
EM-LDDMM for 3D to 2D registration

Daniel Tward Michael Miller

April 9, 2019

Abstract

We examine the problem of mapping dense 3D atlases onto censored,
sparsely sampled 2D target sections at micron and meso scales. We intro-
duce a new class of large deformation diffeomorphic metric mapping (LD-
DMM) algorithms for generating dense atlas correspondences onto sparse
2D samples by introducing a field of hidden variables which must be esti-
mated representing a large class of target image uncertainties including (i)
unknown parameters representing cross stain contrasts, (ii) censoring of
tissue due to localized measurements of target subvolumes and (iii) sparse
sampling of target tissue sections. For prediction of the hidden fields we
introduce the generalized expectation-maximization algorithm (EM) for
which the E-step calculates the conditional mean of the hidden variates
simultaneously combined with the diffeomorphic correspondences between
atlas and target coordinate systems. The algorithm is run to fixed points
guaranteeing estimators satisfy the necessary maximizer conditions when
interpreted as likelihood estimators. The dense mapping is an injective
correspondence to the sparse targets implying all of the 3D variations are
performed only on the atlas side with variation in the targets only 2D
manipulations.

1 Introduction

The field of connectomics is combining high resolution neuroimaging with big
data analytics to transform our understanding of neuroscience[1]. Connectivity
is reliably estimated from tracing experiments, with images acquired at micron
resolution. Macroscopic techniques such as diffusion tensor imaging (DTI)[2]
(which estimates structural connectivity via tractogrophy [3]), or functional
magnetic resonance imaging (which estimates functional connectivity via blood
oxygen level dependent (BOLD) signal correlation [4]) are merely proxies and
can often be inaccurate [5].

While some micron scale 3D imaging modalities are becoming available,
such as CLARITY[6, 7] and iDISCO [8], it remains that 2D histological prepa-
rations consisting of many sections which sparsely sample the true 3D volume of
the brains continues to be ubiquitous to many biomedical science laboratories
studying brain tissue at meso and micron scales.

1

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 10, 2019. ; https://doi.org/10.1101/604405doi: bioRxiv preprint 

https://doi.org/10.1101/604405
http://creativecommons.org/licenses/by/4.0/


For the community to benefit from this data, alignment to common atlas
coordinates such as the Allen Common Coordinate Framework (CCF) [9] is es-
sential. This technique allows for interpretation of data within an anatomical on-
tology such as that specified in the Allen Reference Atlas[10], and enables build-
ing statistical ensembles among different animals, as well as collaboration be-
tween different labs. One such collaborative group is the BICCN https://www.

braininitiative.nih.gov/brain-programs/cell-census-network-biccn, whose
goal is to “generate comprehensive 3D common reference brain cell atlases that
will integrate molecular, anatomical, and functional data for describing cell
types in mouse, human, and non-human primate brains”. The challenge there-
fore remains that complete atlases of the brains are dense 3-dimensional (3D)
data sets, yet analysis technologies associated to sparse 2-dimensional (2D) sam-
pling is still essential.

When considering how to sample this data, a dense set of slices can enable
accurate 3D registration to an atlas [11]. On the other hand, imaging fewer
slices saves experimental time and effort, and allows tissue to be saved for other
purposes such as the multiple markers important to the BICCN. As slices be-
come sparser, the assumption that they are similar to their neighbors is violated,
and existing automatic image registration methods cannot be used.

This paper focuses on the 3D reconstruction of a sparse set of tissue slices,
guided by using a well characterized atlas. Slices may be different modalities
or have missing tissue or artifacts, using the approaches described in [12]. For
accommodating sparse sectioning, no assumption of similarity between neigh-
boring slices is necessary. We exploit the random orbit model of Computational
Anatomy in which the measured targets are modeled as a diffeomorphic change
of coordinates of a three-dimensional atlas along with a deterministic and sta-
tistical transformation applied to the atlas to generate the data.

