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Background: Integrating genome-wide gene expression patient profiles with
regulatory knowledge is a challenging task because of the inherent heterogeneity,
noise and incompleteness of biological data. From the computational side, several
solvers for logic programs are able to perform extremely well in decision problems
for combinatorial search domains. The challenge then is how to process the
biological knowledge in order to feed these solvers to gain insights in a biological
study. It requires formalizing the biological knowledge to give a precise
interpretation of this information; currently, very few pathway databases offer this
possibility.

Results: The presented work proposes an automatic pipeline to extract
automatically regulatory knowledge from pathway databases and generate novel
computational predictions related to the state of expression or activity of
biological molecules. We applied it in the context of hepatocellular carcinoma
(HCC) progression, and evaluate the precision and the stability of these
computational predictions. Our working base is a graph of 3,383 nodes and
13,771 edges extracted from the KEGG database, in which we integrate 209
differentially expressed genes between low and high aggressive HCC across 294
patients. Our computational model predicts the shifts of expression of 146 initially
non-observed biological components. Our predictions were validated at 88% using
a larger experimental dataset and cross-validation techniques. In particular, we
focus on the protein complexes predictions and show for the first time that
NFKB1/BCL-3 complexes are activated in aggressive HCC. In spite of the large
dimension of the reconstructed models, our analyses over the computational
predictions discover a well constrained region where KEGG regulatory knowledge
constrains gene expression of several biomolecules. These regions can offer
interesting windows to perturb experimentally such complex systems.

Conclusion: This new pipeline allows biologists to develop their own predictive
models based on a list of genes. It facilitates the identification of new regulatory
biomolecules using knowledge graphs and predictive computational methods. Our
workflow is implemented in an automatic python pipeline which is publicly
available at https://github.com/LokmaneChebouba/key-pipe and contains
as testing data all the data used in this paper.
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carcinoma; Signaling and regulatory knowledge; KEGG
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1 Background
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer,

which counts for more than 800,000 deaths each year. The incidence of HCC is as-

sociated with the development of chronic hepatitis mainly linked to viral infection,

alcohol consumption and non-alcoholic fatty liver disease (NAFLD) [1]. Lifestyles

[2] and environmental pollution such as particulate matter air pollution [3] also

contribute to increase burden in HCC worldwide. HCC is a heterogeneous disease

and various genomic alterations associated with the etiologies and the stages of

the pathology have been widely documented [4, 5]. A pivotal step in the course

of HCC progression is the epithelial-mesenchymal transition (EMT) which allows

hepatocytes to transdifferenciate into mesenchymal phenotype whereby escaping to

host control and acquiring anti-apoptotic and motility features [6]. Upregulation

of EMT markers has been associated with tumor aggressiveness and bad prog-

nosis [7, 8] and associated with inflammatory microenvironment [9]. However, in

vivo monitoring of EMT processes remains difficult, due to the spatio-temporal dy-

namics of these molecular events and the snap-shot nature of biopsies sampling.

Understanding EMT to identify new therapeutic targets require integrative and

modeling approaches.

To build computational models and integrate experimental data on molecular

events, pathway databases can be used. However, despite the fact that numerous

publicly available pathway databases currently exist, compiling hundreds of signal-

ing pathways for various biomolecules, very few formal representations linked with

automatic inference processes have been proposed so far [10]. The main difficulty

appears to be the transfer from the biological representation of a pathway towards

a logic knowledge base. Currently, pathway repositories, such as Reactome [11],

Pathway Commons [12], KEGG [13], or OmniPath [14] propose their own tools to

build graphs. Some of these tools are the Cytoscape [15] plugin CyPath2, PCViz

for Pathways Commons; pypath for OmniPath; and ReactomeFIViz [16] for Reac-

tome. However, the resultant graphs are difficult to be transferred into mechanistic

models because the notion of causality is often misinterpreted. This misinterpreta-

tion is due to the lack of a formal causal representation of biochemical reactions

such as protein complexes assemblies. For instance tools such as CyPath2, PCViz,

ReactomeFIViz, and pypath model protein complexes using a relation of causality

between the protein complex members (protein complex members are the cause and

consequence of each other); while in our modeling choice, protein complexes may

be triggering other reactions, and their presence is a consequence of the presence of

their members. Knowing that signaling cascades are represented by multiple com-

plexes assemblies, this misinterpretation impacts importantly the construction of a

mechanistic model when using pathway databases. On the other hand, such tools

are very useful to compute topological scores, perform statistical analyses, and to

integrate gene expression measurements using enrichment analyses [17]. They re-

main, however, limited to extract logical consequences of the representation of the

biological mechanisms.

The sign-consistency framework proposes a way to automatically confront the

logic of large-scale interaction networks and genome-wide experimental measure-

ments, provided that a signed oriented network is given and that the experimental

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/605519doi: bioRxiv preprint 

https://doi.org/10.1101/605519


Folschette et al. Page 3 of 19

measurements are discretized in 3 expression levels (up-regulated, down-regulated

and no-change). This framework, introduced in [18], has being applied to model

middle- and large-scale regulatory and signaling networks. The two most recent im-

plementations of it are by the means of integer linear programming [19] and logic

programming. The latter, implemented in a tool named Iggy [20], presents some key

aspects: (i) it provides a global analysis applying a local rule which relates a node

with its direct predecessors, (ii) it handles a network composed of thousands of com-

ponents, (iii) it allows the integration of hundreds of measurements, (iv) it performs

minimal corrections to restore the logic consistency, and (v) once the consistency

is restored, it allows to infer the behaviour (up, down, no-change) of components

in the network that were not experimentally measured. In this work we apply this

sign-consistency framework to model HCC progression.

Our case study is composed of two input data which were publicly available. First,

gene expression data from patients with HCC was extracted from the International

Cancer Genome Consortium (ICGC) database [21]. Based on the EMT signature

from MSigDB [22], HCC samples were clustered into either agressive HCCs (high

EMT gene expression) or non-agressive HCCs (low EMT gene expression). Sec-

ond, the up-stream events of the regulatory events of these genes were obtained by

querying automatically KEGG to build a causal model from this database. We used

Iggy to study what are the regulatory events that explain the differential expres-

sion between low and high aggressiveness from the KEGG interaction knowledge

(network of 3,383 nodes and 13,771 edges). We discovered that 146 nodes were

predicted, of them 33 refer to gene expression, 110 were protein activities, and 3

were protein complexes activities. 88% of the predictions were in agreement with

the ICGC gene expression measurements. Importantly, we predicted the activation

of NFKB1/BCL3 and NFKB2/RELB complexes, two critical regulators of NFKB

signalling pathway implicated in tumorigenesis. Finally, we proposed a method to

discover sensitive network regions that explains HCC progression. This means net-

work components which were highly constrained by multiple experimental data

points that could be interesting to target in order to obtain significant changes in

the system behavior. We provide a list of 27 nodes discovered by this approach,

including TP53.

