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Abstract 

 

The recent improvements in mass spectrometry instruments and new analytical methods are 

increasing the intersection between proteomics and big data science. In addition, the 

bioinformatics analysis is becoming an increasingly complex and convoluted process 

involving multiple algorithms and tools. A wide variety of methods and software tools have 

been developed for computational proteomics and metabolomics during recent years, and 

this trend is likely to continue. However, most of the computational proteomics and 

metabolomics tools are targeted and design for single desktop application limiting the 

scalability and reproducibility of the data analysis. In this paper we overview the key steps of 

metabolomic and proteomics data processing including main tools and software use to 

perform the data analysis. We discuss the combination of software containers with 

workflows environments for large scale metabolomics and proteomics analysis. Finally, we 

introduced to the proteomics and metabolomics communities a new approach for 

reproducible and large-scale data analysis based on BioContainers and two of the most 

popular workflows environments: Galaxy and Nextflow.    

 

Introduction 

 

The progress in the application of mass spectrometry (MS) to biological compounds has 

revolutionized the field of biology: the large-scale identification of proteins and metabolites 

provides a unique snapshot of a biological system of interest at a given time point [1]. The 

MS-based high-throughput technologies have resulted in an exponential growth in the 

dimensionality and sample size [2]. This increase has two major directions: I) the number of 

samples processed, powered by new mass spectrometers; and II) the number of molecules 

(metabolites, peptides, and proteins) identified alongside each sample [3]. In addition, the 

data analysis in MS-based metabolomics and proteomics is becoming more complex, 

including several convoluted steps to go from the spectra identification to the final list of 
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relevant molecules. This scenario creates major challenges for software developers and the 

bioinformatics community:  I) software and data analysis scalability; II) software availability 

and findability; and III) reproducibility of the data analysis [3, 4]. 

 

Computational proteomics and metabolomics have been dominated by desktop and 

monolithic software for the past decades, which hampered high throughput analysis in High-

Performance Computing systems (HPCS) and cloud environments [5, 6]. Furthermore, many 

of these are proprietary closed-source solutions, often run only on MS Windows or from 

vendor’s hardware, and use proprietary binary formats for data intake. These are barriers for 

reproducible science. During the last decade, open source software and distributed solutions 

have slowly made their way in these computational fields, with an ecology of computation 

tools flourishing in proteomics and metabolomics (see reviews in both fields [6, 7]).  While 

open source and distributed frameworks irruption into the aforementioned omics fields is 

positive for the scalability, portability, and reproducibility of data analysis in this fields, it often 

comes at a cost of an increased technical complexity: installing, maintaining and executing 

these analysis software is usually complex and requires advanced software expertise, which 

is often a rare skill among scientific practitioners.  This is further complicated by the fact that 

reproducibility and collaboration demand the installation of these tools on different 

computational environments (local computers, HPCS, cloud, collaborators cluster, etc), often 

requiring different installation processes and software dependencies to be fulfilled [8].  

 

In the past few years, the use of software containers and software packaging systems has 

markedly increased in general in the field of Bioinformatics [8, 9]. In particular, the 

BioContainers [8] (http://biocontainers.pro) and BioConda [10] (http://bioconda.github.io) 

communities have widely increased the availability of containers and adequately packaged 

bioinformatics tools respectively, providing today thousands of tools in a format that can be 

used in local workstations, HPCS and cloud environment seamlessly [9]. These software 

containers reduce the technical entry barrier for setting up scientific open source software 

and for making setups portable across multiple environments.  

 

While containers and software packages make easier the installation and portability of 

bioinformatics tools, they still leave to the scientist the task of dealing with combining 

(plumbing) tools together to create bioinformatics data analysis workflows and pipelines [11]. 

