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1	
	

Abstract 31	

Phototrophic microbial mats commonly contain multiple phototrophic lineages that 32	

coexist based on their light, oxygen and nutrient preferences. Here we show that similar 33	

coexistence patterns and ecological niches can occur in suspended phototrophic 34	

blooms of an organic-rich estuary. The water column showed steep gradients of 35	

oxygen, pH, sulfate, sulfide, and salinity. The upper part of the bloom was dominated by 36	

aerobic phototrophic Cyanobacteria, the middle and lower parts were dominated by 37	

anoxygenic purple sulfur bacteria (Chromatiales) and green sulfur bacteria 38	

(Chlorobiales), respectively. We found multiple uncultured phototrophic lineages and 39	

present metagenome-assembled genomes of two uncultured organisms within the 40	

Chlorobiales. Apparently, those Chlorobiales populations were affected by Microviridae 41	

viruses. We suggest a cryptic sulfur cycle within the bloom in which elemental sulfur 42	

produced by phototrophs is reduced to sulfide by Desulfuromonas sp. These findings 43	

improve our understanding of the ecology and ecophysiology of phototrophic blooms 44	

and their impact on biogeochemical cycles. 45	

Introduction 46	

Estuarine and coastal water bodies are dynamic and ubiquitous ecosystems that are 47	

often characterized by the mixing of terrestrial freshwater and ocean saltwater. Brackish 48	

habitats can have striking physical and chemical characteristics that differ from both 49	

fresh and saltwater ecosystems (McLusky and Elliott, 2004; Moore, 1999). Brackish 50	

ecosystems are very diverse and support large microbial and macrobial communities 51	

(McLusky and Elliott, 2004). Estuaries also provide crucial ecosystem services, the 52	

most salient of which is trapping and filtering terrestrial runoffs and pollutants before 53	

they enter the oceans (Jay et al., 2007; Nelson and Zavaleta, 2012; Pant and Reddy, 54	

2001).  55	

Estuaries harbor abundant and diverse microbial communities that participate in the 56	

cycling of carbon, nitrogen, sulfur, and phosphorus. These communities fix carbon 57	

dioxide through photosynthesis or chemosynthesis (Boschker et al., 2014; Ritchie and 58	

Johnson, 2012; Waidner and Kirchman, 2005). Additionally, carbon introduced as 59	
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organic matter from the oceans or land can be remineralized by heterotrophic microbial 60	

communities (Moran et al., 2000; Peduzzi and Herndl, 1991; Smith and Hollibaugh, 61	

1993). This decomposition can deposit sulfide in sediments (Capone and Kiene, 1988). 62	

Further, sulfate brought into estuaries by ocean waters can be utilized by sulfate 63	

reducers, which convert sulfate into elemental sulfur or sulfide (Capone and Kiene, 64	

1988; Purdy et al., 2002). The combination of sulfate introduced by ocean water and 65	

sulfide released from decomposition in the sediments is part of the chemocline of the 66	

brackish water column (Zopfi et al., 2001). Additionally, estuaries and coastal marshes 67	

often exhibit a halocline and the depletion of oxygen in the water column can create an 68	

oxycline (Lee et al., 2015; Long, 1976). These gradients can produce habitats and 69	

niches that influence microbial community structure at different depths and conversely 70	

the microbial community can respond to these gradients (Jørgensen and Revsbech, 71	

1983; Møller et al., 1985; Wimpenny et al., 1982). 72	

The physicochemical properties of estuaries fluctuate frequently and rapidly as a result 73	

of many factors, for example, tidal cycles, weather patterns, and seasonal cycles (Allen 74	

et al., 1980; Badr et al., 2008; Garvine, 1985; Haas, 1977; Maie et al., 2006; Simpson et 75	

al., 1990). Such disturbances can bring about noticeable changes in the microbial 76	

community structure of the ecosystem, including blooms or declines in the populations 77	

of one or more members of the microbial community, as well as changes in the richness 78	

and evenness of the community (Bernhard et al., 2005; Henriques et al., 2006; Lv et al., 79	

2016; Muylaert et al., 2000; Zaikova et al., 2010).  80	

Trunk River in Woods Hole, MA is a brackish ecosystem, on the coast of Vineyard 81	

Sound (N 41.535236, W -70.641298). Near the mouth, Trunk River forms a shallow 82	

lagoon where freshwater mixes with seawater. Storms, tides, and run-off introduce large 83	

amounts of biomass to the pond forming thick layers of decaying seagrass and other 84	

organic matter. The pond has a distinct sulfidic odor that emanates from the water and 85	

gases bubble up from the sediment. Episodically, strikingly yellow microbial blooms can 86	

be observed just below the water surface (see Figure 1, S1) that typically disappear 87	

again within days to weeks. These transient blooms were observed to occur in natural 88	

depressions in the decaying organic matter and anecdotally seemed to be initiated by 89	
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physical disturbance events, potentially from storms, tidal extremes, human activity, or 90	

animals. Given this visually striking natural ecological progression, we set out to test 91	

whether physical disturbance alone could trigger the blooms. 92	

To understand the mechanisms of bloom development, we thus mimicked such 93	

disturbances of the brackish ecosystem by creating artificial depressions in the 94	

decaying organic matter, and monitored the microbial community response and 95	

population dynamics, as well as investigated ecological niches of the key populations. 96	

