that 97% (31/32) of these trans-eQTLs had co-

accessibility between a site at the promoter of the eGene and one near the eQTL (FDR q< 0.05, 

see methods), despite none of these trans-eQTLs being discovered in stem cells. This result 

suggests the majority of trans-eQTLs have co-accessibility associated with them, and that co-

accessibility may be conserved across cell types. 

 

Next, we sought to determine whether trans-caQTLs could inform and increase power for 

detecting trans-eQTLs. We performed an intra-chromosomal trans-eQTL by identifying all genes 

whose promoters overlapped a trans-caSite, and used an LMM to test for association between 

gene expression and the genotype of the trans-caQTL (Figure 5I). Overall, we found an 

enrichment within the trans-eQTL p-value distribution (λgc=1.49, Supplemental Figure 6C), and 9 

significant trans-eQTLs (FDR q < 0.05; Table 1). These results show that co-accessibility can be 

utilized to increase power in detection of trans-eQTLs, as GTEx (a larger multi-tissue study) 

identified an average of 2.7 trans-eQTLs per tissue. The 9 trans-eGenes were RASSF7, 

EHMT1, DPP9, LMNB2, RGS3, AC009133.17, SDCCAG8, PDE2A, and NR1D1, which are all 

related to iPSC functionality (ie cell cycle, growth, division) or relevant diseases (ie cancer)43. 

The median distance between the corresponding eQTL and eGene was 27Mb; one pair was 

over 200Mb apart. Within the average 27Mb window of a gene, the 134 individuals in this study 

had ~400k variants; thus, our approach of only testing trans-caQTLs against expression levels 

of genes with trans-caSites at their promoters greatly reduced the p-value threshold for 

significance. These results demonstrate the advantages of using co-accessibility to identify 

trans effects on cell type specific gene regulation. 
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Integrating co-accessible annotations to infer trans-eQTL mechanisms 

Finally, to characterize how chromatin accessibility, gene expression, regulatory variation, 

chromatin states, TFs, connectivity, and genomic distance fit within the context of co-

accessibility, we visualized one of the networks from the trans-eQTL analysis (Figure 6). The 

network centered on the cis-mediator-caSummit (chr17:65456616) contains 12 co-accessible 

sites, spanning both the P and Q arms of chr17 (Figure 6A). The cis-caQTL for the cis-mediator-

caSummit (chr17:65456616; Figure 6C) is mediated to two trans-caSites, chr17:38258124 and 

chr17:75463608 (Figure 6B, dashed red lines; Figure 6D). One of these trans-caSites, 

chr17:38258124, is at the NR1D1 promoter (Figure 6B) which is associated with circadian 

rhythm and reported to have iPSC specific functionality44. The cis-caQTL is also a trans-eQTL 

for NR1D1 (Figure 6E). In this network, the 11 sites co-accessible with cis-mediator-caSummit 

chr17:65456616 were not co-accessible with one another (Figure 6B; the hub and spoke shape 

of the network). These 11 sites are at 6 different types of chromatin states, 6 gene promoters, 

and contain numerous TF motifs (Figure 6B); and the cis-mediator-caSite is at an iPSC weak 

enhancer (EnhW2 from the 25-state model of E020 in ROADMAP) and contains motifs for 

PITX2A, RARB, THA, THB, and ZN770. Together, these data suggest that the trans-eQTL, 

which is 27Mb distal from its eGene NR1D1, exerts its effects by modulating the binding of one 

or more of the 5 TFs at the cis-mediator-caSite. Overall, these data exemplify how annotating 

co-accessibility networks with multiple types of molecular phenotypes can identify trans genetic 

effects and putative mechanisms underlying them. 
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Figure 6: An overview of the chr17:65456616 co-accessible network. (Top) ideogram showing location of sites 

across the chromosome. Two colors are used so that nearby sites are visible. The star indicates the caQTL/eQTL. 