This is a complex task and demands the use of the Linux command line environment; the 

underlying file system and data streams. In addition, if the analysis is aimed to run in 

distributed architectures (e.g. HPC clusters or Cloud), the bioinformatician will need to 

combine the workflow design (what tools to run with which data inputs and parameters) with 
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the execution logic (e.g. job scheduler, data filesystem). To facilitate workflow design and 

their execution on different distributed execution environments, such as HPC or Cloud 

architectures, the bioinformatics community has developed various Bioinformatics workflows 

systems [11]. During the past 10 years, open source workflow environments have started to 

consolidate in the field of bioinformatics, and more recently in the past 5 years, these have 

made an entrance into metabolomics and proteomics. The first popular workflow 

environment systems in bioinformatics where Taverna (now Apache Taverna) and Galaxy 

[12], released in 2003 and 2005 respectively. The list is increasing every year with prominent 

examples such as Nextflow [13], Cromwell, toil and Snakemake [14], among others. Besides 

workflow systems, proposals for workflow lingua francas have appeared, such as CWL or 

WDL, among others. 

 

In this manuscript, we will discuss the combination of software containers with workflows 

environments for large scale metabolomics and proteomics analysis. The combination of 

software containers and workflows environments promises to make scientific analysis 

pipelines scalable, reproducible, portable and accessible to scientists that do not have any 

expertise in the use of complex computational infrastructure and command line 

environments. We will introduce to the proteomics and metabolomics communities a 

complete ecosystem of tools and framework for reproducible and large-scale data analysis 

based on BioContainers and two of the most popular workflows environments: Galaxy [12] 

and Nextflow [13].    

 

Current approaches for computational mass spectrometry.  

 

In proteomics, the most common strategy for the interpretation of data-dependent acquisition 

(DDA) MS/MS spectra consists of comparing the experimental spectra to a set of ideal 

spectra (also called theoretical spectra) extrapolated from the predicted fragmentation of 

peptides derived from a protein database [15]. During this process, every spectrum obtained 

by the mass spectrometer needs to be compared with all the theoretical spectra within the 

same precursor mass. As more data is generated (larger cohorts and more complex 

samples) the running time becomes longer [16]. During recent years, algorithms and tools 

have been developed to perform the identification step, such as Andromeda [17], MSGF+ 

[18] or MSFragger [19].  Even though most of these algorithms have become robust and 

reliable, analysis of large scale experiments will still be computationally intensive and take 

considerable execution time [20]. After the identification process, the resulting peptide-

spectrum matches can be reliably controlled by false discovery rates filters (such as FDR) 

(Figure 1). Recently, many tools have implemented a secondary database search which 
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takes the initial identification results and refines the search parameters. Finally, the list of 

quantified protein is ensemble based on the identified peptides by using protein inference 

algorithms [21, 22]. The list of quantified proteins is provided to the downstream statistical 

analysis step, which reports the final relevant proteins.    

 

Data independent acquisition (DIA) is a relatively new mass spectrometry-based technique 

for systematically collecting tandem mass spectrometry data. Whereas data-dependent 

acquisition (DDA) selects precursor ions according to their abundances, DIA aims to 

implement a parallel fragmentation of all precursor ions, regardless of their intensity or other 

characteristics, enabling the establishment of a complete record of the sample [23]. This 

analytical method is well-suited for applications requiring the measurement of thousands of 

proteins or demanding the flexibility to investigate multiple hypotheses without having to 

acquire additional data sets. Different software have been implemented to analyze DIA 

datasets such as OpenSWATH [24] and Skyline [25].  

 

Similarly, computational metabolomics is mainly based on the comparison of the metabolites 

spectra against a well-curated database of previously identified metabolites (Spectral library 

strategy) (Figure 1).  Spectral libraries such as METLIN and MassBank contain information 

about mass and structure of small molecules, although MS/MS spectra are available for only 

a share of the small molecules in the database. The basic analytical workflow yields 

thousands of molecular features within minutes of data acquisition. But, similarly to 

proteomics, only a minority of detected masses can be matched to a molecule in the 

database, or more commonly to several possible molecular formulas [26, 27]. A statistical 

validation and manual curation can only be achieved by a matched MS/MS spectrum and/or 

by another compound-specific property such as retention time, which is then compared to a 

synthesised standard compound. In principle, quantitative analysis in metabolomic 

experiments is very similar to the label-free quantitation approaches based on extracted ion 

chromatograms in proteomic workflows. Feature alignment and detection is followed by 

quantitation and then perhaps identification of a compound. However, the tendency of small 

organic molecules to form multimers or adducts (i.e. sodium or ammonium) needs to be 

considered and detected masses and their intensities deconvoluted before quantitation and 

statistical evaluation [26].  