Based on previous observations, we hypothesized that i) the disturbance would cause a 97	

sulfide-driven phototrophic bloom ii) due to its rapid development the bloom would be 98	

largely dominated by very few populations and iii) sharp photo-/ and physicochemical 99	

gradients would establish that cause narrow habitats and niches. We discuss the 100	

resulting reproducible ecological succession and provide insights into the habitats, 101	

niches, and resilience of such widespread ecosystems. Our findings contribute to the 102	

understanding of the ecological processes and dynamics that shape phototrophic 103	

blooms, which are a naturally occurring phenomenon in many ecosystems. 104	

Results  105	

Visual Observations 106	

At the first sampling time point (2 days post-disturbance), no difference was observed in 107	

the water column or in the samples collected from different depths. Two days later (time 108	

point 2, 4 days post-disturbance), a faint pink layer was observed in the water column, 109	

and faint shades of yellow in samples from the 25 cm depth (Figure S2). At the next 110	

sampling time point (time point 3; 5 days post-disturbance), we observed a bright yellow 111	

suspension below the water surface (Figure 1). Of the samples collected at this time 112	

point, the samples from 25 cm depth were most distinctly yellow (Figure S2). The yellow 113	

color of the suspension intensified by time point 4 (7 days post-disturbance). No 114	

remarkable visual changes in the system were observed for the subsequent three time 115	

points (time points 5, 6, and 7). During these three time points, the yellow suspension 116	

only slightly changed. At time point 8 (16 days post-disturbance), the holes had partially 117	

collapsed, the water was much clearer and the 25-cm samples showed a reduction in 118	
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the intensity of the yellow color (Figure S2). We found a green layer at the bottom of 119	

each hole, seemingly from sedimented GSB. It has to be noted that the opacity of the 120	

samples was higher at the first two timepoints than at the following timepoints. 121	

Especially at timepoint 1 the suspension was beige and very opaque, while later on the 122	

suspension became more yellow, but also more translucent (Figure S2). 123	

 124	

 125	

Figure 1: Sampling sites. A. Aerial view of experimental sites (A, E, and K) in the Trunk river 126	
lagoon. The water enters the lagoon from the right and exits to the sea through a channel 127	
marked outlet. B. View of a LEMON (Long-term Environmental MONitoring) sampling device 128	
during sample collection on time point 3; 5 days post-disturbance. C. Schematic of the LEMON.  129	
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Physicochemistry of the water column 130	

Within the first three days the pH decreased between one and two units in all layers, 131	

with lowest values present in the deepest layer (Figure 2). Over the 15-day sampling 132	

period, pH showed more variation in the two upper layers than in the two deeper layers 133	

were it was very constant at values between 6 and 6.3. Throughout the experiment the 134	

water column in all three experiments showed a stable halocline with brackish water (5 135	

‰ salinity) at the water surface and saltwater (30 ‰) at 35 cm depth (Figure 2). Salinity 136	

increased with depth and was 12 ‰ and 23 ‰ at 10 cm and 25 cm, respectively. Major 137	

ions also reflect this trend (e.g. calcium, potassium in Figure S5). The dissolved oxygen 138	

(DO) concentrations showed a stable oxycline between 10 and 25 cm. Above 10 cm, 139	

DO was always higher than 20 % (36±17 %) and below that DO was always below 20 140	

% (9±9 %). The oxygen concentration slowly decreased in the upper two layers during 141	

the first half of the experiment, but recovered again to the original values towards the 142	

end of the experiment. At 5 and 10 cm, DO was approximately 41 % and 30 %, 143	

respectively (Figure 2). At 25 and 35 cm, the average DO measurements were ≈ 12 % 144	

and 5%, respectively. The sulfate concentrations in the water column decreased along 145	

the depth gradient, with the highest sulfate concentration at 5 cm (≈ 2 mM) and the 146	

lowest at 25 cm (≈ 0.2 mM) (Figure 2). In contrast, the sulfide concentrations were 147	

lowest at 5 cm (Figure 2F). Interestingly, the greatest sulfide concentration was 148	

measured at 10 cm depth peaking at over 1 mM towards the end of the experiment. 149	

Below 10 cm, sulfide concentration was still high, but declined to 0.75 mM ± 0.22 at 25 150	

cm and 0.5 mM ± 0.17 at 35 cm. The normalized biomass measured for the 5 cm 151	

samples throughout the sampling period was nearly zero (Figure 2). At 10 cm, 25 cm, 152	

and 35 cm, the normalized biomass measured was approximately, 0.2 mg/mL, 0.3 153	

mg/mL, and 0.2 mg/mL, respectively. For details concerning iron (Fe(II), Fe(III), total 154	

Fe), nitrate, calcium, potassium, ammonium and acetate refer to Supplementary Results 155	

and Figure S5. 156	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 10, 2019. ; https://doi.org/10.1101/604504doi: bioRxiv preprint 

https://doi.org/10.1101/604504
http://creativecommons.org/licenses/by-nc-nd/4.0/


6	
	

 157	

Figure 2: Physicochemistry. The physicochemical measurements of the sampling sites. 158	
Salinity (parts per thousand). The x-axis shows days since disturbance and the y-axis the 159	
respective units. For further parameters (Fe (II); Fe (III); Total Fe, nitrate) refer to SI. 160	

 161	

Spectral Absorbance of Phototrophic Community 162	

We measured absorbance spectra from filters of samples from A, E and K experiments 163	

(Figure S3) and compared the spectra to those of representative cultured species of the 164	

most abundant phototrophic genera from the literature (Borrego et al., 1999; Caumette 165	

et al., 1997; Oren, 2011; Srinivas et al., 2009; Stomp et al., 2008). All absorbance 166	

spectra were normalized to the respective highest peak (Figure 3). Our results show 167	

that pigments belonging to PSB were prominent in the upper layer of the bloom (orange 168	

spectra), while GSB pigments dominated the lower layer of the bloom (red line). 169	

Pigments characteristic for Cyanobacteria were less abundant at peak bloom and 170	

increased relatively at the end of the experiment. Pigments of all major phototrophs 171	

were detected throughout the experiment. The spectral results suggest the coexistence 172	

of multiple phototrophs over the entire duration of the experiment. 173	
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 174	