(Middle) The co-accessibility network; nodes shown as the inner circle (chr17:6546616) or partitions of the outer 

circle (neighbors). Black lines (spokes) are co-accessible relationships, solid red line shows cis-QTL effect, and 

dashed red lines show mediated trans-caQTL effects. Colors on the partition show the chromatin state, the blue circle 

lists gene promoters overlapped, and the red outer circle lists Motifs that are overlapped. (Bottom) Violin or boxplots 

of QTL results for the cis-medaitor-caQTL for crh17:65456616, the trans-caQTL for chr17:38258124, and the trans-

eQTL for NR1D1. All effects are from the same variant. 

 

Discussion 
Here, we performed ATAC-seq in 152 iPSC lines from 134 individuals, and use the data to find 

chromosome-wide co-accessibility. We show co-accessibility is highly connected, with sites 

being co-accessible with an average of 24 other sites, and can span long distances (up to 

hundreds of megabases). We then show that, from annotated co-accessibility alone, it is 

possible to find, de novo, co-regulatory chromatin states, genes, and TFs. Additionally, we use 

this information to infer novel TF functionality and observe that binding sites for TFs with similar 

functions or that act in complexes are co-accessible at long distances (up to hundreds of 

megabases). Finally, we perform one of the largest chromatin accessibility QTLS (caQTLs) to 

date, identifying hundreds of thousands of cis-caQTLs, tens of thousands of trans-caQTLs, and 

9 trans-eQTLs as well as putative mechanisms underlying them.  

 

We show that chromatin co-accessibility is a mechanism by which distal trans genetic effects 

are mediated. We found that co-accessible sites were more likely to have a cis genetic effect, 

and that allelic effects were predictive of co-accessible allelic effects. Additionally, we also show 

that genetic variants that are associated with accessibility often mediate their effects to multiple 

distal partners through co-accessibility. Together, these results suggest that co-accessibility 

may function as an insulator, allowing a given regulatory system to be more robust to 

perturbation by having sites compensate for their co-accessible partners. Future studies 

examining the effects of perturbing multiple aspects of the same co-accessibility network in a 

dose dependent manner could validate this hypothesis, as well as provide insight into the 

spreading of cis genetic effects to trans throughout the genome. 

 

Previous studies4 utilizing large cohorts of individuals and multiple tissue types have shown that 

it is difficult to properly power a study for the identification of trans-eQTLs. We show that co-

accessibility data can be practically used to reduce the multiple testing burden faced by genetic 

association studies due to the large search space for trans effects. By leveraging co-accessible 

information, we were able to test single variants against single sites, enabling the identification 

of tens of thousands of trans-caQTLs from only 134 individuals. Further, these analyses 

translated to gene expression, with 9 trans-caQTLs also being trans-eQTLs for iPSC relevant 

genes. These 9 eGenes were identified only examining intra-chromosomal trans effects, and 

only in one tissue, compared to GTEx which had 94 trans eGenes across ~50 tissues. Future 

studies could perform ATAC-seq and RNA-seq in the same individuals to define co-accessibility 

networks, and then use them to direct the identification trans-eQTLs to increase statistical 

power. Despite our high computational power (a 16 node, 512 core compute cluster with 2.25TB 

of RAM total), we were only able to test for intra-chromosomal co-accessibility due to 

computational requirements (this process took multiple months of running LMMs) and a 

relatively small cohort – yet found tens of thousands of trans-caQTLs. Future studies with more 

power and resources could likely utilize inter-chromosomal co-accessibility to define co-
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accessibility networks across all pairs of chromosomes and enable the identification of even 

more trans-caQTLs and trans-eQTLs. 
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Supplemental Figure Legends 
 

Supplemental Figure 1: (A) Barplot showing the number of edges (blue) in the co-accessibility 

network (ie co-accessible pairs), or number of edges normalized to chromosome size (red). (B) 

Scatter plot showing the regression βs from co-accessibility LMMs for significant results, plotted 

against the linear distance between sites on the genome. Red lines indicate the average β for 

each 1Mb bin – the reduction of individual high absolute βs as distance increases, but 

consistent average, indicates strength does not decay with distance, but the number of co-

accessible pairs does. (C) Barplot showing the proportion of significant co-expressed pairs that 

are at most X distance apart from one another. The plot elbows off near 1.5Mb (from visual 

inspection); the slopes are shown for bins <1.5Mb (green), and from 1.5Mb to 10Mb (red). 