These results were obtained with a new pipeline developed for this work and

freely available online. This pipeline, based on an initial network and a list of genes

of interest, allows to extract a functional network based on this list, apply the

prediction method described above, and run stability analyses on the result.

2 Results
2.1 Overview of the pipeline

We introduce key-pipeline: a Python package implementing the workflow for identi-

fying key protein complexes associated to tumor progression. The general pipeline

implemented is depicted in Figure 1. It receives as input data: a list of differentially

expressed genes, a graph describing signed and directed signaling interactions, and

a set of excluded genes to be filtered out from the graph. Our software allows re-

searchers to: 1) construct the set of observations, and the set of gene names from a

file of differentially expressed genes (in CSV format with 3 columns: genes names,
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log2(fold-change) and adjusted p-value), see Section 5.1; 2) extract a specific reg-

ulatory and signaling network associated with the input genes list from a signed

interaction graph (based on KEGG regulatory knowledge, see Section 5.2); 3) ap-

ply the Iggy tool to compute the predictions based on the sign-consistency modeling

(see Section 5.3); 4) perform robustness and stability analyses (see Section 5.4); and

finally 5) generate plots of these analyses. The pipeline provides a command line in-

terface (CLI), it can be customized by entering file names as arguments. By default,

all the steps of the methods will be executed, but the user can run specific steps

by using the argument --steps. This general pipeline implements all the steps in

the workflow described from Section 5.2.2 to Section 5.4.2 and depicted in Figure 1.

Each step will output one or more files. In general, the output of one step corre-

sponds to the input of another one. This enables a straightforward application of

the workflow for users without programming expertise. We refer the reader to the

online documentation for an in-depth description of installation and usage[1].

2.2 Integration of Gene Expression in Signaling and Regulatory Network

A first interaction graph was built from the KEGG Pathway database (see Sec-

tion 5.2). This graph was composed of 41,546 interactions (gene transcriptions,

protein signaling, protein formation and complex formations) and 8,861 compo-

nents (genes, proteins and protein complexes). It is available as input-data with the

pipeline[2]. Using our pipeline (Figure 1, step 2: Pathrider), the 1913 differentially

expressed genes between low and high aggressive tumors were used as input to ex-

tract a subgraph from the KEGG pathways graph. Only 209 genes from the 1913

were identified and used to extract upstream regulatory events (Additional file 1:

Table S1). In this step the biomolecules associated to the 4,220 genes whose expres-

sion is undetectable were filtered out. The resultant graph was composed of 13,771

interactions and 3,383 components (Additional file 1: Figure S1). The content of

the graph is available in Additional file 2: File graph.sif in SIF format and in

Additional file 2: File graph.cys as a Cytoscape session.

The final graph contains mostly activations (11,661 versus 2,110 inhibitions); this

follows the same activation/inhibition distribution than for the KEGG graph. Only

209 nodes have observations attached to them, provided by the differential anal-

ysis of Section 5.1, leaving most nodes unobserved and subject to computational

predictions. Finally, the presence of nodes gathering a lot of incoming or outgoing

interactions is noteworthy:

• The largest in-degree is 92 (concerning nodes PIK3R6 prot, PIK3CG prot and

PIK3R5 prot);

• The largest out-degree is 79 (concerning nodes PRKACB prot, PRKACA prot);

• Two nodes (MAPK3 prot and MAPK1 prot) both have the maximal total degree

of 107, with 56 incoming and 51 outgoing interactions.

Such “hub” nodes, having an influence to and from a lot of other components, have

a high impact on the rest of the network and produce less consensual labelings.

[1]File README.md at https://github.com/LokmaneChebouba/key-pipe/

[2]Input data are available at https://github.com/LokmaneChebouba/key-pipe/tree/master/example
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2.3 Computational Predictions Validation

We applied the sign-consistency modeling on the final KEGG signed graph obtained

in the previous section and the 209 observations derived from the differential analy-

sis (see Section 5.1). Iggy (Figure 1, step 3) returns 146 predictions, that is, couples

of (x, s), where x is a node of the graph (either a gene, a protein or a protein com-

plex) and s is its consensual sign across all consistent labelings, as given by the

pred(x) function (see Section 5.3). s ∈ {−, 0,+} refers to a down-regulation (or in-

activation), unchanged behavior, and up-regulation (or activation) of the behavior

of biomolecule x under the low versus high aggressive tumor comparison. In the

case where x is a protein complex or a protein, the predicted sign will denote a pos-

itive, negative or neutral shift in the effect of the protein or complex towards their

targets. In Table 1 we show the 146 obtained predictions after minimal correction,

in summary we obtained:

• 92 over-expressions (+): 77 proteins, 13 genes, and 2 protein complexes,

• 54 under-expressions (−): 33 proteins, 20 genes and 1 protein complex.

The list of all predictions is plotted on the KEGG graph in Additional file 1:

Figure S2 and on the volcano plot of differential gene expression in Additional file

1: Figure S3. The minimal correction set (MCoS) detected to recover the consistency

between the graph causality and the data, was composed of a single repair: adding

an influence towards node PMAIP1 gen resolves the conflict. This repair is shown

in Additional file 1: Figure S4. In the end, 3,026 nodes remain not observed nor

predicted. Iggy takes one minute to compute these results on a standard laptop

computer[3].

Among the 146 predictions, 143 have a name that matches with a gene name

identified in HCC from the ICGC database, but that were not selected in the 1913

genes differentially expressed (< −0.5 for down-regulated and > 2 for up-regulated

in aggressive HCC). If we remove all thresholds and thus consider any positive fold-

change as an over-expression, and any negative fold-change as an under-expression,

then 82 components predicted + are coherent with the ICGC data and 8 are not; 44

components predicted − are coherent with the ICGC data and 9 are not. This ratio

of 88% of matching predictions speaks in favor of our choice of applying Iggy to

this specific biological system, with respect to the currently available data in KEGG

and ICGC databases. This comparison can be visualized on the volcano plot of gene

differential expression in Additional file 1: Figure S3, and is also depicted on the

KEGG graph in Additional file 1: Figure S5. The list of predictions not matching

with experimental expression data is given in Additional file 1: Table S2.

2.4 Impact of data incompleteness on computational predictions

This section presents the results of the two validation analyses applied on the sam-

pling of observations described in Section 5.4. The objective is to observe the impact

of data incompleteness in our computational predictions. For this, we observed and

tracked across the samples the level of precision and the quality of the information

contained in the predictions (See Figure 1, step 4).

[3]Laptop computer containing an Intel Core i7-5600U CPU with 4 threads of

2.60GHz and running Fedora 27 64 bits.
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2.4.1 Precision Rate

The first approach (see Section 5.4.1) aims at observing the evolution of the pre-

dictions precision when using an increasing amount of data-points of the original

dataset (see Figure 2). We can observe a clear convergence of the precision score to-

wards 0.88 corresponding to the precision found with the full dataset, which shows

that our complete predictions do not lie in a local extremum.