Figure 3: Spectral Absorbance. Sample spectra show averages of at least three replicates per 175	
sample. Color bands in the sample data indicate one standard deviation (bands are mostly 176	
smaller than center line). Gray vertical bands indicate major absorbance peaks of the 177	
Prosthecochloris and Chlorobaculum group (720-760 nm) and the Allochromatium and 178	
Halochromatium group (790-810 nm and 845-865 nm) highlighting the transient appearance 179	
and likely dominance of these phototrophs over the course of the experiments. Also indicated is 180	
the general phototroph absorbance band in the 425-465 nm window. Cyanobacterial groups 181	
(red and green) have distinct absorbance peaks in the 500-700 nm range that are not prominent 182	
in the sample spectra except for the characteristic 670-685 nm peak (also highlighted in gray) 183	
reflecting the presence but likely smaller role of these taxa during the experiment. 184	

 185	
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Microbial Community Structure and Taxonomic Composition 186	

At the beginning of the experiment, the microbial diversity was high in all four water 187	

depths and very similar across replicate ecosystems. Alpha diversity rapidly decreased 188	

with the onset of the bloom, and within two days the communities in the four depth 189	

layers substantially changed (Figure 4, 5, S6, S7). The number of observed amplicon 190	

sequence variants (ASV), as well as estimated richness, Shannon entropy, and Inverse 191	

Simpson diversity significantly decreased between the surface water and the water at a 192	

depth of 10 cm and 25 cm (Figure 4; p=0.001). This change is most striking in the case 193	

of Inverse Simpson diversity, a measure for evenness. In just one day, evenness 194	

dropped in both 10 cm and 25 cm water depth by over one order of magnitude to low 195	

single digit values (Figure 4; Table S1). This means the community was extremely 196	

dominated by one ASV (a pure culture has an Inverse Simpson diversity of 1). 197	

 198	

Figure 4: Alpha diversity. Diversity Indices of all samples grouped by depth. Pairwise com-199	
parisons with low significance levels are shown (NS, *: p<0.1, **: p<0.01). All pairwise com-200	
parisons that are not shown were highly significant (***: p<0.001), e.g. panel A 5 cm vs 10 cm. 201	
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The rapid and profound change of community structure is corroborated by a high 202	

turnover of ASV between the layers and timepoints, as shown by non-metric 203	

multidimensional scaling (Figure 5, S7). The top layer is well separated from the deeper 204	

layers. The communities at 25 cm water depth experienced the largest turnover, i.e. 205	

change in community structure, as shown in the ordination (Figure 5). The more distant 206	

two points are on the ordination plot the less similar are the underlying communities. 207	

Interestingly, the communities of all three deep layers (15 – 35 cm) had a similar 208	

community structure at the beginning of the experiment and then seemed to converge 209	

again at the end, yet at a different part of the ordination plot. This pattern on the 210	

ordination plot indicates that the bloom shifted the microbial communities to an 211	

alternative stable state. 212	

 213	

Figure 5: Microbial Community Turnover. Circle size represents average Shannon Diversity 214	
across three replicate holes. Sampling time points are indicated as numbers. The ordination 215	
shows that communities in 15-35 cm water depth are very different from those in the top layer. 216	
The trajectories indicate that layer 2 and 3 underwent the most substantial changes in 217	
community structure. The community at 25 cm depth had a striking loss in diversity during the 218	
experiment, yet seemed to have recovered at the last time point. Holes were very similar (see SI 219	
Figure S4) and were averaged for clarity. ASV: Amplicon Sequence Variant. Depth is not a 220	
significant indicator for community structure using replicate averages, however in each hole the 221	
communities in the different layers are overlapping but different (see Figure S4). 222	
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The taxonomic composition was assessed at all phylogenetic levels (Figure 6, S8). We 223	

observed a total of 73 bacterial phyla. The surface community (5 cm) remained 224	

relatively unchanged throughout the experiment and was dominated by Proteobacteria, 225	

Chlorobi, Cyanobacteria and Actinobacteria. The communities in the deeper layers were 226	

more dynamic, being dominated by Bacteroidetes, Proteobacteria, Firmicutes, and 227	

Chloroflexi. In general, taxonomic diversity was highest in the deepest layer (35 cm). 228	

The profound change in diversity was accompanied by a change in composition. Within 229	

a few days, there was a substantial increase in the abundance of Chlorobi, which 230	

comprised more than 75% of the community at that time. This increase persisted for 231	

nine days, but levelled off at the end of the experiment. The datasets of all layers and 232	

timepoints were dominated by ASVs affiliating with phototrophic organisms, as shown 233	

by relative sequence abundances on genus level (Figure 6A). Some phototrophs 234	

occurred in all layers at similar relative sequence abundances, such as Halochromatium 235	

and “Candidatus Chloroploca”. The stable surface layer harbored Cyanobium and 236	

“Candidatus Aquiluna”, which decreased in the deeper layers. The upper layer of the 237	

bloom showed an increased relative sequence abundance of Allochromatium, the lower 238	

bloom layer was dominated by Prosthecochloris and Chlorobaculum (Figure S10). 239	

Interestingly, almost all Prosthecochloris affiliated reads belonged to a single sequence 240	

variant, while ASV diversity affiliated with the closely related Chlorobaculum increased 241	

over time (Figure 6B, S9).  242	

The relative sequence abundance of Chlorobiales noticeably changed at 25 cm depth, 243	

where the yellow microbial bloom was visually observed. Chlorobiales ASVs accounted 244	

for >25 % of reads in our dataset. To identify the phylogeny of ASV affiliating with 245	

Chlorobiales, we placed the representative sequence of each ASV on a reference tree 246	

of known Chlorobiales. The most abundant Chlorobiales ASV (ASV_1) affiliated with the 247	

genus Prosthecochloris, and specifically in the monophyletic clade of Prosthecochloris 248	

vibrioformis (Figure S11), followed by an ASV (ASV_2) affiliating with Chlorobaculum. 249	