 

Supplemental Figure 2: A walkthrough of the chromatin-state co-accessibility unsupervised 

clustering analysis. The same heatmap is shown in each panel, with specific points highlighted 

for each panel: (A) The genic and transcribed cluster; (B) the Enhancer and TSS Flank cluster; 

(C) The TSSes, Polycomb, and Repressed cluster; (D) Crossover between the Enhancer and 

TSS Flank cluster with the TSSes, Polycomb, and Repressed cluster via TssA_Flnk-TSS 

association; (E) Crossover between subclusters in the TSSes, Polycomb, and Repressed 

cluster. 

 

Supplemental Figure 3: A walkthrough of the TF co-accessibility unsupervised clustering 

analysis. The same heatmap is shown in each panel, with specific points highlighted for each 

panel: (A) The pluripotency cluster and the specific TF members mentioned in the text; (B) The 

proliferation/growth cluster and the specific TF members mentioned in the text; (C) The 

transcription/proliferation cluster and the specific TF members mentioned in the text; (D) The 

chromatin looping cluster and the specific TF members mentioned in the text; (E) The 

transcription cluster and the specific TF members mentioned in the text; (F) Inferring RFX5 

functionality from membership within the proliferation/growth cluster; (G) Inferring Znf143 

functionality from subclustering within the loop cluster; (H) Inferring distal functionality from 

specific TFs in the pluripotency cluster from crossover between these TFs and the chromatin 

looping cluster. 

 

Supplemental Figure 4: A walkthrough of the distance stratified TF co-accessibility 

unsupervised clustering analysis. The same 3 heatmaps are shown in each panel, with specific 

points highlighted for each panel: (A) The looping cluster contains CTCF and Rad21 for the 

local cis network, adds Znf143 in the long-range cis network, and is combined with the promoter 

binding cluster in the distal network; (B) Crossover between the pluripotency and promoter 

cluster increases from local cis to long-range cis to distal networks, with the two TFs mentioned 

in the text (GTF2F1 and JARID1A) not involved in local cis, clustered together in long-range cis, 

and crossing over in distal; (C) Comparison of anti-associations found across networks. 

 

Supplemental Figure 5: A walkthrough of the TF ChIP and Motif co-accessibility unsupervised 

clustering analysis. The same heatmap is shown in each panel, with specific points highlighted 

for each panel: (A) the two superclusters of the network (Promoter Regulatory and Enhancer 

Regulatory); (B) the three clusters comprising the Promoter Regulatory supercluster; (C) The 

four clusters composing the Enhancer Regulatory supercluster; (D) Both proliferation clusters 

observed; (E) both pluripotency clusters observed; (F) The pluripotency-PE cluster; (G) 
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Crossover between the pluripotency-PE cluster and the looping cluster; (H) Crossover between 

the looping cluster and the promoter binding cluster; (I) Clusters (Pluripotency-E and 

Proliferation-E) that are primarily enhancer associated, with example TFs mentioned in the text 

(NANOG, JARID1A, BRCA1) highlighted with arrows; (J) Cluster (Proliferation-P) that is 

primarily promoter associated with example TFs mentioned in the text (Nrf1 and CHD2) 

highlighted with arrows; (K) Cluster (Pluripotency-PE) that associates with both promoters and 

enhancers, with example TF mentioned in the text (TEAD4) highlighted with an arrow. 

 

Supplemental Figure 6: (A and B) StringDB results from the genes whose promoters are in the 

(A) RARA network and (B) PLAG1 network. Protein network (top in both pannels) and Top GO 

enrichments in reference publications (bottom in A) are shown. Colors for edge connections in 

the protein networks come from StringDB and are known from (teal) curated databases or (pink) 

experimentally validated; predicted from (green) gene neighborhoods, (red) gene fusions, or 

(blue) gene co-occurrence; or associated together via (light green) text mining, (black) co-

expression, or (light blue) protein homology. (C) QQ-plot for trans-eQTL, with zoom between 0 

and 1 on both axes shown as a subplot with λgc drawn and labelled. 