Our method involves a sequence of transformations describing how each 2D
slice is generated from a 3D atlas, resulting in a generative statistical model
for observed images. Because this setting involves joint optimization over hun-
dreds of transformations, a scalable approach for computing transformations
and their gradients is required. Optimizing over multiple transformations linked
by composition is the subject of deep learning, and we borrow the notion of a
computation graph from this field. In this formulation data and operations are
represented by edges and vertices (respectively) of a directed graph. Data flows
from parent to child under the operations, and gradients flow from child to par-
ent using each operation’s derivative adjoint (also known as backpropagation or
the chain rule).

This computation graph formulation of image registration has been consid-
ered previously [13]. In this work we jointly optimize over a larger series of
transformations to accommodate 3D to 2D mapping, and we precisely specify
each computation and its gradient, showing a comparison to approaches derived
assuming continuous functions.

In this paper we describe the formulation of our registration procedure, dis-
cussing numerical issues revealed by this procedure. We illustrate its effective-
ness relative to a gold standard using simulated data of increasing sparsity, and

2

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 10, 2019. ; https://doi.org/10.1101/604405doi: bioRxiv preprint 

https://www.braininitiative.nih.gov/brain-programs/cell-census-network-biccn
https://www.braininitiative.nih.gov/brain-programs/cell-census-network-biccn
https://doi.org/10.1101/604405
http://creativecommons.org/licenses/by/4.0/


we show its performance registering data from connectomic tracing experiments
as part of the BICCN.

2 Methods

In this section we first describe the sequence of transformations in our model
formulated in terms of continuous functions. We then turn to details of dis-
cretization and interpolation. Finally we describe our experiments.

2.1 Synthesis Model of Generated Data

In image analysis synthesis is a fundamental part of the analysis step, implying
the generative model step is fundamental to understanding the reconstruction.
The synthesis model is a sequence of transformations which compose. The
generative model of imaging data is shown in Fig. 1. We follow the random
orbit model from Computational Anatomy. The space of dense 3D images in
the orbit of the atlas are defined via diffeomorphisms ϕ : (x1, x2, x3) ∈ R3 7→
ϕ(x) = (ϕ1(x), ϕ2(x), ϕ3(x)) ∈ R3. The diffeomorphism ϕ ∈ D act on the atlas
to generated the orbit of imagery I ∈ I = {I = ϕ · Iatlas}, the action on the
atlas defined as inverse on the right ϕ · I = I ◦ ϕ−1.

We build the diffeomorphisms to correspond to a low dimensional element
of the affine group ϕ(A,b) and the infinite dimensional diffeomorphisms ϕV ,
and they act in composition ϕ = ϕV ◦ ϕA. We generate them using polar
decomposition and flows; see Appendix A.

The measured target data J i, i = 1, . . . correspond to sections that are
stained and may be distorted by the sectioning and imaging process. For this
we define ψi, each ψi : I → ψi(I) ∈ R2. The action of ψj is to section through
the 3D volume generating a plane, and as well to apply a diffeomorphism on the
coordinates of the plane. The pointwise imaging model in the plane becomes

Ĩi(y1, y2) = ψj(ϕ · Iatlas)(y1, y2) .

This slicing procedure is shown in Fig. 2.
We model our imaging system as an unknown polynomial intensity and color

transformation of this sliced atlas, Ĵ i, with additive white Gaussian noise.

J i(y1, y2) = Ĵ i(y1, y2) + noise(y1, y2) .

Missing tissue or artifacts are incorporated via Gaussian mixture modeling at
each pixel, as described in [12]. This model corresponds to a penalized likelihood
optimization algorithm that minimizes weighted sum of square error with weight
W i(y1, y2).

2.2 Discrete formulation

The method is illustrated using a computation graph in Fig. 3, where edges
correspond to data and nodes correspond to operations. Note that all transfor-
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1. 3D atlas

2. 3D
diffeomorphism

3. 3D
scaling

4. 3D
rigid

5. 3D to 2D
slicing

6. 2D
diffeomorphism

7. intensity
transform

8. Gaussian
white noise

Figure 1: Flowchart illustrating steps in our generative model, predicting one
slice of data from the Allen CCF.
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Figure 2: Illustration of the 3D to 2D slicing procedure. Left: 3D rigid motions
are applied successively to the deformed atlas (cyan isosurface), positioning it
with respect to a hypothetical cutting blade at z = 0. Slices need not be parallel
nor uniformly spaced. Right: Sampling the rigidly positioned atlas image at
z = 0 yields a 2D slice image.
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Figure 3: Overview of computation graph illustrating transformations for slice
i.

mations are composed and sliced before transforming the image, avoiding loss
of resolution due to repeated interpolations.