   

Current software ecosystem for computational mass spectrometry.  

 

The more established and common tool design for   proteomics and metabolomics data 

analysis are monolithic desktop applications. In this type of bioinformatic tools, all the 
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analysis steps (Figure 1) are encapsulated into the same application, which lends itself to 

be used as a black box, with little understanding from users on the intermediate analysis 

steps.  

 

MaxQuant (Proteomics) 

 

MaxQuant [28] is one of the most frequently used platforms for mass-spectrometry (MS)-

based proteomics data analysis. The platform includes a Database search engine 

(Andromeda) to perform the peptide identification and a set of algorithms and tools designed 

for quantitative label-free proteomics, MS1-level labelling, and isobaric labelling techniques. 

Recently, MaxQuant has implemented the full export to mzTab file format, enabling the 

proteomics community to perform complete submissions to ProteomeXchange repositories 

and analyse the data in an standard file format [29].  

   

In 2013, the MaxQuant team published a detailed documentation of the running time and 

input/output operations for each step of the analysis [30]. The results showed bottlenecks in 

overall performance and time-consuming algorithms related to peptide features detection in 

the MS-1 data as well as the fragment spectrum search. The MaxQuant algorithms are 

efficiently parallelized on multiple processors and scale well from desktop computers to 

servers with many cores. However, all the framework and algorithms have been designed as 

a monolithic tool where all the steps of the data processing cannot be easily distributed in 

HPC or Cloud architectures. In addition, MaxQuant is not an open source software, which 

limits the possibility of external contributors and collaborators to reuse the individual 

components and algorithms moving towards a distributed architecture.  

 

Skyline (Proteomics) 

 

The Skyline [25] is an open source platform for targeted and data-independent proteomics 

and metabolomics data analysis. It runs on Microsoft Windows and supports the raw data 

formats from multiple mass spectrometric vendors. It contains a graphical user interface to 

display chromatographic data for individual peptide or small molecule analytes. Skyline 

supports multiple workflows, including selected reaction monitoring (SRM) / multiple reaction 

monitoring (MRM), parallel reaction monitoring (PRM), data-independent acquisition 

(DIA/SWATH) and targeted data-dependent acquisition. Because both SRM and DIA data 

are based on the analysis of MS/MS chromatograms (selected and extracted respectively), 

the processing (chromatogram peak integration) and visualization of data acquired using 

these two methods very similar within Skyline. In a recent publication, the Skyline team has 
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recognized that one of the areas to work in the future is the parallelization and distribution of 

computation and processing in HPC and cloud architectures [31]. These developments will 

be vital in obtaining the robust, sensitive quantitative measurements required to better 

understand the systems biology of cells, organisms, and disease states.  

 

XCMS2 and MZmine2 (Metabolomics) 

 

XCMS-2 [32] and MZmine2 [33] have become arguably the most widely used free software 

tools for pre-processing untargeted metabolomics data.  The XCMS-2 software is publicly 

available software that can be used within the R statistics language [32].  XCMS-2 is 

capable of providing structural information for unknown metabolites. This “similarity search” 

algorithm has been developed to detect possible structural motifs in the unknown metabolite 

which may produce characteristic fragment ions and neutral losses to related reference 

compounds contained in reference databases, even if the precursor masses are not the 

same. In addition, XCMS provides algorithms and tools to find peaks, align/group peaks, 

correct retention times between different samples, fill peaks, filter by dilution, among other 

methods [32]. 