2.4.2 Stability Study

The second approach (see Section 5.4.2) consists in observing “good”, “bad” and

“missing” predictions for each of the experiments (samplings < 100%) compared

to the 100% sampling. Figure 3 computes the minimum, maximum, median and

mean of each such category. Globally, we can observe that the mean and median

number of “bad” predictions, that is, predictions that are different with a subset

of observations than with the complete set of observations, are really low, below

4% for all samplings. Nevertheless, some samplings show a high proportion of such

“bad” predictions. Moreover, the number of “missing” predictions is very high for

low samplings, which assesses that there is too little information to obtain complete

results. Overall, “bad” predictions tend to decrease after the 65% sampling, along

with “missing” predictions that decrease all the way, making “good” predictions

mathematically increase.

2.4.3 Insights of the Stability Results

The analyses of the experiments shown in the previous subsections show that the

“badly” predicted components for subsets of observations are always the same 28

nodes, listed in Additional file 1: Table S3. These nodes belong to the same region

of the graph, which is depicted in Additional file 1: Figure S4. Actually, a group

of 27 of these nodes are strongly linked and always change their coloring together.

When searching inside the graph topology, one can remark that this group is tightly

linked to the node TP53 prot, which is also part of the group. This protein acts as

a “hub” inside the graph, having a high degree (25 ingoing and 28 outgoing edges).

It therefore controls closely, if not directly, a lot of other components that change

their sign as soon as it does so, rendering the whole group of predictions unstable.

The reason of this instability is that TP53 prot directly influences node PMAIP1 gen

which is involved in the only MCoS repair in our graph: the node PMAIP1 gen is

indeed observed as over-expressed (+) but 3 other under-expressed (−) observa-

tions contradict this one: CCNG1 gen, SHISA5 gen and TP73 gen. This leads to an

inconsistency, as explained in Section 2.3. The repair here consists in adding an

edge towards PMAIP1 gen that models missing information, in order to remove this

inconsistency, as shown in Additional file 1: Figure S4. In practise, this renders

PMAIP1 gen “silent” regarding TP53 prot, which then takes the coloring of the

other observations (under-expression). Nevertheless, when picking random sets of

observations, we sometimes fall in cases where among these 4 observations, only

PMAIP1 gen is selected; in this case, no repair is needed and TP53 prot is predicted

as over-expressed, also leading to 26 different predictions in downstream nodes.

Finally, the last unstable node is PMAIP1 prot: in the case where PMAIP1 gen is

part of the randomly picked observations, it is straightforwardly predicted over-

expressed while in the converse case, where PMAIP1 gen is not part of the observa-

tions, it is indirectly influenced by TP53 prot and thus predicted under-expressed.
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Such unstable predictions can be regarded as not very robust because they are

changeable depending on the number of observations taken into account. On the

other hand, all other predicted components are stable and can be considered as

robust since, when they are predicted, their prediction matches the one obtained

using all the observations. The list of stable and unstable predictions is given in

Additional file 1: Table S3.

2.5 Biological Validation of the Computational Results

Among the computational predictions given in Section 2.3, some of them are of

particular interest in regard to the expression data from ICGC. In this section, we

detail and validate them biologically.

2.5.1 Activation of NFκB signaling in aggressive HCC

Based on the regulatory model (Additional file 1: Figure S1) and differential expres-

sion of mRNA between low and high aggressive HCC (see Section 5.1), the algorithm

Iggy predicts the activation of complexes NFKB1::BCL3 and NFKB2::RELB and

the deactivation of complex JUND::NACA. By activation of the complexes we mean

that in order to explain the high-aggressive versus low-aggressive tumor gene ex-

pression datasets, these complexes have to increase their activity. For example, if

NFKB1::BCL3 is activated, then we deduce that its effect on gene IL10 (regulated

positively by this complex, Additional file 1: Figure S6) is positive, meaning that

the level of gene IL10 may increase if it was only regulated by NFKB1::BCL3. pro-

tein complex prediction is a novel information since it was not present in the initial

experimental data of gene expression.

Among them, two complexes are related to NFκB signaling and are predicted

as activated: NFKB1::BCL3 and NFKB2::RELB. NFKB1, NFKB2 and RELB are

three subunits of the transcription factor complex nuclear factor-kappa-B (NFκB)

which consist in a homo- or heterodimeric complex formed by Rel-like domain-

containing proteins p65 (RelA), RelB, c-Rel, p50 (NFKB1), and p52 (NFKB2).

The NFκB signaling system acts through canonical and non canonical pathways

which are induced by different extracellular signals [23]. The canonical pathway can

be induced by TNF-α, IL-1 or LPS stimulation and requires NF-kappa-B essential

modulator (NEMO) while the non-canonical pathway is induced by other ligands

such as CD40 ligand (CD40L), receptor activator of nuclear factor kappa-B ligand

(RANKL), B-cell activating factor (BAFF) and lymphotoxin beta (LTb). Upon lig-

and binding to its receptor, the signaling cascades control the degradation of IkB

proteins (inhibitor of NFκB) and precursor processing including NFKB1 (p105) and

NFKB2 (p100) which are proteolytically activated to p50 and p52 respectively. B-

cell chronic lymphatic leukemia protein 3 (Bcl3) is a member of IkB family that are

inhibitors of NFκB members. BCL3 associates with NF-kappa B in the cytoplasm

and prevents nuclear translocation of the NFKB1 (p50) subunit. When phospho-

rylated, BLC3 is activated and associates with NFKB1 in the nucleus to regulate

NFκB target genes [24]. NFκB system is involved in the regulation of numerous bi-

ological processes including inflammation, cell survival and development. Regarded

as protective against aggression from environment in normal physiology, alteration

of NFκB signaling pathways has been associated with various diseases such as in-

flammatory disease and cancer [25, 26]. In HCC, NFκB pathway was shown to be
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deregulated in tumor and underlying fibrotic livers [27, 28]. Notably, increased ex-

pression of p50 and BCL3 has been reported in tumors compared with adjacent

tissues [29] and p50 expression was associated with early recurrence of HCC [28].

In order to evaluate our predictions about the activation of NFKB1::BCL3 and

NFKB2::RELB complexes, we thought to search for expression of genes regulated by

these complexes. For that purpose, we take advantage of the NFκB-dependent signa-

ture available in MSigDB [22, 30]. We selected the HALLMARK TNFA SIGNALING VIA NFKB[4]

signature which contains 200 genes regulated by NFκB in response to TNF. As

shown in Additional file 1: Figure S7A, we demonstrated that these genes were

more expressed in high aggressive HCC when compared with low aggressive ones

supporting the activation of NFκB signaling. More specifically, we searched for

expression of genes targeted by NFκB-non-canonical pathway, including the cy-

tokines CCL19 and CCL21. These genes are regulated through the activation of

NFKB2::RELB complexes and their expression was increase in high aggressive

HCC thereby confirming the prediction (Additional file 1: Figure S7B).