 

Supplemental Figure 7: QC and filtering results for ATAC peaks using the more precise sub-

peak structure within them (ie summits). (A) Distribution of TMMs at summits (B-D) Statistics 

and enrichments after filtering out peaks where no summit had a median coverage across 

individuals (IndivMed) greater than or equal to 0, 1x the median, or 2x the median of the 

IndivMed across all summits (SummitMed). For example, TMM threshold 2 contains all peaks 

where max(IndivMed) ≥ SummitMed x 2. (B) Barplot showing number of peaks in each set. (C) 

TMM distribution of filtered peaks (Teal) compared to original peaks (Blue). (D) Chromatin state 

enrichments. (E) Distribution of peak size of the 1-TMM filtered set (ie the set used throughout 

the manuscript), with the median peak size shown via the dashed line. 

 

Supplemental Table Legends: 
Supplementary Table 1: Individuals and Data Used in this study 

Supplementary Table 2: Significant caSummits and Lead Variants 

Supplementary Table 3: HOMER Motif Enrichment Results for cis-caSites, cis-mediator-caSites, 

and trans-caSites 

Supplementary Table 4: ASE Meta-analysis Results 

Supplementary Table 5: Significant Putative Trans eQTL Results 

Supplementary Table 6: Significant Trans-caQTL Mediator Results 

 

 

Tables 
 

Table 1, trans-eQTL results: 

 

Variant Summit Gene ID Gene Name Beta P Q 

Variant 
Summit 
Distance 

chr11:85425376 chr11:560507 ENSG00000099849.10 RASSF7 -3.517668244 
8.09E-

16 8.29E-12 84864869 

chr1:18566851 chr1:243418251 ENSG00000054282.11 SDCCAG8 0.219172129 
2.14E-

07 0.001098407 224851400 
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chr16:2553486 chr16:29754764 ENSG00000260719.1 AC009133.17 -0.74599912 
4.05E-

06 0.013810673 27201278 

chr9:139667161 chr9:140683708 ENSG00000181090.13 EHMT1 1.774032818 
2.07E-

05 0.049666034 1016547 

chr19:9999210 chr19:4685575 ENSG00000142002.12 DPP9 0.476342794 
3.43E-

05 0.049666034 5313635 

chr19:13023591 chr19:2458281 ENSG00000176619.6 LMNB2 0.51023325 
3.86E-

05 0.049666034 10565310 

chr9:80914060 chr9:116263136 ENSG00000138835.18 RGS3 -0.637221951 
4.09E-

05 0.049666034 35349076 

chr11:66141427 chr11:72370422 ENSG00000186642.11 PDE2A -0.974316619 
4.17E-

05 0.049666034 6228995 

chr17:65421333 chr17:38258696 ENSG00000126368.5 NR1D1 0.909156673 
4.36E-

05 0.049666034 27162637 

 

Methods 

 
Selection of Individuals form iPSCORE 

152 iPSC lines from 134 individuals from iPSCORE were selected for ATAC-seq analysis. 

These 134 individuals are from multiple ethnicities; among them, 82 individuals belong to 26 

families and 52 are unrelated. For all 152 lines, ATAC libraries were generated from matched 

iPSC and iPSC-derived cardiomyocytes (cardiomyocytes not part of this manuscript). 

 

ATAC-seq 

We performed ATAC-seq on 152 iPSC samples using the protocol from Buenrostro et al. 

(Buenrostro et al., 2013) with small modifications. Frozen nuclear pellets of 2.5 x 104 PSCs were 

thawed on ice and tagmented in total volume of 25μl in permeabilization buffer containing 

digitonin and 2.5μl of Tn5 from Nextera DNA Library Preparation Kit (Illumina) for 45-75min at 

37°C in a thermomixer (500 RPM shaking). To eliminate confounding effects due to index 

hopping, all libraries within a pool were indexed with unique i7 and i5 barcodes. Libraries were 

amplified for 12 cycles using NEBNext® High-Fidelity 2X PCR Master Mix (NEB) in total volume 

of 25µl in the presence of 800nM of barcoded primers (400nM each) from custom synthesized 

by Integrated DNA Technologies (IDT). Each library was independently sequenced twice on 

Illumina HiSeq 4000 with paired-end 150bp reads.  