 

MZmine was first introduced in 2005 as an open-source software toolbox for LC-MS data 

processing. The first version of MZmine defined the data analysis workflow and implemented 

simple methods for data processing (e.g. peak noise detection) and visualization. In 2010 

[33], a critical assessment of the tool detected that MZmine was a build in a monolithic 

design, thus limiting the possibility of expanding the software with new methods developed 

by the scientific community. In lieu of this, MZmine2 was completely redesigned to be 

modular. MZmine2 was built in multiple data processing modules, with emphasis on easy 

usability and support for high-resolution spectra processing. MZmine2 includes the 

identification of peaks using online databases, MS-n data support, improved isotope pattern 

support, scatter plot visualization, and method for peak list alignment based on the random 

sample consensus (RANSAC) algorithm. 

 

In 2017, Weber and co-workers conducted a survey on software data usage in 

metabolomics and found that LC-MS data analysis in metabolomics is performed in 84% of 

the cases using open-source tools. The predominant open-source software is XCMS (70%), 

followed by Mzmine and MZmine2 (26%). Interestingly, most of the usages of XCMS is 

through the Online XCMS Portal 

(https://xcmsonline.scripps.edu/landing_page.php?pgcontent=mainPage) a popular Web 

application that helps the user to go through each step of the data analysis. XCMS Online 
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directly searches the experimental mass spectra into METLIN online data using the 

traditional precursor ion selection window and additionally a distance matrix score to obtain 

good spectral matches. For the reader interested in a wider landscape of Metabolomics tools 

and their usage in different scenarios, Spicer et al6 provides guidance.  

 

From desktop applications to distributed HPC and cloud architectures. 

 

The field of MS-based computational proteomics and metabolomics heavily relies on 

monolithic desktop applications which prevents the analysis of the big amount of data in 

HPC clusters and cloud architectures. In order to overcome these problems, three main 

fields of computer science and algorithm development need to develop and grow in the near 

future in computational MS-based proteomics and metabolomics: i) component-based and 

modularized applications; ii) standard practices for tool packaging and deployment, and iii) 

workflow systems.  

 

Figure 2 shows a proposal for the next-generation of computational proteomics tools and 

algorithms. Each step of the data processing should be designed as an independent module 

component that can be executed in an independent node distributed architecture. Multiple 

tools and modules can be packaged into the same framework (e.g. OpenMS [34]) but all of 

them should be executable independently and interchangeably (through adequate exchange 

intermediate formats). A component-based software framework is a branch of software 

development that emphasizes the separation of concerns with respect to the wide-ranging 

functionality available throughout a given software system. The component-based 

development allows the data analyst to replace and substitute components of the workflow 

by new tools or a new version of the same tool without impacting the development process.  

 

In MS-based proteomics three different frameworks have been designed from the beginning 

on component-based architecture: OpenMS [34], Trans-proteomics pipeline [35]  and 

OpenSWATH [24]. OpenMS and OpenSWATH provide a set of computational tools which 

can be easily combined into analysis pipelines even by non-experts and can be used in 

proteomics workflows. These applications range from useful utilities (file format conversions, 

peak picking) to wrappers for known applications like peptide identification search engines. 

These two frameworks have been used recently to analyse big datasets [36, 37]. Though 

these frameworks have been fully implemented as component-based frameworks, they have 

been really slow to implement and promote standard file formats between each component.  

 

Standard file formats for better compatibility between components. 
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Standard file formats allow developing a common persistence (e.g. file) representation of the 

data that is analysed (e.g. spectra, peptides). The proposed approach in Figure 2 reduces 

the need for components to translate from one file to another, which increase input-output 

(IO) operations and data transformation. This standard file format enables the development 

of new tools based on a common representation making the input and output parameters of 

tools common to any software component. 

 

The Human Proteome Organization (HUPO) and the Proteomics Standards Initiative (PSI) 

has developed for 15 years file formats and common representations for MS-based 

proteomics and metabolomics data, from the spectra to protein expression [38]. For mass 

spectra, the mzML specification is the most stable, robust and mature file format, 

representing not only the MS/MS signal but also chromatograms and instrument metadata 

[39]. For peptide/protein identification results, the mzIdentML file format not only captures 

the peptide and protein identifications but also the software metadata (e.g. FDR thresholds, 

search parameters) use to perform the analysis [40].  Finally, mzTab file format store the 

information of quantitative data for proteomics and metabolomics experiments [41, 42]. 