Another prediction was the down-regulation of JUND::NACA complex that was

previously demonstrated to regulate osteocalcin [31]. This prediction is mainly con-

ditioned by osteocalcin (BGLAP) expression data that was found down-regulated

in the aggressive HCC (−1.3 fold-change between aggressive versus non-aggressive

HCC). Such observations are in accordance with previous reports showing that os-

teocalcin was down-regulated in the serum of HCC patients when compared with

healthy controls [32]. As shown in Additional file 1: Figure S8A, we showed that

both JUND and NACA gene expressions were down-regulated in aggressive HCC

supporting the prediction of down-regulation of the complexes JUND::NACA. Im-

portantly, the targets of JUND::NACA complex including LRP5 and LRP6 genes

were predicted as down-regulated by our model (Additional file 1: Figure S6). The

down-regulation of LRP5 in aggressive HCC was validated in HCC data but was

not significant for LRP6 probably due to the low level of gene expression (Addi-

tional file 1: Figure S8B). According with this, the up-regulation of LRP6 through

JUND::NACA complexes was clearly demonstrated in osteoblasts [33].

To conclude, model predictions were validated by data analyses and are in ac-

cordance with the literature. Importantly, this is the first report describing the

activation of NFKB2::RELB complex and the down-regulation of JUND::PACA

complex in aggressive HCC.

3 Discussion
The understanding of tumor progression dynamics is extremely difficult when con-

sidering the snap-shot nature of data from patients. However, compiling information

from a wide spectrum of tissue samples can be used for modeling evolutive stories.

The complexity of molecular events implicated in hepatocellular carcinoma progres-

sion is directly associated with its various etiologies that differently contribute to

tumor initiation, growth and evasion. During last decades, multiscale omics data

analysis of genome and proteome allowed to explore molecular networks associated

with HCC and mathematical models have been developed namely to predict cancer

[4]Id: M5890, available at http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?

geneSetName=HALLMARK_TNFA_SIGNALING_VIA_NFKB
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cell behavior [34]. Accordingly, an elegant discrete model was developed by [35] to

explore TGF-β signaling pathway during epithelio-mesenchymal transition in HCC.

However, HCC results from complex interactions between the tumor cells and the

microenvironment involving stromal cells and extracellular matrix. Molecular bio-

logical data from tumor tissues recapitulate all this information and we need to build

an unique large-scale model without a priori to take into account such complex-

ity. For that purpose, we propose here an original approach aiming at integrating

experimental data on a regulatory graph extracted from the KEGG database to

predict new markers and regulators of HCC progression.

Based on EMT gene expression signature from MSigDB [22] we first separated

low from high aggressive HCC samples stored in the ICGC database [21] and next

we sought to predict the regulatory pathways implicated in this transition. For that

purpose, we built a model by querying the KEGG database using the KEGG API

to extract an initial network. We have implemented a tool, Pathrider, to allow us

extracting a directed and signed sub-network, from the previously obtained network,

by using the up-stream events of a list of target genes. Importantly, our modeling

choices allowed us to connect protein complexes to their members, and to label

network nodes of type gene and protein. This separation of concepts is particularly

valuable when modeling gene expression.

The publicly available knowledge base KEGG, gathering curated signaling and

regulatory processes, is well structured to automatically extract mechanistic models

from it. In particular: (i) the information concerning gene transcription and signal-

ing modifications is differentiated, (ii) the network nodes identifiers are unique, and

(iii) the biological processes, such as phophorylation or gene-regulation, are clearly

represented.

Using Iggy, it was possible to confront the logic of a large-scale KEGG network

(3,383 nodes, 13,771 edges) to the expression of genes differentially expressed be-

tween high-aggressive and low-aggressive HCC. In this context, we were able to

propose an integrated model of HCC progression and to predict the regulation of

new biomolecules including genes, proteins and complexes. A major finding is that

the model predicted the behavior of 146 network components that were associ-

ated with the progression of tumors. 88% of the computation model predictions

were validated with the ICGC data-set and by using cross-validation techniques,

thereby demonstrating the quality of the model. Conversely, 12% of the predictions

did not match the experimental data, however 10 of these components are part of

gene/protein couples leading to linked predictions. In addition, all of these compo-

nents but one had a low expression change (less than 1 in absolute value) along

with a high p-value (above 10−2) that might explain the inconsistency. The remain-

ing one is THBS1 gen (thrombospondin 1 gene) with a fold-change of 1.996, and is

also part of the cluster of unstable predictions depicted in Section 2.4.3. Indeed,

we discovered a subset of 28 network nodes that were very sensitive to the exper-

imental data. That is, they were strongly constrained by a subset of experimental

observations. We notice that these nodes behave as hubs in the network, and can

be candidate to experimental stimulation or inhibition in order to affect the system

behavior.
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The most interesting prediction was the activation of protein complexes related to

NFκB signaling since complexes formation is directly responsible for signal trans-

duction [36]. While the role of NFκB signaling pathway has been widely docu-

mented in chronic liver disease [37], the activation of NFKB1/BCL-3 complexes in

aggressive HCC has never been reported. The IκB protein BCL-3 acts both as a

co-activator that form complexes with NFKB1(p50) dimers to promote genes [38]

and as a co-repressor of gene transcription by stabilizing P50 homodimers on DNA

promoters [39]. Predicted activation of such complexes in aggressive HCC revealed

the ambivalent role of NFKB-mediated inflammatory response during the course of

tumor progression [40].

4 Conclusion
The present study is general to be applied to other biological data from cancers

or other disease. In the future, we would like to use logic programming to target

the combinatorics of sensitive regions in a regulatory graph with respect to gene

expression profiles, in order to propose regulatory elements for clinical therapy.

Another perspective is to apply our method to subsets of patients, and observe if

there are clusters of patients that have specific computational model signatures for

HCC progression.

5 Methods
5.1 Identification of gene differentially expressed between low and high aggressive

HCC

Normalized HTseq counts and clinical data were retrieved from the LIHC-US

project[5] (NCI, TCGA-LIHC). These files were downloaded on 2016-07-19, cor-

responding to release 21. At this date, LIHC-US dataset comprised 294 donors and

345 samples; among them, we selected samples corresponding to solid primary tu-

mors, based on clinical data, by selecting entries containing the expression ”Primary

tumour - solid tissue” in the specimen table (7th field). This allowed selecting

one sample for each of the 294 donors. Data retrieval and filtering workflow is de-

tailed in Additional file 3: File dataset filtering.sh.