A discrete version of the method is formed by specifying exactly how diffeo-
morphisms are generated, how transformations are composed, how the image
is deformed, and how sampling grids are defined. Most of these operations are
performed via linear interpolation, and are shown in Fig. 4. Operations that
have more than one input argument use arrows to specify which input argument
is used. For example interp ↑ (←) means “evaluate the the data specified above,
at the points specified to the left, via linear interpolation.” Data defining images
and vector fields are defined on grids of various sizes, which are denoted next to
the edges in the graph. For example, the pixels in the ith observed RGB image
J i, are stored on a grid with locations XJ,i of size NJi

x , NNi

y , 1, 3.
Finally the integration of the velocity field vt under optical flow to produce

ϕ−1 is shown in Fig. 5. This is performed using linear interpolation via the
method of characteristics [14].
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(↑)−1

S4× 4

(↑)−1

Ri4× 4

mat mul
(←)× (↑)S−1

4× 4

Ri,−14× 4

mat vec mul
(↑)× (←)

ψi,−1, z=0

Nw
x , Nw

y , 1, 3

Ai,−14× 4

interp
↑ (←)

XJ,i

Ai,−1ψi,−1

interp
← (↑)

ϕ−1

[Ai,−1ψi,−1] ◦XJ,i

interp
← (↑)

I

ϕ−1 ◦ [Ai,−1ψi,−1] ◦XJ,i

Ĩ

Figure 4: Generation of deformed image. Note that the 3D to 2D step occurs
because we sample our transformations at the grid points XJ,i.
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Xv − (←)∆t
interp
↑ (←)

v1 φ1

Xv

Xv − (←)∆t
interp
↑ (←)

v2 φ2

ϕ−1
1

...

ϕ−1
2

Xv − (←)∆t
interp
↑ (←)

vn φn

ϕ−1
n−1

ϕ−1 .
= ϕ−1

n

Figure 5: Generating 3D diffeomorphism from velocity. Small deformations are
generated by subtracting displacement from identity, and they are combined
under composition. This is the method of characteristics (along a characteristic
curve, the value of ϕ−1 is constant). All data is of the same size, Nv

x , N
v
y , N

v
z , 3.

Note that the 2D velocity field is generated the same way, with Nu
z = 1.
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2.3 Gradient calculations

For each operation, gradient backpropagation is performed using the adjoint
of the operation’s derivative. That is, we define an operation f : X → Y
with x 7→ f(x). Its derivative is a map between tangent spaces Dfx : TxX →
Tf(x)Y with δ 7→ Dfx(δ). The adjoint is a map between cotangent spaces,
Df∗x : Tf(x)Y

∗ → TxX
∗ with e 7→ Dxf

∗(e), defined implicitly by preserving the
pairing ∑

i

eiDfx(δ)i =
∑

(Df∗x(e))iδi .

The same definition is true in the continuous case, with the sum replaced by
a integral. The only two operations in our computation graph with non trivial
adjoints are matrix inverse and interpolation.

2.3.1 Matrix inverse

We consider the operation f(A) = A−1.

Theorem 2.1. The adjoint of the derivative of a matrix inverse, f(A) = A−1,
is given by

Df∗A(eA) = −A−T eAA−1

Proof. The action of the derivative on a perturbation δA is given by

DfA(δA) = −A−1δAA
−1

where adjacent terms denote matrix multiplication. The adjoint is calculated
as

tr
[
eTADfA(δA)

]
= tr

[
eTA(−1)A−1δAA

−1
]

= tr
[(
−A−T eAA−T

)T
δA

]
using the cyclic property of the trace.

2.3.2 Discrete interpolation

In the discrete case we consider working with ND arrays. We transform an
image I (N I

x , N
I
y , N

I
z , Nc) by sampling it at the points in φ−1 (NJ

x , N
J
y , N

J
z , 3).