 

ATAC Peak Calling 

Peaks were called using MACS2 v2.1.1.2016030945 with the settings: --nomodel --nolambda --

keep-dup all -f BAMPE -g hs. Peaks were called either individually, or simultaneously on all 

samples by providing each input sample to MACS2 at the same time with the -t option. 

 

Identification and QC of ATAC-seq peaks 

To assess the quality of each sample, we identified and characterized peaks per sample. We 

first aligned the two sequencing runs for each of the 152 samples individually (304 BAM files), 

removed duplicates, and to ensure that identified peaks represented TF binding sites rather 

than Tn5 insert sites flanking nucleosomes, filtered to read inserts ≤140bp in length. Following 

this processing, we separately called peaks on each of these 304 BAM files using MACS2. To 

assess the quality of each sample, we examined the fraction of reads in peaks and the percent 

of peaks falling within active regions of the genome as defined by ROADMAP chromatin states 

1,2,3,5,6,7, and 11 for iPSC (E020). We found the mean FRiP of the 304 samples to be 13%, 
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and the mean percent of peaks in active regions to be 50%. We merged the two fastq files for 

each sample, re-removed duplicates, and re-filtered to read inserts ≤140bp in length, producing 

the final set of 152 BAM files for downstream analyses. 

 

Determining sample coverages 

Coverages were obtained using the featureCount package from subread v1.5.046 for each 

sample individually on a set of peaks or summits. Next, counts were TMM-normalized using 

edgeR v3.12.129 for each peak call or summit call set across all individuals. 

 

Creating a reference set of ATAC-seq summits across the 152 samples 

ATAC-seq identifies punctate regions of accessible chromatin which demarcate transcription 

factor (TF) binding sites. However, as peaks must be called from the data de novo, rather than 

identified from a set of known sites as per gene expression analyses, it is important to identify a 

consistent “reference” set of ATAC-peaks that can be compared consistently across samples. 

We thus called peaks and summits using MACS2 on all samples simultaneously, identifying a 

total of 859,563 peaks with 1,839,425 summits. We sought to filter out broad regions with low 

coverage while maintaining peaks that potentially contained multiple real TF binding sites. We 

started by finding the normalized coverage in TMMs for each sample across all ~1.8M summits. 

We found the vast majority of summits to have a median of ≤ 2.0 TMMs across the 152 samples 

(Supplemental Figure 7A). As the summits represent the high points in the peaks, we filtered the 

peaks based on the median coverage of the contained summits (medCov).  Specifically, we 

tested three filters based on the maximum medCov of all summits within each peak: maximum 

median coverage of any of their contained summits 0x, 1x, or 2x the medianmax(medCov) 

across all peaks. The 0-median filtered set of peaks contained 859,563 peaks with a similar size 

distribution (notably, this step filtered some peaks as they had a median of 0 TMM across 

individuals at all of their summits, indicating most individuals did not have the peak); the 1-

median filtered set of peaks contained 546,476 peaks with approximately two-fold enrichment in 

smaller peaks; and the 2-median filtered set contained 187,046 peaks with approximately 5-fold 

enrichment at smaller peaks (Supplemental Figure 7B&C). To determine if this filtering process 

removed expected true ATAC peaks, we examined the chromatin states each summit lied in, 

and performed a Fisher’s exact test on the remaining summits vs the filtered summits 

(Supplemental Figure 7D). We found that, across all filtering, the remaining peaks were 

enriched for promoters (up to 8-fold), enhancers (up to 3-fold), and bivalent chromatin (up to 22-

fold), with larger enhancer enrichment in the 0- and 1- median filtered sets compared to the 2-

median filtered set, and the inverse for promoters. Due to the large number of peaks removed 

by the 2-median filter, the enrichment of small peaks in the 1-median filter, and similar 

chromatin enrichment profiles (with 1-median filtering leaning toward enhancer enrichment), we 

chose to filter the peaks with the 1-median threshold, producing a final set of 546,476 peaks 

with a median size of 221bp (Supplemental Figure 7E), and 1,215,376 summits for analyses. 