Together, these two ASVs account for >97 % of the Chlorobiales reads. In general, we 250	

found a high number of unclassified lineages. The 20 most abundant ASV accounted for 251	

about 50 % of all sequences, twelve of those belonged to unclassified genera or 252	
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families (Figure S8B). The novelty was especially high within the Chromatiaceae five of 253	

the eight ASV that ranked among the “top 20” belonged to an unclassified genus. 254	

 255	

 256	

Figure 6: Microbial community composition on genus level. A: Relative sequence 257	
abundance of genera found in different depths (colors) and timepoints (x-axis). Relative 258	
sequence abundances were averaged across triplicates, due to the high similarity of all three 259	
experiments.  Clades that are anaerobic (O), involved in the sulfur cycle (S), or phototrophic (ƛ) 260	
are indicated by full squares. B: Relative sequence abundance of amplicon sequence variants 261	
(ASV) within the order Chlorobiales. The graph shows average values of the three replicate 262	
experiments for clarity. The replicate experiments were very similar (see SI Figure S5 and S6). 263	

 264	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 10, 2019. ; https://doi.org/10.1101/604504doi: bioRxiv preprint 

https://doi.org/10.1101/604504
http://creativecommons.org/licenses/by-nc-nd/4.0/


12	
	

Chlorobiales-affiliated metagenome-assembled genomes 265	

We calculated the index of replication (iRep) (Brown et al., 2016) of the Prostheco-266	

chloris and Chlorobaculum populations based on the metagenome-assembled genomes 267	

(MAGs) that were recovered from the community metagenomes of two replicate 268	

experiments (Replicates A, E) and the enrichment culture (SK) at timepoint 7. Both 269	

populations were replicating rapidly. Prosthecochloris (bin10) had an iRep value of 3.7 270	

(r2=0.90, sample 7A3), which indicates that on average every cell had 2.5 replication 271	

events at the time of sampling. Chlorobaculum (bin 6) had iRep values of 2.5 (r2=0.95, 272	

sample 7E3) and 2.8 (r2=0.95, sample 7K3), indicating that on average every cell had 273	

~1.5 replication events. Bin 6 (Chlorobaculum sp.) and Bin 10 (Prosthecochloris sp.) 274	

contain CRISPR arrays denoted as either type I (cas3) or III (cas10) CRISPR systems 275	

(Makarova et al., 2015) (Figure S16, S17). CRISPR predictions revealed 3 direct repeat 276	

sequences in both MAGs of 30 and 35 (2) bp in length for Bin 6 and 37, 32, and 33 for 277	

the Bin 10 (Table S4). None of the spacers were shared by the closest reference and 278	

representative genomes or matched sequences in the CRISPR database (Grissa et al., 279	

2007). However, a highly similar CRISPR array and direct repeat sequence were found 280	

between our Bin 6 and Chlorobaculum parvum NCBI8327 with 60% cas genes similarity 281	

(Figure S16). The metagenomes of all experiments, as well as of the GSB enrichment 282	

culture contained high relative sequence abundances of viruses affiliating with 283	

Microviridae (Figure S18). 284	

Discussion 285	

In this study, we mimicked naturally-occurring disturbances in the decaying seagrass 286	

bed of Trunk River to study microbial community succession. We performed triplicate 287	

experiments that showed very similar physicochemical gradients and patterns of 288	

community structure. The observed slight variations between replicate sites were likely 289	

due to differences in the organic matter composition and distance to the lagoon access, 290	

or due to ripples and disturbances caused by weather, animals, and sampling scientists. 291	

The replicated disturbances of the organic matter layers (A-hole, E-hole, and K-hole) 292	

released trapped sulfide and caused the rapid establishment of steep physicochemical 293	

gradients as well as the development of a bloom of sulfide-oxidizing phototrophs. We 294	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 10, 2019. ; https://doi.org/10.1101/604504doi: bioRxiv preprint 

https://doi.org/10.1101/604504
http://creativecommons.org/licenses/by-nc-nd/4.0/


13	
	

monitored the community assembly and succession and highlight the ecological niches 295	

of key populations and their possible mechanisms of coexistence. 296	

Biogeochemistry of the water column 297	

The Trunk River lagoon is a brackish estuary approximately on sea level and 298	

characterized by shallow, warm water. It has one small freshwater inlet, and one small 299	

outlet to the sea, resulting in a long residence time and low flow velocity of the water. 300	

The freshwater overlays a saltwater lens creating very a stable salinity gradient from 301	

brackish water at the surface to basically seawater at the sediment surface in 40 cm 302	

water depth (Figure 2), typical of brackish water estuaries (Levinton, 1995). Before the 303	

experiment the pH decreased from mildly basic near the surface (~ pH 9) to around 304	

seawater near the sediments (~ pH 8). After the disturbance the salinity gradient 305	

remained stable over the 15-day sampling period, pH however decreased drastically in 306	

all layers to as low as ~ 6.25 in the bottom layers (Figure 2). This pH decrease is likely 307	

due to hydrogen sulfide and its dissociation from H2S to HS-. The dissolved oxygen 308	

(DO) concentration also decreased with water depth (Figure 2) being below 20 % 309	

saturation in the bottom layers throughout most of the experiment, thus the bottom layer 310	

being de facto anoxic. In addition, DO decreased substantially even in the top layers in 311	

the first half of the experiment, recovering in parallel to the slow collapse of the bloom. 312	

The larger variations in pH and DO at 5 cm and 10 cm as compared to 25 cm and 35 313	

cm indicate that the top layers were the more dynamic part of the water column. 314	