From this filtered dataset, we extracted a two-dimensional table of expression val-

ues (converted in log2) for 20,502 genes in 294 LIHC samples. Based on the bimodal

distribution of these expression values, we discarded genes whose expression is unde-

tectable (4,220 genes), keeping 16,282 genes. Expression values were normalized by

the median value in each sample. Based on the established link between epithelial-

mesenchymal transition (EMT) and tumor aggressiveness [41], we used the MSigDB

[42] set of 200 genes termed HALLMARK EPITHELIAL MESENCHYMAL TRANSITION[6]

from the Broad Institute as a molecular signature of aggressiveness. From the LIHC

dataset, we extracted a table of expression values for 195 entries of this EMT signa-

ture for each of the samples (5 genes were undetectable). Based on the expression

values of the EMT signature, LIHC samples were classified (hierarchical clustering of

[5]All ICGC data used in this work are publicly available at https://dcc.icgc.org/

releases/release_21/Projects/LIHC-US

[6]Id: M5930, available at http://software.broadinstitute.org/gsea/msigdb/geneset_page.jsp?

geneSetName=HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION
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euclidean distances) into three groups termed low EMT (70 samples), medium EMT

(154 samples), and high EMT (70 samples). The result of this clustering analysis is

available in Additional file 1: Figure S9. Samples corresponding to the medium EMT

group were discarded and a differential expression analysis was performed by com-

puting a non-parametric Mann-Whitney test for all the 16,282 genes between the

low EMT and high EMT groups. p-values were adjusted for multiple analyses by

the Benjamini & Hochberg method. The volcano plot of Additional file 1: Figure S10

represents fold-changes (log2) against adjusted p-values (− log10) and the raw data

are available online as input data of the pipeline[7].

We focused on genes with an adjusted p-value below 10−5. Genes with a

log2(fold-change) greater than 2 were considered as over-expressed (821 genes),

whereas those with a log2(fold-change) lower than 0.5 were considered as under-

expressed (1,092 genes). Together, these 1913 differentially expressed genes, listed

in Additional file 2: File diffexp filtered.csv were subsequently used to extract

a regulatory network, as explained in Section 5.2, and then used as observations for

the coloring propagation process, as detailed in Section 5.3. The full list of differ-

entially expressed genes is available in Additional file 2: File diffexp full.csv.

The workflow of data clustering and differential analysis is available in Additional

file 3: File diffexp and clustering.R.

To further validate the clinical relevance of the groups of HCC samples identi-

fied by the hierarchical clustering method, we compared this classification obtained

with the EMT signature to a classification obtained with markers established as

predictive of recurrence, which is a major clinical outcome of tumor aggressiveness.

For that purpose, we used the Seoul National University recurrence (SNUR) signa-

ture [43] that previously permitted to classify HCC samples from TCGA database

[44] and we compared clusters identified by hierarchical clustering method with

SNUR groups. Note that LIHC primary tumors correspond to 294 samples but

only 183 are annotated with SNUR score. Clustering methods were applied to all

the 294 samples used in this study and comparisons of clustering classes were made

for the 183 samples. When hierarchical groups were compared to SNUR groups,

we found a χ2 test p-value of 3.81 × 10−14, with 9% of class 1 (low EMT) belong-

ing to the low-recurrence group, and 83% of class 3 (high EMT) belonging to the

high-recurrence group. Together, these data demonstrate the accuracy of clustering

method to identified low and high aggressive HCC samples.

5.2 Building a signed interaction graph from the KEGG Pathway database

For this case study, we used a human signaling network derived from the KEGG

Pathway database [13]. 154 human signaling pathways were fetched using the KEGG

API and converted to SIF (Simple Interaction Format) in order to provide KEGG’s

knowledge as a graph representation. This section summarizes how this network

was built. A more in-depth description is available in Additional file 1 as a Sup-

plementary Material & Methods. This step of automatic reconstruction of a causal

graph from KEGG constitutes one of the novel contributions of the methodological

results of this paper.

[7]Files GSEA EMThigh vs EMTlow diffexp.csv (differential expression) and

LIHC primary weakly expressed genes.txt (blacklist of weakly expressed genes) at

https://github.com/LokmaneChebouba/key-pipe/tree/master/example.
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5.2.1 Signed interaction graph built from KEGG’s regulatory knowledge

To model the KEGG regulatory knowledge we imposed a distinction between

nodes representing genes and nodes representing proteins. In the KEGG Pathway

database, this distinction is implicitly embedded in the relation types, particularly

PPrel edges (protein-protein relations) and GErel edges (gene expression relations).

PPrel edges indicate that both source and target nodes are proteins. GErel edges

indicate that source nodes are transcription factors and that target nodes are genes.

Therefore, to explicitly differentiate genes and proteins, the source nodes of GErel

edges were suffixed with prot and the target nodes were suffixed with gen. Con-

cerning PPrel edges, both the source and target nodes were suffixed with prot.

Differently to what proposed by KEGG maps, we modeled protein complexes ex-

plicitly by imposing two relations:

A prot PPrel A prot::B prot

B prot PPrel A prot::B prot

where A prot::B prot refers to the protein complex formed by proteins A and B.

Furthermore, in order to link genes and their products, a relation type (initially

absent in the KEGG KGML model) was added: the GPrel type (gene-protein rela-

tions). For each node C modeling a protein, a GPrel edge starting from its corre-

sponding gene and ending on C was added:

C gen GPrel C prot

These added nodes therefore model the corresponding gene products and the GPrel

edges model the protein formation given a gene expression, as illustrated in Addi-

tional file 1: Figure S11 and Figure S12. Note that without GPrel nodes, the graph

is much more disconnected and the predictions are fewer and of worse quality, as

showed in Additional file 1: Table S4 and Table S5.

In addition to their relation types, the edges are annotated in KEGG with key-

words bringing details about the modeled interactions. Therefore, edge signs (role

of activator or inhibitor) were inferred using these keywords.

Altogether, the human signaling network extracted from KEGG was represented

as a signed interaction graph composed of protein signaling interactions, complex

formations, gene expression regulations and gene-protein relations; accordingly, the

nodes of this graph refer to genes, proteins and protein complexes. This decomposed

representation allowed us to map on this network data which corresponded only

to gene expressions, without assuming that gene expression correlates to protein

activity. This KEGG signed and directed graph is available as input data of the

pipeline implemented in this work[8].

5.2.2 Extracting up-stream signaling pathways

For this work, we implemented Pathrider [9] in order to extract a subgraph from the

KEGG generic human signaling network (obtained in the previous section). Given

a list of genes and a network, Pathrider will keep only the signaling pathways of the

network regulating the list of genes, that is, the upstream paths of the nodes in the

network that represent these genes. Pathrider will also filter out the biomolecules

[8]File hsa-2345-symb-nomulti-split-func-sign.sif at https://github.com/LokmaneChebouba/key-pipe/

tree/master/example.
[9]Available at: https://github.com/arnaudporet/pathrider
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in the graph (genes, proteins or protein complexes) that appear in a list of excluded

genes, which in practice refer to genes whose expression is undetectable. This tool

is included in the automatic pipeline we propose in this work (see Section 2.1).