 

Despite advances in the past years, standard file formats need time to evolve and 

consolidate. The software development process shouldn't be slower because of the 

development of a specific file format. Our recommendation is to replace and reuse existing 

file formats when is possible and avoid the creation of new ones. A good example of these 

efforts is the peptide search engine MSGF+ that natively use mzIdentML and has been 

extensively used in open source workflows. 

 

A major problematic in standardised workflows for metabolomics and proteomics in the field 

of mass spectrometry is the lack of intermediate exchange formats similar to the existing 

genomics formats (such as BAM, SAM, CRAM, VCF, bed, etc. to name a few). Often in 

these younger fields tools will generate results in ad-hoc formatted files with poor 

specifications and often incompatible with downstream tools that would naturally pipe. This 

means that further tailored conversion steps need to be provisioned, which slow 

development, require maintenance, and might in cases introduce errors or data loss.  

 

Packaging and deployment using BioContainers 

 

A component-based architecture like the one proposed in this manuscript (Figure 2) 

prompts multiple challenges in deployment and execution. Moving from single desktop 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2019. ; https://doi.org/10.1101/604413doi: bioRxiv preprint 

https://doi.org/10.1101/604413
http://creativecommons.org/licenses/by-nc-nd/4.0/


applications to distributing data analysis and complex workflow systems creates major 

challenges for the bioinformatics community: (i) software availability, (ii) results 

reproducibility and (iii) automated software/environment deployment. Component-based 

pipelines require substantial effort for correct installation and configuration (e.g. conflicting 

dependencies, different base libraries). In addition, versioning components, key for 

reproducing the results of the analysis, is a burden to scientific software development 

groups, who are less used to proper software engineering standards. 

  

Recently, containers and packaging technologies such as Conda (http://conda.io), Docker 

(http://www.docker.com) or Singularity (https://www.sylabs.io/) have emerged to overcome 

these challenges by automating the deployment of applications inside so-called software 

containers. The BioContainers community [8] (http://biocontainers.pro) has created a 

complete architecture and solution to overcome these challenges based on community-

driven BioConda packages [10] and Docker containers.   

 

The BioContainers community has defined a set of guidelines about how to create 

containers, deploy and maintain them (Figure 3) [9]. Each component (software tool) 

developer can create a Conda recipe (a set of yaml and bash scripts which describe how to 

consistently install a software package on Linux) or a Docker build recipe (Dockerfile), which 

are all stored in GitHub. Each contribution (new recipe) is accepted using a Pull Request 

(PR) mechanism by GitHub service [43]. These Pull Requests are accepted by members of 

the bioinformatics community that get given permissions, reducing the burden on a small 

group of maintainers and hence making the model sustainable. After the PR get merged and 

the recipe merges into the repository with a well-defined version, a continuous-integration 

system is triggered, creating the Conda package (in case of a Conda recipe) and the 

corresponding Docker container and Singularity containers tagged at that version. Historic 

versions of the same package are stored both as Conda packages and containers, 

guaranteeing future reproducibility of older pipelines that use earlier versions of a tool.   

 

The created package and containers contain all software dependencies needed to execute 

the tool in question. In general, one package will contain simply one tool, large packages 

containing many tools are in general discouraged. This allows to execute the pipeline in 

different compute environments, without the complexity of installation, dependency 

management, etc. It also allows moving the pipeline from one environment to another (e.g. 

HPC, Cloud or local personal computer) because everything is executed in containers.  At 

the time of writing, BioContainers provides more than 7000 bioinformatics containers that 

can be searched, tagged and accessed through a common web registry 
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(https://biocontainers.pro/#/registry/). Importantly, the BioContainers and BioConda 

communities convert automatically Bioconductor packages automatically into containers.  