Together, the observations – that were very similar in the replicate experiments - show 315	

that after the system settled from the initial perturbations, it reached a stable state with 316	

stable physicochemical gradients in the stratified water column.  317	

Indications for a cryptic sulfur cycle in the water column 318	

Sulfate concentrations in the bottom layers decreased substantially within the first days, 319	

and were lowest in the bloom layer at 25 cm depth, where sulfate was almost entirely 320	

depleted. We found sulfate-reducers affiliating with Desulfobacteraceae and 321	

Desulfobulbaceae in the hypoxic layers of the bloom (Figure S8) likely producing sulfide 322	

using either hydrogen or organic acids released from fermented organic matter layers. 323	
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The sulfide concentrations were highest at the upper boundary of the bloom at 10 cm 324	

water depth after the system stabilized around day 6 (Figure 2). This is unexpected 325	

since reduced sulfur species, especially hydrogen sulfide, are the electron donor for the 326	

green and purple phototrophs and thus should have been depleted in these layers. At 327	

the same time, we found an increased relative abundance of sulfur-reducing 328	

Desulfuromonas sp. in the bloom layers, peaking at around 15 % relative sequence 329	

abundance. Desulfuromonas sp. are known to live in freshwater ecosystems and 330	

reduce elemental sulfur to sulfide (Finster et al., 1997, 1994; Pfennig and Biebl, 1976), 331	

which in turn can be reused by the sulfide-oxidizing phototrophs. This suggests that 332	

sulfide was replenished by sulfate reducers from sulfate as well as from sulfur reducers 333	

from sulfur produced by the phototrophs indicating a “sulfur loop” in the bloom carried 334	

out by multiple species across several phyla (Figure 7). At early timepoints the microbial 335	

suspension was beige and milky, indicating the presence of large amounts of elemental 336	

sulfur in the sample (Figure S2). Later the samples turned more yellow, due to an 337	

increase in phototrophic organisms and their photopigments (Figure 2, 3), but also 338	

cleared up and became translucent (Figure S2). Taken together this indicates that 339	

Desulfuromonas sp. reduced the elemental sulfur that was produced by the anoxygenic 340	

phototrophs so quickly that it was not accumulating in the suspension. This suggested 341	

sulfur loop - potentially a cryptic sulfur cycle depending on the concentration of the 342	

intermediate S0 - provides a positive feedback that could explain the very rapid 343	

development of the bloom. The involved Chlorobi and Deltaproteobacteria could even 344	

form tight aggregates to efficiently use the common intermediate similar to 345	

Chlorochromatium aggregatum (Wanner et al., 2008), a topic that merits future 346	

research. 347	

Assembly and coexistence of phototrophic microorganisms 348	

The yellowish layer in the water column (fondly termed “microbial lemonade”, Figure 349	

1C) formed around two to four days post-disturbance and was fully established by day 350	

six. The lemonade layer occurred between 10 – 30 cm water depth (Figure S2) with 351	

highest cell numbers and biomass at around 25 cm water depth (Figure 2, S4) in 352	

brackish, mildly acidic, and hypoxic waters (Figure 2). The microbial lemonade 353	
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represented a multispecies phototrophic bloom, dominated by green and purple sulfur 354	

bacteria. Due to the relative influence of green and purple sulfur bacteria and their 355	

photopigments, the color of the bloom slightly shifted from yellow-green at early 356	

timepoints to orange at mid timepoints back to yellow-green at late timepoints (Figure 357	

S2). This is reflected by the pigment spectra collected at the different timepoints (Figure 358	

3). 359	

Interestingly, the sequencing data suggested that especially the lower layer of the 360	

bloom was dominated by an apparently clonal population of green sulfur bacteria 361	

affiliated with Prosthecochloris vibrioformis. The green sulfur bacteria are sulfur-362	

oxidizing, strictly anaerobic, obligate photoautotrophs (Alexander and Imhoff, 2006). 363	

Yet, based on our oxygen measurements, the Trunk River GSB population apparently 364	

tolerated low oxygen concentrations. The low concentration of dissolved oxygen at 25 365	

cm depth combined with sulfide, salinity, and low light created an optimal habitat for 366	

Prosthecochloris sp.  367	

Despite the dominance of few populations the disturbance created a habitat with 368	

gradients of pH, salinity, light, oxygen, and sulfide that enabled the coexistence of 369	

multiple phototrophic clades from at least five different phyla (Actinobacteria, Chlorobi, 370	

Chloroflexi, Cyanobacteria and Gammaproteobacteria). The coexistence of these high 371	

number of organisms competing for the same energy source is due to the different 372	

absorption maxima of each clades’ photopigments (Figure 3), need for different electron 373	

donors, and the varying salinity and oxygen tolerances of each clade. P. vibrioformis is 374	

absent at 5 cm and present only in low abundance at 10 cm. The surface layer (5 cm 375	

depth) is inhabited by oxygenic phototrophic Cyanobacteria affiliating with Cyanobium, 376	

while the upper layer of the bloom (10 cm depth) is dominated by purple sulfur bacteria 377	

of the order Chromatiales (Figure 6). Because Prosthecochloris are adapted to low light 378	

conditions (Findlay et al., 2015) and respond to different wavelengths of light than 379	

Cyanobacteria and photosynthetic Proteobacteria (Herbert and Tanner, 1977; Parkin 380	

and Brock, 1980), it is reasonable that they thrived at depths of 25 cm, where they can 381	

out-compete other phototrophs. Prosthecochloris have been previously observed in 382	

many marine and saline habitats, such as the Black Sea (Manske et al., 2005), Baltic 383	
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Sea, Sippewissett Salt Marsh, and Badwater basin (Alexander and Imhoff, 2006). They 384	

are considered to belong to a specialized phylogenetic lineage of green sulfur bacteria 385	

adapted for marine and salt water ecosystems. Blooms of P. vibrioformis have been 386	

previously observed in stratified lakes, where they dominate the community at a specific 387	

depth (Máthé et al., 2014), sometimes forming clonal blooms (Gregersen et al., 2009). 388	