5.3 Sign consistency - Iggy

Let G(V,E, σ) be an interaction graph, where V represents the set of nodes, E

the set of edges, and σ : E → {+,−} a labeling (activation or inhibition) of the

edges; and given experimental observations (e.g. gene expression profile) (S, µ),

defined by the set of experimentally measured biomolecules S ⊂ V and the mapping

µ : V → {−, 0,+}. The sign-consistency principle, implemented in Iggy [20], defines

the rules to integrate interaction and experimental knowledge. In order to do this, we

look for total labelings µt : V → {−, 0,+} that satisfy the following sign-consistency

constraints (see Figure 4):

• The observations must keep their initial labelings.

• Each labeling + or − must be justified by at least one predecessor.

• Each labeling 0 must have only predecessors labeled as 0 or a couple of + and

− labeled predecessors.

Given a particular biological instance for G and (S, µ), it usually happens that

many total labelings µt, satisfying the constraints, are proposed. For a set V of nodes

in our network and a set M of total labelings consistent with our observations, we

define the prediction function pred : V → {+,−, 0,∅} as follows:

pred(x) =


+ if ∀µ ∈M : µ(x) = +

− if ∀µ ∈M : µ(x) = −
0 if ∀µ ∈M : µ(x) = 0

∅ otherwise.

This prediction function is an output of the sign-consistency modeling approach,

and it can be seen as an inference mechanism that generates a sign for a node x only

if in all the consistent total labelings it was assigned the same sign among {−, 0,+}.
There may be nodes in V with non prediction value (∅) thus meaning that no

certain conclusion was possible to be inferred for them. Biologically, this prediction

function will allow us to label non experimentally observed nodes, meaning that

their shift of expression or activity can be inferred thanks to their connectivity to

other observed biomolecules in the graph.

Another possible output of the sign-consistency approach is a list of conflicts, in

the case where (S, µ) is not compatible with G. It particularly signals a conflict

between the sign of some biomolecules and the interaction network. One way to

fix such conflicts is to add artificial interactions in the network. Iggy allows to

automatically add a minimal number of such repairs, called minimal correction

set (MCoS). If several possibilities of repairs are possible, Iggy will compute them

all and the final set of predictions will correspond to the union of the predictions

obtained after each possible repair.

Given the combinatorial nature of this analysis, Iggy is implemented in Answer

Set Programming, in particular using grounder Gringo 3.0.5 and solver Clasp 3.1.3.

For this work, the reasoning of Iggy, parametrized with the mentioned constraints

and the MCoS repairs, is added to the automatic pipeline we provide.
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5.3.1 Modeling our case-study using sign-consistency: inputs and outputs of Iggy

Inputs. The signed interaction graph G(V,E, σ) was obtained from the KEGG

Pathways database as explained in Section 5.2. The gene expression profile (see

Section 5.1) is composed of experimental knowledge of 821 over- (sign ’+’) and

1092 under-expressed (sign ’−’) genes in in high aggressive tumors compared to

low aggressive tumors. From these differentially expressed genes, only 209 were

found in the KEGG graph matching nodes with a suffix ’ gene’. Thus, the set

of observations (S, µ) used for the sign-consistency analysis was composed of 209

elements.

Outputs. Following the sign consistency analysis, Iggy proposed predictions under

minimal MCoS repairs. The complete results are discussed in Section 2. It is impor-

tant to recall that since the graph G, obtained from KEGG, is composed of nodes

which represent genes, proteins, and protein complexes. The prediction function

pred(x) computed by Iggy for x ∈ V will assign signs mainly to protein and protein

complex nodes. In this way Iggy will allow us to infer the activity or expression

shifts of unmeasured biomolecules of the system.

5.4 Computational Validation of the results

Recall that to create the over- and under-expressed genes between low and high

aggressive tumors (see Section 5.1) we used thresholds of +2 and −0.5 on the value

of log2(fold-change). In this section, we aim at checking if these thresholds are

justified. To do this, we computed “sub-predictions”, that is, predictions on the

same extracted graph of Section 5.2 but with subsets of observations. To generate

these subsets of observations, we considered a range of samplings, from 10% to

95% of the complete observation set, with a step of 5%. For each sampling of

x%, 100 experiments were conducted, where an experiment consisted in randomly

picking x% of the over-expressed observations (+) and x% of the under-expressed

observations (−), and computing the predictions on this subset of observations.

The results are 1,800 such subsets of observations, and as many computed sets

of predictions on the nodes of the graph, hereafter called sub-predictions. These

sub-predictions have been exploited in two ways:

1 by comparing said sub-predictions with the available gene expression data

from ICGC that were already used for the differential analysis (Section 5.4.1),

and

2 by comparing said sub-predictions with the final predictions obtained with

100% of observations to witness their variability (Section 5.4.2).

Both approaches are explained below; they are implemented and added to the au-

tomatic pipeline we propose in this work.

5.4.1 Recovery rate of the sub-predictions

We computed a normalized score by counting the number of predictions matching

the related experimental fold-change from the ICGC data. For each experiment

result, this score s is given by the formula: s = m/t where m is the number of

matching predictions, that is, positive predictions with positive fold-changes and

negative predictions with negative fold-changes, and t is the total number of pre-

dictions. This allows us to assess the ability of our model to recover from missing

information (here, observations).
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5.4.2 Stability of the sub-predictions

In order to look at the stability of the predictions made on subsets of observations,

we also compared them to the final predictions using 100% of the observations. For

each predicted node in the 100% sampling set, and for each of its corresponding

sub-prediction in a lower sampling set:

• If the node is predicted and the prediction matches the one at 100% sampling,

this is considered a “good” prediction.

• If the node is predicted but the prediction is not the same as for 100% sam-

pling, this is considered a “bad” prediction, thus representing mathematical

non-monotonicity and biological sensitive components or potential targets.

• If the node is not predicted, this is called a “missing” prediction.

Counting the elements and observing the evolution of these categories allows us to

witness if lower samplings converge to the final sampling or not, independently of

any exterior data such as expression data.

List of abbreviations
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This work was supported by the Université Bretagne Loire and the GenOuest bioinformatics core facility[10].

Author’s contributions

MF implemented the different parts of the pipeline presented in this work, except for Iggy and Pathrider. VL

produced the differential expression data and participated in the biological validation from litterature. AP produced

the KEGG graph extraction and the Pathrider/Stream tool. LC wrote the main script automating the calls to the

different parts of the pipeline. CG co-lead the project and gave expertise on the computer science part of this work.

NT co-lead the project and participated in the biological validation from litterature. All authors have equally

contributed to the writing of the manuscript.