Note that NJ
z may be 1. The output J has size (NJ

x , N
J
y , N

J
z , Nc).
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The trilinear interpolation operation J = f(I, φ−1) is defined as

Ji,j,k = Iĩ,j̃,k̃ (1− p1) (1− p2) (1− p3)

+Iĩ,j̃,k̃+1 (1− p1) (1− p2) ( p3)

+Iĩ,j̃+1,k̃ (1− p1) ( p2) (1− p3)

+Iĩ,j̃+1,k̃+1 (1− p1) ( p2) ( p3)

+Iĩ+1,j̃,k̃ ( p1) (1− p2) (1− p3)

+Iĩ+1,j̃,k̃+1 ( p1) (1− p2) ( p3)

+Iĩ+1,j̃+1,k̃ ( p1) ( p2) (1− p3)

+Iĩ+1,j̃+1,k̃+1 ( p1) ( p2) ( p3)

where ĩ is the i index pointed to by ϕ−1
i,j,k, rounded down, and p1 is the fraction

of the way to the next pixel.
Conceptually this can can be written as matrix multiplication for a very large

sparse matrix, which can be calculated by accumulation as shown in Algorithm
1. In practice we use a more efficient implementation.

Algorithm 1 Calculate J from I and ϕ−1 using trilinear interpolation.

J ← 0
for i, j, k = 0 to NJ

x , N
J
y , N

J
z do

ĩ, j̃, k̃ ← integer part of index of ϕ−1
i,j,k

p1, p2, p3 ← fractional part of index of ϕ−1
i,j,k

for i′, j′, k′ = 0 to N I
x , N

I
y , N

I
z do

if i′, j′, k′ = ĩ, j̃, k̃ then
Ji,j,k ← Ji,j,k + Ii′,j′,k′(1− p1)(1− p2)(1− p3)

end if
...
if i′, j′, k′ = ĩ+ 1, j̃ + 1, k̃ + 1 then
Ji,j,k ← Ji,j,k + Ii′,j′,k′( p1)( p2)( p3)

end if
end for

end for
return J

Since f is linear in its first argument, the adjoint is just the transpose. The
adjoint can be written as shown in Algorithm 2. In practice we use a more
efficient function such as Matlab’s accumarray.

Theorem 2.2. The adjoint of the derivative of discrete interpolation, with re-
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Algorithm 2 Calculate eI from eJ and ϕ−1 using trilinear interpolation.

eI ← 0
for i, j, k = 0 to NJ

x , N
J
y , N

J
z do

ĩ, j̃, k̃ ← integer part of index of ϕ−1
i,j,k

p1, p2, p3 ← fractional part of index of ϕ−1
i,j,k

for i′, j′, k′ = 0 to N I
x , N

I
y , N

I
z do

if i′, j′, k′ = ĩ, j̃, k̃ then
eIi′,j′,k′ ← eIi′,j′,k′ + eJi,j,k(1− p1)(1− p2)(1− p3)

end if
...
if i′, j′, k′ = ĩ+ 1, j̃ + 1, k̃ + 1 then
eIi′,j′,k′ ← eIi′,j′,k′ + eJi,j,k( p1)( p2)( p3)

end if
end for

end for
return eI

spect to its second argument is given by (for the x component)

eϕ
−1

i,j,k,1 = eJi,j,k ·

[
Iĩ,j̃,k̃ (− 1

∆x ) (1− p2) (1− p3)

+Iĩ,j̃,k̃+1 (− 1
∆x ) (1− p2) ( p3)

+Iĩ,j̃+1,k̃ (− 1
∆x ) ( p2) (1− p3)

+Iĩ,j̃+1,k̃+1 (− 1
∆x ) ( p2) ( p3)

+Iĩ+1,j̃,k̃ ( 1
∆x ) (1− p2) (1− p3)

+Iĩ+1,j̃,k̃+1 ( 1
∆x ) (1− p2) ( p3)

+Iĩ+1,j̃+1,k̃ ( 1
∆x ) ( p2) (1− p3)

+Iĩ+1,j̃+1,k̃+1 ( 1
∆x ) ( p2) ( p3)

]
.