Remarkably, the suspended phototrophic bloom was spatially organized analogous to 389	

benthic phototrophic mats in the nearby Sippewissett Salt Marsh (Armitage et al., 2012; 390	

Nicholson et al., 1987; Pierson et al., 1987) and elsewhere (Bolhuis et al., 2014; Bolhuis 391	

and Stal, 2011). The layers of phototrophic mats are dominated from top, middle to 392	

bottom by Cyanobacteria, PSB and GSB, respectively, except on a scale of few 393	

millimeters to centimeters. Thus, the disturbance experiment that we performed in situ 394	

created a transient ecosystem with niches resembling those in coastal microbial mats, 395	

except across a spatial scale that was one order of magnitude greater. The community 396	

slowly collapsed after about two weeks and the water column seemed to return to its 397	

original state (Figure 5). We did not observe a shift from phototrophic to chemotrophic 398	

sulfur oxidation after the phototrophic bloom (Pjevac et al., 2015). 399	

New species of purple and green sulfur bacteria and possible viral predation 400	

Due to the findings of a previous study based on 16S rRNA gene libraries, Imhoff and 401	

colleagues proposed the existence of several uncultivated GSB species in Sippewissett 402	

Salt Marsh and other estuaries (Alexander and Imhoff, 2006). The authors provide 403	

evidence that several GSB clades harbor species that have yet escaped isolation, 404	

among those are species in the genera Chlorobaculum and Prosthecochloris. We have 405	

strong evidence that we found at least two of these species based on our MAGs of a 406	

Chlorobaculum species (Bin 6, Figure S12, S14) and a Prosthecochloris species (Bin 407	

10, Figure S12, S15). Both MAGs cluster sufficiently far away from the closest cultured 408	

species (Figure S11, S13) and have average nucleotide identity (ANI) values of <90 to 409	

their respective closest cultured isolate. Both MAGs also contain CRISPR-Cas systems 410	

that are very different from the cultured isolates (Figure S16, S17). Our CRISPR results 411	

show that Trunk River populations may be under predatory stress, affecting the 412	

abundance of bacterial blooms, and that host immunity is active in this ecosystem 413	
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(Llorens-Marès et al., 2017). The unique CRISPR arrays indicate that closely related 414	

species may be infected by different viruses with species specificity (Borton et al., 415	

2018). However, some viral populations have been reported to have broad host ranges 416	

(Daly et al., 2019). Divergent evolution or strain level microdiversity may also explain 417	

distinct CRISPR-Cas systems (Daly et al., 2016). A lack of public databases containing 418	

viral sequences restricts the detection of viral-host interactions (Goodcare et al., 2018). 419	

While Llorens-Marès et al. (2017) characterized a potential green sulfur bacterial viral 420	

infection, to date, phages infecting Chlorobi have not been reported. Our analyses 421	

suggest that viruses of the family Microviridae played a major role in the transient bloom 422	

(Figure S17), possibly even for its demise. This interesting finding merits future research 423	

on transient phototrophic blooms in estuarine ecosystems. 424	

 425	

 426	

Figure 7: Ecosystem sketch. Schematic overview of the phototrophic bloom showing the main 427	
phototrophic populations, sulfur compounds, and chemical gradients. 428	

 429	

Conclusions 430	

In this study, we mimicked phototrophic blooms that naturally occur in a brackish 431	

estuarine ecosystem to understand the underlying microbial and biogeochemical 432	

dynamics. We suggest that phototrophs of different phyla co-exist in a layered bloom 433	

based on their different light and oxygen requirements, analogous to the communities in 434	

phototrophic microbial mats (Figure 7). Our findings indicate that Chlorobiaceae form a 435	

syntrophic relationship with Desulfuromonas sp. with elemental sulfur as intermediate. 436	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 10, 2019. ; https://doi.org/10.1101/604504doi: bioRxiv preprint 

https://doi.org/10.1101/604504
http://creativecommons.org/licenses/by-nc-nd/4.0/


18	
	

We reconstructed metagenome assembled genomes of two uncultured green sulfur 437	

bacteria, belonging to Chlorobaculum and Prosthecochloris and show that Microviridae 438	

viruses played a role in the bloom, potentially infecting species within the Chlorobiales. 439	

 440	

Materials and Methods 441	

Experimental Setup and Sample Collection 442	

We used custom-made sampling poles for long-term environmental monitoring of the 443	

water column without disturbing the established gradients (LEMON; Figure 1B, C). The 444	

sampling poles were placed in three replicate depressions (A-hole, E-hole, and K-hole) 445	

that we dug into the thick layers of decaying organic matter (Figure 1A). In each of sites, 446	

a sampling pole was placed such that the inlets sampled water at 5 cm, 10 cm, 25 cm, 447	

and 35 cm depth below the surface (Figure 1B, C). Sampling poles were set up one day 448	

after the holes were dug out and sampling began one day after set up (two days post 449	

disturbance), to allow disturbed sediment to settle. Samples were collected over a 15-450	

day period during July-August 2015. For each sample, the first 5 ml were discarded, 451	

followed by collection of 100 ml of water in several sterile tubes for further analyses 452	

(Figure S2). The tubes were transported on ice to the laboratory and stored at 4˚C. All 453	

sample collections were carried out between 4 pm and 6 pm. 454	

Enrichment cultures 455	

To enrich for GSB we used a defined saltwater medium (400g/l NaCl, 60g/l 456	

MgCl2*6H2O, 3g/l CaCl2*2H2O, 10g/l KCl) buffered at pH 7.2 with 5 mM MOPS. The 457	

medium contained 5 mM NH4Cl as N source, 1mM K phosphate (pH 7.2) as P source, 458	