Acknowledgements

The authors wish to thank Anne Siegel for her fruitful discussions and comments.

Author details
1 Univ Rennes, Inria, CNRS, IRISA, UMR 6074, Rennes, France. 2 Univ Rennes, Inserm, EHESP, Irset, UMR
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Lille, France. 6 École centrale de Nantes, Nantes, France. 7 Department of Computer Science, LRIA Laboratory,

Electrical Engineering and Computer Science Faculty, University of Science and Technology Houari Boumediene

(USTHB), Algiers, Algeria.

[10]https://www.genouest.org

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/605519doi: bioRxiv preprint 

https://www.genouest.org
https://doi.org/10.1101/605519


Folschette et al. Page 16 of 19

References
1. Global Burden of Disease Liver Cancer Collaboration, Akinyemiju, T., et al.: The Burden of Primary Liver

Cancer and Underlying Etiologies From 1990 to 2015 at the Global, Regional, and National Level: Results From

the Global Burden of Disease Study 2015. JAMA Oncol 3(12), 1683–1691 (2017).

doi:10.1001/jamaoncol.2017.3055

2. Saran, U., et al.: Hepatocellular carcinoma and lifestyles. J. Hepatol. 64(1), 203–14 (2016).

doi:10.1016/j.jhep.2015.08.028

3. VoPham, T., et al.: Ambient PM2.5 air pollution exposure and hepatocellular carcinoma incidence in the

United States. Cancer Causes Control 29(6), 563–572 (2018). doi:10.1007/s10552-018-1036-x

4. Khemlina, G., et al.: The biology of Hepatocellular carcinoma: implications for genomic and immune therapies.

Mol. Cancer 16(1), 149 (2017). doi:10.1186/s12943-017-0712-x

5. Schulze, K., et al.: Genetic profiling of hepatocellular carcinoma using next-generation sequencing. J. Hepatol.

65(5), 1031–1042 (2016). doi:10.1016/j.jhep.2016.05.035

6. Giannelli, G., et al.: Role of epithelial to mesenchymal transition in hepatocellular carcinoma. J. Hepatol. 65(4),

798–808 (2016). doi:10.1016/j.jhep.2016.05.007

7. Kim, J., et al.: Epithelial-mesenchymal transition gene signature to predict clinical outcome of hepatocellular

carcinoma. Cancer Sci. 101(6), 1521–8 (2010). doi:10.1111/j.1349-7006.2010.01536.x

8. Yamada, S., et al.: Epithelial to mesenchymal transition is associated with shorter disease-free survival in

hepatocellular carcinoma. Ann. Surg. Oncol. 21(12), 3882–90 (2014). doi:10.1245/s10434-014-3779-2

9. Yan, L., et al.: Relationship between epithelial-to-mesenchymal transition and the inflammatory

microenvironment of hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 37(1), 203 (2018).

doi:10.1186/s13046-018-0887-z

10. Neaves, S.R., et al.: Reactome Pengine: a web-logic API to the Homo sapiens reactome. Bioinformatics 34(16),

2856–2858 (2018)

11. Fabregat, A., et al.: The Reactome Pathway Knowledgebase. Nucleic Acids Res. 46(D1), 649–655 (2018)

12. Cerami, E.G., et al.: Pathway Commons, a web resource for biological pathway data. Nucleic acids research

39(suppl 1), 685–690 (2010)

13. Kanehisa, M., et al.: KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res.

45(D1), 353–361 (2017)

14. Turei, D., et al.: OmniPath: guidelines and gateway for literature-curated signaling pathway resources. Nat.

Methods 13(12), 966–967 (2016)

15. Shannon, P., et al.: Cytoscape: a software environment for integrated models of biomolecular interaction

networks. Genome Res. 13(11), 2498–2504 (2003)

16. Wu, G., Stein, L.: A network module-based method for identifying cancer prognostic signatures. Genome Biol.

13(12), 112 (2012)

17. Mi, H., et al.: PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways,

and data analysis tool enhancements. Nucleic Acids Res. 45(D1), 183–189 (2017)

18. Veber, P., et al.: Complex qualitative models in biology: A new approach. ComPlexUs 2, 140–151 (2004)

19. Melas, I.N., et al.: Detecting and removing inconsistencies between experimental data and signaling network

topologies using integer linear programming on interaction graphs. PLoS Comput. Biol. 9(9), 1003204 (2013)

20. Thiele, S., et al.: Extended notions of sign consistency to relate experimental data to signaling and regulatory

network topologies. BMC Bioinformatics 16(1) (2015). doi:10.1186/s12859-015-0733-7

21. International Cancer Genome Consortium, Hudson, T.J., et al.: International network of cancer genome

projects. Nature 464, 993 (2010)

22. Subramanian, A., et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting

genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 102(43), 15545–50 (2005).

doi:10.1073/pnas.0506580102

23. Shih, V.F.-S., et al.: A single NFκB system for both canonical and non-canonical signaling. Cell Res. 21(1),

86–102 (2011). doi:10.1038/cr.2010.161

24. Wang, V.Y.-F., et al.: Bcl3 Phosphorylation by Akt, Erk2, and IKK Is Required for Its Transcriptional Activity.

Mol. Cell 67(3), 484–4975 (2017). doi:10.1016/j.molcel.2017.06.011

25. Concetti, J., Wilson, C.L.: NFKB1 and Cancer: Friend or Foe? Cells 7(9) (2018). doi:10.3390/cells7090133

26. Cildir, G., et al.: Noncanonical NF-κB Signaling in Health and Disease. Trends Mol Med 22(5), 414–429

(2016). doi:10.1016/j.molmed.2016.03.002

27. Tai, D.I., et al.: Constitutive activation of nuclear factor kappaB in hepatocellular carcinoma. Cancer 89(11),

2274–81 (2000)

28. Yokoo, H., et al.: Clinicopathological significance of nuclear factor-κB activation in hepatocellular carcinoma.

Hepatol. Res. 41(3), 240–9 (2011). doi:10.1111/j.1872-034X.2010.00758.x

29. O’Neil, B.H., et al.: Expression of nuclear factor-kappaB family proteins in hepatocellular carcinomas. Oncology

72(1-2), 97–104 (2007). doi:10.1159/000111116

30. Liberzon, A., et al.: Molecular signatures database (MSigDB) 3.0. Bioinformatics 27(12), 1739–40 (2011).

doi:10.1093/bioinformatics/btr260

31. Akhouayri, O., et al.: Sequence-specific DNA binding by the alphaNAC coactivator is required for potentiation

of c-Jun-dependent transcription of the osteocalcin gene. Mol. Cell. Biol. 25(9), 3452–60 (2005).

doi:10.1128/MCB.25.9.3452-3460.2005

32. Liu, Y., et al.: Relationships between the Osteocalcin gene polymorphisms, serum osteocalcin levels, and

hepatitis B virus-related hepatocellular carcinoma in a Chinese population. PLoS ONE 10(1), 0116479 (2015).