 

 

Workflow systems 

 

High-throughput bioinformatic genomics and transcriptomics analyses increasingly rely on 

pipeline frameworks to process sequence and metadata. Until recently, this was not the 

case for Proteomics and metabolomics, where mostly the analysis happens on single 

desktop machines. Modern workflows systems such as Galaxy [12] , Cromwell 

(https://github.com/broadinstitute/cromwell), CWL tool 

(https://www.commonwl.org/v1.0/CommandLineTool.html), Toil [44], Nextflow [13] or 

Snakemake [14] frameworks are playing an important role to move the data analysis steps 

from the single desktop applications into distributed compute platforms [11]. All these 

workflow engines provide three four major functionalities for data processing: i) execution in 

distributed architectures (HPC, Cloud); ii) separation between thee execution environment 

and workflow design; iii)  recovery/restart mechanisms for failed components and tasks; iv) 

support for automatic tool installation using Conda, Docker or Singularity technologies. This 

last feature (automatic tool resolution using packaging systems) allows developers and 

bioinformaticians to execute the workflows and pipelines without the need to install and 

configure each tool manually in the desired architecture. Two different workflows system 

with a lot of attention from the Bioinformatics community are NextFlow [13] and Galaxy [12].  

 

NextFlow 

 

NextFlow (https://www.nextflow.io/), an expressive, versatile and particularly comprehensive 

framework for composing and executing workflows. NextFlow uses a domain-specific 

language (DSL) which also supports the full syntax and semantics of Groovy, a dynamic 

language that runs on the Java platform. One of the great features that make NextFlow a 

powerful workflow engine is its dataflow functionalities. Nextflow allows users within the 

workflow definition to filter data, run processes conditionally on data value or have 

splitting/merging pipeline steps expressed in a short, elegant syntax. 

 

Nextflow separates the workflow definition from the execution environment, which allows 

users to execute the same workflow in different architectures (Cloud, HPC or a local 

machine). This abstraction level is gurranted by using an execution layout that defines which 

type of containers will be used to execute the tools (components of the workflow) and which 
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type of architecture will be used to execute those containers (e.g. HPC, Cloud). Currently, 

Nextflow supports the following technologies: Conda, Docker and Singularity; and the 

following execution environments: Local (the software run in single node, server), HPC 

clusters including (Sun Grid Engine, IBM LSF, PBS/Torque, HTCondor) and cloud providers, 

such as Amazon Web services (through AWS batch) or Google Cloud Platform (see full list 

here: https://www.nextflow.io/docs/latest/executor.html). This execution layout can be 

configured with workflow variables which enable to switch between architectures with no 

hassle.   

 

Figure 4 shows an example of Nextflow workflow with one process to perform sequence 

alignment using Blast (container https://biocontainers.pro/#/tools/blast). Nextflow allows 

bioinformaticians to perform analysis in different architectures with the same workflow 

definition (https://www.nextflow.io/docs/latest/basic.html). Each step of the workflow (called 

process) describes which process will be performed and the input/output parameters. The 

container section inside the process (blastSearch) states which containers will be used; 

including container name (blast), version of the container (v2.2.31_cv2). Between triple 

quotes is the actual command will be executed in the container (in this case blast). This is 

needed because one container can provide multiple tools. Finally, the Nextflow config file 

(https://www.nextflow.io/docs/latest/config.html) defines how the present workflow will be 

executed. In the example, we have defined two possible scenarios: local and lsf. If the user 

runs the workflow using the local configuration (command - nextflow workflow.nf -c config.nf 

-profile local) it will be using BioContainers Docker containers, if the user uses lsf (command 

- nextflow workflow.nf -c config.nf -profile lsf), then will be using BioContainers singularity 

and the LSF cluster executor.   

 

A list of Nextflow and proteomics workflows using BioContainers can be found in this GitHub 

repository (https://github.com/bigbio/nf-workflows/). In addition, it provides configuration 

variables to customize the computer/hardware that is required to perform each task. For 

example, the user can customize the type of node (Memory, number of cores) that are 

needed for each specific task (component tool). Another important feature of NextFlow is the 

simplicity of the language syntax and the support of workflow versioning, which enables 

better reproducibility.   