70 mM NaHCO3 as C source, 10 mM Na2S2O3 as electron donor, 1 mM Na2S as 459	

reductant or electron donor, a multivitamin solution prepared at 1000´ in 10 mM MOPS 460	

at pH 7.2, and a trace metal solution prepared at 1000´ in 20 mM HCl. Saltwater base, 461	

MOPS, N- and P-source, and trace metals were autoclaved together in a Widdel 462	

sparging flask, cooled under a stream of N2/CO2 (80%:20%) gas. C-source, electron 463	

donors and vitamins were added from filter-sterilized stock solutions after cooling. The 464	
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medium was inoculated with biomass removed from in situ enrichments of GSB grown 465	

on glass slides using a 770 nm monochromatic LED. After inoculation, the bottle was 466	

kept in dark for 2-4 hours and then placed 5 cm away from a LED light source with the 467	

same specifications. After a visible sign of growth – green coloration – the culture was 468	

filtered through 0.2 µm filter and used for DNA extraction, similar to other samples.    469	

 470	

Physicochemical Measurements 471	

In-situ measurements of pH, temperature, dissolved oxygen, oxidation reduction 472	

potential (ORP), and ion selective electrode (ISE) were carried out with a multi-473	

parameter probe equipped with a quarto probe (YSI Professional Series Model Pro). 474	

The probe was calibrated for pH with 4, 7, and 10 buffers and for dissolved oxygen 475	

using oxygen-saturated water and an anoxic solution of sodium ascorbate and sodium 476	

hydroxide. After each sample collection the probe was lowered into the water to each 477	

depth per site and after probe readings stabilized, the parameters were recorded. 478	

To measure biomass and pigment spectra, up to 10 ml of the collected sample was 479	

filtered through a sterile Millipore filter (0.2 µm GTTP, 0.2 µm GNWP, or 0.22 µm GV). 480	

Filtrates were washed twice with ammonium acetate solutions with the same ionic 481	

strength as each depth. The filters were placed on aluminum foil, dried at 60°C 482	

overnight and subsequently weighed (Figure S3). A Spectral Evolution SR1900 483	

spectrophotometer was used to measure the spectrum of the dried biomass on each 484	

filter with a scanning range of 350-1900 nm. The light source was a Dyonics 60 W lamp. 485	

After sterile filtration, the filtrate was used to measure anion, cation, and organic acid 486	

concentrations using an ion chromatographer. The ion concentrations of samples were 487	

measured by diluting filtrate 1:10 with Millipore water to a total volume of 2 ml. The 488	

diluted samples were measured in triplicate using a ThermoFisher/Dionex ICS2100 489	

equipped with an AS18 column using a 13 minute, 33 mM NaOH isocratic program to 490	

measure anions and a CS12A column using a 13 minute, 25 mM methane sulfonic acid 491	

isocratic program to measure cations. Samples for organic acid analysis were filtered 492	

through 0.2 µm filters and 900 µL of filtrate was added to 100 uL of 5 M H2SO4 to 493	
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precipitate any compounds that might do so on the column. The samples were 494	

centrifuged and the upper portion was removed for HPLC analysis. Samples were 495	

analyzed on a BioRad Aminex HPX-87H column in isocratic elution mode with 5 mM 496	

sulfuric acid.   497	

Iron concentration was quantified using the ferrozine assay (Stookey, 1970). 4.5 ml 498	

filtrate were added on site to 0.5 ml of 1 M HCl to prevent oxidation of any available 499	

Fe(III). For Fe(II), 50 µl filtrate was added to 50 µl of 1M HCl and 100 µl of ferrozine 500	

(0.1% [wt/vol] in 50% ammonium acetate) was added. For total iron, 50 µl filtrate was 501	

added to 50 µl of 10% hydroxylamine hydrochloride in 1M HCl to reduce Fe(III) to Fe(II). 502	

Samples were added to 100 µl of ferrozine. All samples were incubated for 15 min and 503	

a filtrates Absorbances were read in triplicate at 560 nm using a Promega plate reader. 504	

Ferrous ammonium sulfate was used as standard.  505	

Sulfide concentrations were quantified using the Cline assay (Cline, 1969). 1.5 ml filtrate 506	

were added on site to 500 µl of zinc acetate solution (91 mM) to prevent oxidation of the 507	

sulfide.  Cline reagent (N, N-dimethyl-p-phenylenediamine sulfate, H2SO4, 508	

NH4Fe(SO4)2·12 H2O) was added, the samples were incubated in the dark for 30 509	

minutes and absorbance was read at 665 nm.  510	

DNA Extraction, Library Preparations, and Sequencing 511	

Within 2 – 6 hours of sample collection, 50 ml sample was filtered using an autoclaved 512	

0.2 µm polycarbonate filter (GTTP Millipore) and stored at -20˚C. Each filter was cut 513	

with a sterile blade and extracted with the MoBio PowerFecal kit. We followed the 514	

protocol, but instead of bead beating, the samples were twice vortexed horizontally with 515	

the beads (10 min and 20 min with a 10 min pause). DNA concentration and purity were 516	

measured with Nanodrop and Promega Qubit fluorometer and Nanodrop, respectively.  517	

We prepared 16S rRNA gene amplicon library using V4-V5 fusion primers as previously 518	

described (Morrison et al., 2013). Briefly, the fusion primer contains TruSeq adapter 519	

sequences, barcodes, and the forward or reverse 16S rRNA gene primers. The forward 520	

and reverse 16S rRNA gene primers were 518F (CCAGCAGCYGCGGTAAN) and 926R 521	

(CCGTCAATTCNTTTRAGT). The PCR conditions were as follows: initial denaturation 522	
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of 94˚C for 3 min, 30 cycles of denaturation at 94˚C for 30 s, annealing at 57˚C for 45 s, 523	

extension at 72˚C for 1 min, and final extension at 72˚C for 2 min. The libraries were 524	

cleaned using Agencourt Ampure XP beads, quantified using picogreen, pooled in 525	

equimolar ratios, and cleaned again using Agencourt Ampure XP beads a second time. 526	