 

H3K27AC ChIP-seq experiments and peak calling 

We performed H3K27AC ChIP-seq in 52 iPSC samples from 46 lines from 36 individuals from 

iPSCORE. Pellets of formaldehyde -crosslinked iPSCs were lysed and sonicated in 110 µl of 

SDS Lysis Buffer (0.5% SDS, 50mM Tris-HCl pH 8.0, 20mM EDTA, 1x cOmplete™ Protease 

Inhibitor Cocktail (Sigma)) using Diagenode Bioruptor UCD-200 (Diagenode) or Covaris E220 

Focused-ultrasonicators (Covaris). For each sample, 1 µg of H3K27ac antibody (Abcam 

ab4729) was coupled for 2-4h to 11µl of Protein G Dynabeads (Thermo Scientific) and used for 
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overnight chromatin immunoprecipitation in IP buffer (1% Triton X-100, 0.1% DOC, 1x TE 

buffer, 1x cOmplete™ Protease Inhibitor Cocktail). 40-45µg of chromatin (66ug – 1 sample) was 

used for immunoprecipitation. Beads with immunoprecipitated chromatin were washed five 

times with 150 µl of RIPA buffer (50mM HEPES pH 8.0, 1% NP-40, 0.7% DOC, 500mM LiCl, 

1mM EDTA, 1x cOmplete™ Protease Inhibitor Cocktail) and once with 1X TE buffer (10mM 

Tris-HCl pH 8.0, 1mM EDTA). Next samples were eluted in 150 µl of ChIP Elution Buffer (1% 

SDS, 10mM Tris-HCl pH 8.0, 1mM EDTA) and reverse crosslinked by incubation for overnight 

at 65˚C and subsequent incubation with 5 µl RNAse (Sigma) for 1h at 37˚C and Proteinase K 

Solution (20 mg/mL, Thermo Fisher Scientific) for 1h at 55˚C. After reverse crosslinking, 

samples were purified with MIniElute PCR purification kit (Qiagen) or with DNA Clean & 

Concentrator kit (Zymo), eluted in 25µl of EB buffer (Qiagen)and Qubit (Thermo Scientific) 

quantified. Libraries were generated using KAPA Hyper Prep Kit (KAPA Biosystems) and KAPA 

Real Time Library Amplification Kit (KAPA Biosystems) at Institute for Genomic Medicine at 

University of California, San Diego. Libraries were barcoded using TruSeq RNA Indexes 

(Illumina). Libraries were sequenced on an Illumina HiSeq 4000 100bp Paired-End reads. 

Peaks were called using MACS2 --broadpeak on all samples simultaneously. 

 

ATAC-seq tag distribution at H3K27ac peaks 

MakeTagDirectory.pl from HOMER v4.747 was used on each sample individually at the set of 

H3K72ac peaks called on all samples simultaneously. After creating tag directories, 

annotatePeaks.pl from HOMER was used with -size 1000 -hist 50 -d to find mean coverages 

per sample at H3K27ac peaks. The average of this coverage was then calculated for plotting. 

 

 

Chromatin state enrichment at ATAC-seq peaks 

To measure the enrichment for particular chromatin states at peaks, we used bedtools48 to 

identify the number of base pairs present in each chromatin state within ATAC peaks, and 

compared this proportion to that of the coverage of each state in the entire genome via a 

Fisher’s Exact test.  

 

Enriched transcription factors at accessible sites 

To calculate the enrichment for transcription factors for sites, findMotifsGenome.pl from HOMER 

was used on hg19 with -size 200. 

 

Transcription factor motif prediction  

To identify transcription factor (TF) binding sites at sites, FIMO from MEME v4.12.049 was used 

on the 200bp flanking each sites with transcription factors from HOCOMOCO individually. 

Results were filtered to q<0.05 for each TF. 