Here ĩ, j̃, k̃, p1, p2, p3 are defined as above. The adjoint is defined similarly for
the y and z components.

Proof. The adjoint with respect to the second argument can be computed by
noticing that ĩ, j̃, k̃ do not vary for small changes in the input argument, and
p1, p2, p3 vary linearly, with slope of one over the corresponding voxel dimension.
This derivative can be thought of as a diagonal matrix, which is of course self
adjoint.

2.4 Continuous versus discrete interpolation

For purposes of comparison, we include the continuous version of interpolation,
“compose two functions” or equivalently “evaluate a function at a set of points”:
J = f(I, ϕ−1)

.
= I(ϕ−1).

Theorem 2.3. In the continuous case, the adjoint of the derivative of interpo-
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lation f(I, ϕ−1) = I(ϕ−1) with respect to its first and second argument is

D1f
∗
I,ϕ−1(e1) = e1(ϕ)|Dϕ|

D2f
∗
I,ϕ−1(e2) = DIT (ϕ−1)e2 .

When e2 is a vector, this denotes matrix multiplication.

Proof. For the first argument, the operation is linear, so the derivative is just
the operation itself.

d

dε
f(I + εδI , ϕ

−1)

∣∣∣∣
ε=0

=
d

dε
I(ϕ−1) + εδI(ϕ

−1)

∣∣∣∣
ε=0

= δI(ϕ
−1)

We evaluate the adjoint through a change of variables∫
eTI (x)D1fI,ϕ−1δI(x)dx =

∫
eTI (x)δI(ϕ

−1(x))dx

=

∫
[eI(ϕ(y))|Dϕ(y)|]T δI(x)dy

The operation is nonlinear in the second argument.

d

dε
f(I, ϕ−1 + εδϕ−1)

∣∣∣∣
ε=0

=
d

dε
I(ϕ−1 + εδϕ−1)

∣∣∣∣
ε=0

= DI(ϕ−1)δϕ−1

For clarity, we emphasize DI(ϕ−1) 6= D[I(ϕ−1)].
The adjoint is calculated by∫

eTϕ−1(x)D2fI,ϕ−1(δ−1
ϕ )(x)dx =

∫
eTϕ−1(x)DI(ϕ−1(x))δϕ−1(x)dx

=

∫
[DIT (ϕ−1(x))eϕ−1(x)]T δϕ−1(x)dx

These results are “similar” to, but distinct from, those derived in the discrete
section. For the first argument, when |Dϕ| is large, in the continuous setting
we have a large multiplicatiave weight, whereas in the discrete setting we have
many voxels in the accumulation. A small |Dϕ| implies a small weight in the
continuous setting, but a sparse set of voxels in the discrete setting. The latter is
an important fundamental difference between the two, when the transformation
ϕ is contractive, many image voxels do not get sampled at all. The continuous
approach artificially assigns them a nonzero gradient with respect to the cost.
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For the second argument, the continuous formulation gives a derivative, while
the discrete formulation gives a discrete forwards difference. Many existing
registration implementations such as ITK [15] have used a centered difference,
because its truncation error is accurate to second order . Other publications have
explicitly [16] or implicitly [17] avoided considerations of discrete interpolation
or derivatives.

2.5 The registration algorithm

Unknown parameters v, w, S,R, θ are estimated using the EM algorithm as de-
scribed in [12]. In the E step, W is calculated as the posterior probability that
each pixel corresponds to a deformation of the atlas (as opposed to an artifact
or missing tissue). In the M step, all parameters are updated using gradient
descent, calculating gradients via backpropagation as described above. For ve-
locity fields v, w, we use the Hilbert gradient rather than the L2 gradient [17].
We force S (R) to be positive definite (rigid) by using the matrix log and ex-
ponential of a symmetric (antisymmetric) matrix. Gradient descent step sizes
are fixed and their scale is chosen manually. More sophisticated optimization
techniques, including replacing optimization with prediction[13], is the subject
of future work.

3 Experiment and results

We demonstrate the performance of our algorithm by registering 2D slices to
the 3D CCF. We apply this method to reconstructing a challenging dataset
from the BICCN, which includes artifacts due to strong fluorescence in certain
regions.