The indexed libraries were then sequenced on the Illumina MiSeq PE250 platform.  527	

The DNA from the depth of 25 cm from timepoint 7 from the three replicates, as well as 528	

from a phototrophic enrichment were used to generate whole-genome shotgun 529	

metagenomic library. The DNA was sheered using Covaris sonicator, size selected for 530	

500-600bp using Pippin prep, and cleaned using Agencourt Ampure XP clean beads. 531	

The cleaned DNA was analyzed using Bioanalyzer DNA1000 chip and amplified using 532	

random hexamer primers with KAPA polymerase for 10-12 cycles. Amplified DNA was 533	

cleaned using Agencourt Ampure XP clean beads and used to prepare metagenomic 534	

library using Nugen Ovation ultralow DR multiplex kit with manufacture supplied 535	

protocol. The libraries were then sequenced on Illumina MiSeq PE250 platform. All the 536	

sequencing was performed at the Keck facility at the J. Bay Paul Center at the Marine 537	

Biological Laboratory, Woods Hole, MA.  538	

Amplicon Sequence Data Analyses 539	

The amplicon data was demultiplexed in mothur v1.39.5 (Schloss et al., 2009), followed 540	

by the trimming of 16S rRNA gene amplification primers using Cutadapt v1.16 (Martin, 541	

2011) with default parameters. The primer-trimmed amplicon sequencing data was 542	

quality checked using DADA2 v1.9.0 R Package (Callahan et al., 2016). In DADA2, the 543	

reads were trimmed at the first instance of quality drop below 8, an expected error rate 544	

of 2, followed by trimming to 220bp and 200bp for forward and reverse reads. Any reads 545	

that matched PhiX or had an ambiguous base were removed. An error profile for the 546	

forward and reverse reads was generated using learnErrors function and then used to 547	

merge the forward and reverse reads using the mergePairs function. The merged reads 548	

were used to generate the amplicon sequence variants using makeSequenceTable 549	

function, which was then filtered for chimeras using removeBimeraDenovo function. The 550	

amplicon sequence variants were assigned taxonomy in DADA2 using Silva reference 551	

database v132 (Quast et al., 2013). Community analyses were performed using a 552	
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custom workflow based on R and the packages vegan, labdsv, tidyverse (stringr, dplyr, 553	

ggplot2), UpSetR and custom scripts (Conway et al., 2017; Oksanen et al., 2012; 554	

Roberts, 2012; Wickham, 2018, 2009; Wickham et al., 2018) for details see. Relative 555	

abundance of bacterial ASV (amplicon sequence variants), Bray-Curtis dissimilarities, 556	

Nonmetric Multidimensional Scaling as well as analyses determining Singletons and 557	

percent shared ASVs are based on the unaltered Sample´ASV table as calculated by 558	

DADA2. To compare the diversity between samples using the number of observed 559	

species, Shannon index, Inverse Simpson diversity and Chao1 Richness (Hill et al., 560	

2003) the ASV abundance tables were rarefied to account for unequal sampling effort 561	

using 31,682 randomly chosen sequences without replacement. For details refer to the 562	

R workflow available at the public database PANGAEA 563	

(https://issues.pangaea.de/browse/PDI-20394). Note: This link is inactive until the 564	

submitted data are processed and public. 565	

Metagenomic Sequence Data Analyses 566	

Quality control of the raw reads was performed using Preprocessing and Information of 567	

SEQuence data (PRINSEQ) to remove sequencing tags and sequences with mean 568	

quality score lower than 25, duplicates and N’s (Schmieder and Edwards, 2011). All 569	

runs combined provided a total of approximately 3.5 million 250 bp read pairs. All 570	

forward and reverse reads were placed together in one file and cross co-assembled 571	

using SPAdes using the --meta option (Bankevich et al., 2012). Binning was performed 572	

using MetaBAT (Kang et al., 2015) and Anvi’o (v5.2) metagenomic workflow 573	

(CONCOCT) (Eren et al., 2015). Completeness and contamination of bins was 574	

assessed using CheckM (Parks et al., 2015). Assembled genomes that contained more 575	

than 90% genome completeness, less than 5% contamination, and sequences mainly 576	

from a single genus were further analyzed. This yielded two high quality bacterial 577	

metagenome-assembled genomes (MAGs): Bin 6 and Bin 10. Taxonomic composition 578	

for each bin was predicted using FOCUS (Silva et al., 2014). Phylogenetic analysis 579	

including the identification of their closest phylogenetic neighbors was investigated 580	

using PATRIC Comprehensive Genome Analysis (Wattam et al., 2017). 581	

CRISPRCasFinder (Couvin et al., 2018) and CRISPRone (Zhang and Ye, 2017) were 582	
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used to identify CRISPR repeat and spacer sequences. The quality checked reads from 583	

each sample were mapped to the MAGs, Bin 6 and Bin 10 using bowtie2 (Langmead 584	

and Salzberg, 2012). The mapped reads were then analyzed using iRep (Brown et al., 585	

2016) to estimate replication events in Bin 6 and Bin 10. Unassembled sequences were 586	

processed on the MG-RAST platform version 4.0.3. Percent abundance of viral 587	

sequences was calculated from the RefSeq database using an e-value cutoff of 1e-5, a 588	

minimum identity cutoff of 60%, and an alignment length minimum cutoff of 15 (Meyer et 589	

al., 2008). For details refer to the metagenome analyses workflow publicly accessible at 590	

HackMD (https://hackmd.io/tGZyCM9sSNmuorpHenQVNA). 591	

Availability of data and material 592	
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