 

Identifying co-accessible sites 

To identify co-accessible sites, we utilized a Linear Mixed-effects Model (LMM) to control for 

fixed covariate effects, and random effects from kinship, as iPSCORE contains related 

individuals. First, we quantile normalized TMMs for each accessible site across individuals to 

remove outlier effects. Next, we utilized Limix v1.0.17 (github.com/limix/limix) and included age, 

iPSC passage number, sex, and the top 20 PCs from ancestry (previously calculated in 

Panopolous et. al20) as fixed effect covariates, and kinship as a random effect. Kinship values 

were obtained from DeBoever et. al37. We then ran Limix with these covariates on all pairs of 
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sites for each chromosome, and Benjamini-Hochberg FDR corrected the regression p-values 

within each chromosome using statsmodels in python, using a significance threshold of q < 

0.05. To examine within-peak correlation, we used the p-values from these analyses. 

 

Co-accessibility enrichment at co-binding TFs and chromatin looping 

To measure co-accessible enrichments for TFs and chromatin looping, pgl files were created by 

pairing together EZH2 and Suz12 peaks within 500bp of one another, and pgltools50 was used 

to convert calls from CTCF ChIA-PET34 in GM12878 and pHiC in iPSCs33 to the pgl format. 

Next, pgltools intersect1D was used to find accessible sites at opposing anchors of loops, or at 

Ezh2 Suz12 pairs, and p-values were obtained from the co-accessibility analysis for 

enrichments. 

 

Annotating accessible sites with TF ChIP-seq, gene promoter, and chromatin states 

To label TFs, gene promoters, and chromatin states at accessible sites, we utilized all public 

ChIP-seq from UCSC genome browser in ESC, ROADMAP chromatin state E020 15 state 

model, and GENCODE promoters. Bedtools was used to identify annotations which overlapped 

sites, and each site was labelled with all ChIP types, a chromatin state, and a gene (if it 

overlapped one). 

 

Annotating accessible sites with TF Motifs 

Sites were annotated with all motifs they overlapped from the above FIMO analysis using 

bedtools. Following, sites were filtered for the clustering analysis by: 1) finding the mean TPM of 

all genes in the 134 individuals; 2) identifying enriched motifs with HOMER; 3) mapping 

HOCOMOCCO motif names to GENCODE genes using HOCOMOCCO’s metadata information 

(note: many genes were lost in this process); filtering to TFs whose genes were expressed at 

log2(TPM)≥1. 

 

Creation of co-accessibility networks 

To create co-accessibility networks, we utilized the networkX package for python (v2.1). Edges 

were added to the network between each FDR q < 0.05 co-accessible sites with weights equal 

to their regression coefficient. All sites within the network were then annotated with chromatin 

states, gene promoters, TF ChIP-seq, and TF motifs, and edges were annotated with the 

genomic distance between sites.  Following, all networks were combined into a single network 

for ease of use. Chromosome networks are induced by taking the subset of nodes within a 

given chromosome, and networks centered on a node are induced by subsetting to the node 

and all its neighbors. 

 

Clustering of annotations in co-accessibility networks using permutation tests 

To create null networks, node labels (ie site names) were shuffled 25k times, and all 

annotations were shuffled with them; edges remained constant. To calculate empirical p-values, 

for each of the 25k null permutations, the mean edge weight between any two annotations was 

calculated and compared to the true mean edge weight. Directional empirical p-values were 

calculated by counting the number of times a stronger mean weight occurred in the null network 

compared to the original network, using the sign of the true mean edge weight (ie, as 1_Tss and 

10_TssBiv had a positive mean weight, we counted the number of times a larger positive 

number occurred; as 3_TxFlnk and 15_Quies had a negative mean weight, we counted the 

number of times a larger negative number occurred). We then calculated an empirical p-value, 
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and signed the p-value by the original mean edge weight sign so that anti-correlations would 

repel positive correlations for the same TF or chromatin state during clustering (ie TF_A and 

TF_B positive enrichment should cluster far away from an antagonistic association with TF_C). 

 

Identifying caQTLs and caSites 

caQTLs were identified using the qtl_test_lmm function from Limix v1.0.17. TMM data was 

quantile normalized within each site across individuals. A kinship matrix was included as a 

random effect to account for relatedness between individuals, and the following variables were 

included as fixed effect covariates: age, sex, the top 20 principle components for ancestry, and 

the top 30 PEER factors from the TMM normalized count data (calculated with PEER v1.051). 