 

Galaxy Project  

 

Galaxy (https://galaxyproject.org/) is a web application workflow environment written in 

Python, capable of distributing jobs among a plethora of batch schedulers (PBS, LSF, 
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GoDocker, DRMAA based schedulers, etc), local machine and cloud providers (through 

Kubernetes [45] and others). In the HPC cases, Galaxy provides the flexibility to use either 

containers (Docker or Singularity) or directly Conda packages. Galaxy tool wrappers are 

written to point to specific package versions, towards reproducibility. Galaxy provides a 

complete separation of concerns between the workflow logic definition and the actual 

execution. It offers reusability as well at the tool level, meaning that not only workflows can 

be shared but also individual tools. Both tools and workflows are versioned in Galaxy (and 

multiple versions of a tool can be installed on the same instance). Galaxy provides 

tool/workflow repositories, called Toolsheds, where users can deposit and find currently 

more than 6,000 tools wrapped for Galaxy, and automatically install desired versions of 

those tools to their own Galaxy instance. Tool’s dependencies are resolved automatically by 

Galaxy using either Conda packages, Docker or singularity containers, depending on setup. 

On the same workflow, different tools can be sent to different underlying executors and rely 

on different dependency resolution as well. Besides a rich and responsive user interface 

(UI), Galaxy allows operations through a mature REST API, Python clients (e.g. bioblend, 

ephemeris) and command line interface (parsec), to programmatically control the execution 

of tools/workflows and data upload/downloads. Galaxy fulfils the promise of a single 

workflow environment system for research, training, and production environments. The 

same system can satisfy the need of researchers with no bioinformatics expertise – but in 

need of doing data analysis through a UI – or tenured bioinformaticians wishing to 

systematize the execution of production pipelines through a CLI. 

 

Many organizations provide computing power to end users in the need of doing biological 

data analysis through public Galaxy instances -- in the region of 100 public instances exist 

today -- which are normally flavoured for different research topics. Notable instances in 

terms of size are usegalaxy.org (http://usegalaxy.org) and usegalaxy.eu 

(http://usegalasy.eu). Galaxy is organized in different initiatives that help to download and 

deploy complete solutions of galaxy tools for a specific field (e.g. Proteomics). 

 

The Galaxy-P (Galaxy for Proteomics - http://galaxyp.org/) initiative provides workflows and 

tools in the fields of proteogenomics and metaproteomics (http://galaxyp.org/access-galaxy-

p/). PhenoMeNal [46] (https://public.phenomenal-h2020.eu/), Galaxy-M [47], and 

Workflow4Metabolomics [48] (https://workflow4metabolomics.org/) are the most complete 

compendium of tools and workflows available in Galaxy for metabolomics researchers.   

 

Towards reproducible data analysis  
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Reproducibility is challenged in life sciences, especially in computationally intensive domains 

(e.g. proteomics and metabolomics) where results rely on a series of complex analytical and 

bioinformatics steps that are not well captured, by traditional publication approaches. While 

there are now several guidelines and platforms to enable reproducibility in computational 

biology [43, 49, 50], the approach we describe here is flexible, robust and scalable enough 

to guaranty the features for reproducibility research: (i) managing software dependencies, (ii) 

separation between the data analysis design and the local computational environments, and 

(3) virtualizing entire analyses for complete portability and preservation against time [49]. 

 

The use of BioConda and BioContainers as independent components in data analysis 

resolves the problem of complex software dependencies. In addition, it provides a 

mechanism to easily replace independent components from different technologies and 

programming languages (e.g. python by R package). The use of workflows in combination 

with container technologies allows researchers to reproduce data analysis in their own 

compute architecture (e.g. local PC or cloud). BioConda and BioContainers provides a 

consistent versioning system and combined with virtualization allows to complete entire data 

analysis overtime. 

 

Finally, in order to complement the software efforts made by the BioConda and 

BioContainers communities, we urge software developers of the metabolomics and 

proteomics communities to embrace standard file formats as supported input and output of 

each software and component tool. Standard file formats not only enable better 

interoperability between software components, but also an improve the reproducibility of the 

analysis [51].   

