New Results
A data-driven, meaningful, easy to interpret, population-independent accelerometer outcome variable for global surveillance
View ORCID ProfileAlex V. Rowlands, View ORCID ProfileLauren B. Sherar, View ORCID ProfileStuart J. Fairclough, Tom Yates, Charlotte L. Edwardson, Deirdre M. Harrington, Melanie J. Davies, Fehmidah Munir, Kamlesh Khunti, Victoria H. Stiles
doi: https://doi.org/10.1101/604694
Alex V. Rowlands
1Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK
2NIHR Leicester Biomedical Research Centre, UK
3Alliance for Research in Exercise, Nutrition and Activity (ARENA), Sansom Institute for Health Research, Division of Health Sciences, University of South Australia, Adelaide, Australia
Lauren B. Sherar
4School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
Stuart J. Fairclough
5Movement Behaviours, Health, and Wellbeing Research Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, UK
Tom Yates
1Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK
2NIHR Leicester Biomedical Research Centre, UK
Charlotte L. Edwardson
1Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK
2NIHR Leicester Biomedical Research Centre, UK
Deirdre M. Harrington
1Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK
2NIHR Leicester Biomedical Research Centre, UK
Melanie J. Davies
1Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK
2NIHR Leicester Biomedical Research Centre, UK
Fehmidah Munir
4School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
Kamlesh Khunti
1Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK
6NIHR Collaboration for Leadership in Applied Health Research and Care East Midlands, Leicester General Hospital, UK
Victoria H. Stiles
7Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK

Article usage
Posted April 12, 2019.
A data-driven, meaningful, easy to interpret, population-independent accelerometer outcome variable for global surveillance
Alex V. Rowlands, Lauren B. Sherar, Stuart J. Fairclough, Tom Yates, Charlotte L. Edwardson, Deirdre M. Harrington, Melanie J. Davies, Fehmidah Munir, Kamlesh Khunti, Victoria H. Stiles
bioRxiv 604694; doi: https://doi.org/10.1101/604694
A data-driven, meaningful, easy to interpret, population-independent accelerometer outcome variable for global surveillance
Alex V. Rowlands, Lauren B. Sherar, Stuart J. Fairclough, Tom Yates, Charlotte L. Edwardson, Deirdre M. Harrington, Melanie J. Davies, Fehmidah Munir, Kamlesh Khunti, Victoria H. Stiles
bioRxiv 604694; doi: https://doi.org/10.1101/604694
Subject Area
Subject Areas
- Biochemistry (9152)
- Bioengineering (6789)
- Bioinformatics (24037)
- Biophysics (12142)
- Cancer Biology (9550)
- Cell Biology (13808)
- Clinical Trials (138)
- Developmental Biology (7649)
- Ecology (11719)
- Epidemiology (2066)
- Evolutionary Biology (15522)
- Genetics (10654)
- Genomics (14337)
- Immunology (9495)
- Microbiology (22872)
- Molecular Biology (9113)
- Neuroscience (49070)
- Paleontology (355)
- Pathology (1485)
- Pharmacology and Toxicology (2572)
- Physiology (3851)
- Plant Biology (8341)
- Synthetic Biology (2299)
- Systems Biology (6199)
- Zoology (1302)