Figure 6 shows the result of our algorithm applied to BICCN fluorescence
microscopy data from the laboratory of Hongwei Dong (USC), publicly available
through https://biccn.org/data. The top row shows several slices of our
observed data, while the second row shows our template transformed to match
each slice using the generative model described above. The bottom row shows
our algorithm’s identification of pixels that correspond to the atlas (red), versus
missing data (blue) or artifact (green). Fig. 7 shows the cost function gradient,
backpropagated into the 3D space of the atlas. One can see the effect of sparse
sampling here. Many of the pixels do not contribute to the cost function, and
their associated gradient is zero.

4 Discussion

In this work we formulated a 3D to 2D registration algorithm based of a gener-
ative statistical model of imaging, that is capable of functioning accurately and
robustly in the presence of sparse slicing, artifacts, or missing tissue. Because
this model involves joint optimization over a sequence of transformations, we
used a computation graph to coordinate each operation and the adjoint of its
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J i

Ĵ i

P

Figure 6: Top: a selection of 11 slices J i from the BICCN dataset. Second row:
Corresponding deformed atlas slices with intensity transformation Ĵ i. Bottom
row: Estimates of posterior probability of missing tissue (blue), artifact (green),
or data corresponding to the atlas (red). Note that alignment is poor toward
the posterior cerebellum where the Allen atlas abruptly ends.

Figure 7: We show error backpropagated into 3D deformed atlas coordinates
with five slices in sagittal (top), coronal (middle), and axial (bottom) planes.
Grey implies little error, while black or white imply more error. The sparse
sampling is evident with no error in between sectioning planes. Note that regions
identified as artifact or missing data have a small weight on their error.
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gradient. We used this as an opportunity to analyze the effect of discretization
in image registration, as opposed to a continuous formulation. We demon-
strated the performance of this algorithm using simulated data and fluorescence
microscopy data that is part of the BICCN.

A common challenge of deformable image registration is the presence of local
minima in the objective function, and the resulting sensitivity to initialization
of of the transformation parameters. The EM algorithm used here can make
this problem more severe. We use several strategies to overcome this challenge,
including a multiresolution approach (registering low resolution images with
smoother deformations can have as an initialization to higher resolution), and
a reasonable initial slice alignment by detecting tissue center of mass.

One limitation of this work is that we considered only mouse imaging data.
The community commonly uses a variety of model organisms, and the BICCN
intends to pursue nonhuman primate and human data. While this algorithm can
easily be applied to other datasets, more work is needed to choose and validate
appropriate parameters in each case.

In addition to analyzing model organisms for neuroscience research, we are
applying these techniques to serial sections in human digital pathology. Three
dimensional analysis of tissue specimens will be important for modern pathol-
ogy departments. Unlike neuroscience experiments, acquiring human specimens
cannot simply be replicated, and designing algorithms that function robustly in
the presence of staining variability and missing or damaged tissue is essential.

A Transformation parameterization

Affine transformations with linear part Ai ∈ R3×3 and translation part bi ∈ R3

are decomposed using a polar factorization. this gives a positive symmetric
definite scale matrix S used for all slices, and a rigid transformation Ri, bi that
is slice specific (see Fig. 2). These transformations are parameterized using the
matrix group exponential with S = exp(s) where s is a symmeric matrix, and
Ri = exp(ri) where ri is an antisymmetric matrix.

Deformations are parameterized using the Riemannian exponential of a smooth
initial velocity field v0. Smoothness is ensured by modeling velocity fields as
belonging to a Hilbert space V with inner product defined through a linear
operator L [18]

〈u, v〉V = 〈Lu,Lv〉L2
.

Diffeomorphisms are constructed via the flows

ϕ = exp(v0)
.
= ϕ1

ϕ̇ = vt(ϕt), ϕ0 = id

L̇∗Lv = −[DvTt (ϕt)]L
∗Lv

where ∗ denotes the adjoint and L∗Lv denotes the Eulerian momentum [19].
Computationally, we optimize over time varying velocity fields, allowing the
Riemannian exponential trajectories to be approached at convergence.
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