While the ATAC samples were each sequenced twice, as each individual included data from 

both runs, batch was not included as a covariate. All sites were tested as we previously filtered 

our site set based on coverage (see above in methods). All SNVs within 100kb upstream or 

downstream of each site were utilized for testing. As the data space was large (~1 million sites) 

we chose a conservative correction approach that was computationally fast: from the p-values 

for each SNV calculated from Limix, the minimum p-value was chosen from each site and 

Bonferroni corrected for the within-site number of tested SNVs. These Bonferroni adjusted p-

values were then FDR-corrected as a whole across all sites, and sites with an FDR q-value < 

0.05 were identified as significant caSites. 

 

Identifying allele specific effects at caSites 

To identify allele specific effects (ASE), BAMS were remapped with WASP (v0.2.1), following 

which all heterozygous variants within 200bp upstream or downstream of a site were utilized. At 

each site, samtools52 mpileup was utilized to obtain allele counts. To identify ASE, all variants 

with 10 or more reads were tested for imbalance via a normal approximation to a binomial so 

that Z scores could subsequently be combined across individuals in a signed manner via 

Stouffer’s method. P values were calculated for each Stouffer Z score, and ASE sites were 

identified as those with one variant with an FDR q < 0.05. 

 

Concordance in ASE across co-accessible sites 

To determine if ASE was similar across co-accessible sites, each node in the co-accessibility 

network was labelled with its ASE Z score. Next, we identified all pairs of Z scores connected by 

an edge. Finally, we utilized statsmodels.OLS.fromformula to regress the weaker Z scores 

against the stronger Z scores with a forced intercept of 0 (as no ASE would correspond to no 

ASE). 

 

Trans caQTL 

To identify putative trans-caQTLs, we performed targeted association tests by leveraging the 

co-accessibility networks. For each cis-caSite, we tested the lead variant of the site against its 

co-accessible partners, and the FDR q-corrected all trans tests simultaneously with the 

Benjamini-Hochberg method. For these associations, we included sex, age, passage, the top 5 

PCs from ancestry, and the top 20 PEER factors from expression as fixed effects, and kinship 

as a random effect. 

 

Mediator analysis for trans caQTL 

To identify trans ca-QTLs whose effects were mediated through cis-caSites, we calculated the 

Sobbel p-value for each variant-cis-trans combination that was FDR q< 0.05 from the putative 
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trans analysis. First, the trans height (Ytrans) was regressed against the cis-site height (Ycis), 

using the SNP genotypes (Xcis) as a covariate to obtain the mediator effect (βmediated) and its 

standard error (𝜎β𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑑
): 

 

(1)   𝑌𝑡𝑟𝑎𝑛𝑠 =  β0 +  β𝑠𝑛𝑝𝑋𝑐𝑖𝑠 +  β𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑑𝑌𝑐𝑖𝑠 + 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 + 𝑘𝑖𝑛𝑠ℎ𝑖𝑝 

 

Next, the cis association (βcis) and its standard error (𝜎β𝑐𝑖𝑠
) was obtained from prior analysis. 

 

The Sobbel p-value was found using the following Z score: 

 

𝑍 =  
β𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑑 ∗ β𝑐𝑖𝑠

√β𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑑
2 𝜎β𝑐𝑖𝑠

2 + β𝑐𝑖𝑠
2 𝜎β𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑑

2

 

 

We utilized Limix to perform the analysis, and included the cis genetic effect as a fixed effect 

covariate in order to obtain the necessary values as output from Limix. 

 

Validation of GTEx trans-QTLs for co-accessibility 

To identify if GTEx trans-QTLs had co-accessibility, we identified all sites at the 32 gene 

promoters, and all sites within 100kb of the reported eQTL variant (the converse of how we 

define what variants to test as caQTLs). We then tested all promoter sites against all variant 

sites using Limix and the methods described in the co-accessibility section. P-values were 

Bonferroni corrected within each eQTL-eGene pair, and then FDR corrected across all eGenes. 

A threshold of q < 0.05 was used for significance.  

 

Trans eQTL 

To identify trans eQTLs, we tested trans-caQTL variants against the gene whose promoter 

overlapped the trans-caSite, following which we FDR corrected all eQTL tests. For these 

associations, we included sex, age, iPSC passage number, the top 5 PCs from ancestry, and 

the top 20 PEER factors from expression as fixed effects, and kinship as a random effect.  
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