 

Conclusions  

 

Proteomics and metabolomics mass spectrometry are moving from desktop application data 

analysis to distributed architectures (HPC and Cloud) due to larger datasets being generated 

(more sample, more replicates, higher coverage, more resolution, etc). However, the major 

software used in the field, such as Skyline, MaxQuant, ProteomeDiscover and XCMS 

Online, are mainly developed as monolithic tools, hampering the scale up of individual steps 

of the analysis into distributed architectures. First, the software development and algorithm 

paradigm should be changed by decoupling monolithic applications into smaller component 

(tasks) tools that can be distributed on Cloud and HPC architectures. We recommend that 

each of these small components support standard file formats for inputs and outputs, 

towards facilitating the exchange of steps in data analysis pipelines. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2019. ; https://doi.org/10.1101/604413doi: bioRxiv preprint 

https://doi.org/10.1101/604413
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

We presented a future paradigm for proteomics and metabolomics large scale data analysis 

based on BioContainers, BioConda, Docker/Singularity containers and workflow engines 

such as Galaxy and Nextflow. The proposed idea starts by creating a Conda or Dockerfile 

recipe in BioContainers providing the mandatory metadata and dependencies to build the 

container. The new recipe will be built using continuous integration where the BioContainers 

architecture will check the metadata, tests and push the final containers into BioContainers 

public registries. The Conda-based containers are deployed in Quay.io 

(https://quay.io/organization/biocontainers) and the Dockerfile-based are deployed in 

DockerHub (https://hub.docker.com/u/biocontainers). All containers are searchable, and 

discoverable through the BioContainers tool registry (http://biocontainers.pro/#/registry/).  

 

Finally, we recommend the proteomics and metabolomics community to embrace the 

development of bioinformatics workflows and gradually move bioinformatics pipelines and 

data analysis into workflow environments such as Nextflow or Galaxy. The combination of 

workflow environments and BioContainers will enable more reproducible and scalable 

metabolomics and proteomics data analysis.  
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Figure 1: Mass spectrometry metabolomics and proteomics bioinformatics workflow. The Proteomics 

lane (right) represent a Database search Label-free analysis workflow including Feature detection on 

MS1 spectra, protein database creation, database search, statistical analysis and final protein 

inference step. The metabolomics workflow represents a common spectral search workflow.  
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Figure 2: The proposed roadmap to scale metabolomics and proteomics data analysis includes the 

packaging and containerization of the specific tool and software using BioConda and BioContainers. 

The design of bioinformatics workflows that use the specific containers and abstract the execution 

from the compute environment (e.g. Cloud or HPC). A very important step of this design is the use of 

standard file formats that enable to communicate different tools and steps of the workflow.    
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Figure 3: BioContainers architecture from the container request by the user in GitHub to the final 

container deposited in DockerHub (https://hub.docker.com/u/biocontainers) and Quay.io 

(https://quay.io/organization/biocontainers). The BioContainers community in collaboration with the 

BioConda community defines a set of guidelines and protocols to create a Conda and Docker 

container including: mandatory metadata, tests, trusted images [9]. The proposed architecture uses a 

continues integration systems (CI) to test and build the final containers and deposited them into public 

registries. All the Containers and tools can be searched from the BioContainers registry 

(http://biocontainers.pro/regitry).   
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Figure 4: Nextflow allows bioinformaticians to perform analysis in different architectures with the 

same workflow definition. (A) The workflow step (called process) describes which process will be 

performed and the input/output parameters. The container section inside the blastSearch process 

state which containers will be use; including container name (blast), and version of the container 

(v2.2.31_cv2). Between triple quotes is the actual command will be executed in the container (in this 

case blast). This is needed because one container can provide multiple tools. (B) The Nextflow config 

file (https://www.nextflow.io/docs/latest/config.html) defines how the present workflow (A) will be 

executed. In the example, we have defined two possible scenarios: local and lsf. If the user run the 

workflow using the local configuration it will be using Docker containers, if the user uses lsf, then will 

be using singularity and the LSF cluster executor.     

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2019. ; https://doi.org/10.1101/604413doi: bioRxiv preprint 

https://doi.org/10.1101/604413
http://creativecommons.org/licenses/by-nc-nd/4.0/