doi:10.1371/journal.pone.0116479

33. Pellicelli, M., et al.: Lrp6 is a target of the PTH-activated αNAC transcriptional coregulator. Biochim Biophys

Acta Gene Regul Mech 1861(2), 61–71 (2018). doi:10.1016/j.bbagrm.2018.01.008

34. D’Alessandro, L., et al.: Hepatocellular carcinoma: a systems biology perspective. Frontiers in Physiology 4, 28

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/605519doi: bioRxiv preprint 

http://dx.doi.org/10.1001/jamaoncol.2017.3055
http://dx.doi.org/10.1016/j.jhep.2015.08.028
http://dx.doi.org/10.1007/s10552-018-1036-x
http://dx.doi.org/10.1186/s12943-017-0712-x
http://dx.doi.org/10.1016/j.jhep.2016.05.035
http://dx.doi.org/10.1016/j.jhep.2016.05.007
http://dx.doi.org/10.1111/j.1349-7006.2010.01536.x
http://dx.doi.org/10.1245/s10434-014-3779-2
http://dx.doi.org/10.1186/s13046-018-0887-z
http://dx.doi.org/10.1186/s12859-015-0733-7
http://dx.doi.org/10.1073/pnas.0506580102
http://dx.doi.org/10.1038/cr.2010.161
http://dx.doi.org/10.1016/j.molcel.2017.06.011
http://dx.doi.org/10.3390/cells7090133
http://dx.doi.org/10.1016/j.molmed.2016.03.002
http://dx.doi.org/10.1111/j.1872-034X.2010.00758.x
http://dx.doi.org/10.1159/000111116
http://dx.doi.org/10.1093/bioinformatics/btr260
http://dx.doi.org/10.1128/MCB.25.9.3452-3460.2005
http://dx.doi.org/10.1371/journal.pone.0116479
http://dx.doi.org/10.1016/j.bbagrm.2018.01.008
https://doi.org/10.1101/605519


Folschette et al. Page 17 of 19

(2013). doi:10.3389/fphys.2013.00028

35. Steinway, S.N., et al.: Network Modeling of TGFβ Signaling in Hepatocellular Carcinoma

Epithelial-to-Mesenchymal Transition Reveals Joint Sonic Hedgehog and Wnt Pathway Activation. Cancer

Research 74(21), 5963–5977 (2014). doi:10.1158/0008-5472.CAN-14-0225.

http://cancerres.aacrjournals.org/content/74/21/5963.full.pdf

36. O’Dea, E., Hoffmann, A.: The Regulatory Logic of the NF-κB Signaling System. Cold Spring Harbor

Perspectives in Biology 2(1) (2010). doi:10.1101/cshperspect.a000216.

http://cshperspectives.cshlp.org/content/2/1/a000216.full.pdf+html

37. Luedde, T., Schwabe, R.F.: NF-κB in the liver—linking injury, fibrosis and hepatocellular carcinoma. Nature

Reviews Gastroenterology & Hepatology 8, 108–118 (2011). doi:10.1038/nrgastro.2010.213

38. Chang, T.-P., Vancurova, I.: Bcl3 regulates pro-survival and pro-inflammatory gene expression in cutaneous

T-cell lymphoma. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1843(11), 2620–2630

(2014). doi:10.1016/j.bbamcr.2014.07.012

39. Collins, P.E., et al.: Inhibition of Transcription by B Cell Leukemia 3 (Bcl-3) Protein Requires Interaction with

Nuclear Factor κB (NF-κB) p50. Journal of Biological Chemistry 289(10), 7059–7067 (2014).

doi:10.1074/jbc.M114.551986. http://www.jbc.org/content/289/10/7059.full.pdf+html

40. Seki, E., Brenner, D.A.: The role of NF-κB in hepatocarcinogenesis: Promoter or suppressor? Journal of

Hepatology 47(2), 307–309 (2007). doi:10.1016/j.jhep.2007.05.006

41. Thiery, J.P., et al.: Epithelial-mesenchymal transitions in development and disease. Cell 139(5), 871–90 (2009).

doi:10.1016/j.cell.2009.11.007

42. Liberzon, A., et al.: The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 1(6),

417–425 (2015). doi:10.1016/j.cels.2015.12.004

43. Woo, H.G., Park, E.S., Cheon, J.H., Kim, J.H., Lee, J.-S., Park, B.J., Kim, W., Park, S.C., Chung, Y.J., Kim,

B.G., Yoon, J.-H., Lee, H.-S., Kim, C.Y., Yi, N.-J., Suh, K.-S., Lee, K.U., Chu, I.-S., Roskams, T.,

Thorgeirsson, S.S., Kim, Y.J.: Gene expression–based recurrence prediction of hepatitis b virus–related human

hepatocellular carcinoma. Clinical Cancer Research 14(7), 2056–2064 (2008).

doi:10.1158/1078-0432.CCR-07-1473. https://clincancerres.aacrjournals.org/content/14/7/2056.full.pdf

44. Cancer Genome Atlas Research Network: Comprehensive and integrative genomic characterization of

hepatocellular carcinoma. Cell 169 (2017). doi:10.1016/j.cell.2017.05.046

Figure 1 Schema describing the pipeline for building networks and predicting regulatory nodes
(1) Using a list of differentially expressed genes, construct the set of gene names and the
corresponding set of observations (a sign is attributed for each gene: + when fold change > 2 or
− when fold change < 0.5 and adjusted p-value < 10−5); (2) Extract the upstream/downstream
signaling pathways for the set of genes from the signed interaction graph using Pathrider, a tool
developed in our team to this purpose. Given a list of excluded genes (such as invariant genes),
Pathrider filters these genes to reduce the graph size; (3) Check the sign consistency of our
datasets to produce signed predictions for unmeasured biomolecules using iggy tool; (4) Validate
the predictions made by iggy by computing sub-predictions (prediction 1, 2...n) using a sub-set of
observations (by default, it starts sampling from 10% to 95% of observations with a step of 5%
and a number of execution equal to 100), then compare it firstly with the differentially expressed
genes, and in a second time with the predictions obtained with all the set of observations; and (5)
Plot the precision scores for each sub-sets of the observations, and the stability of the prediction
compared to the predictions of the entire set of observations.

Figure 2 Precision scores of predictions obtained on samplings of the observations Boxplots of
the precision scores (ordinate) of the predictions obtained with 100 randomly picked samplings
(abscissa) of observations. Each box plot at abscissa x represents the distribution of the precision
scores of the predictions obtained when using only x% of the observations. The point at 100%
represents the prediction score of the predictions when using the complete set of observations.

Figure 3 Stability of the predictions for subsets of observations This figure summarizes the
stability of the predictions for all samplings of the observations, compared to the final predictions
with all 100% of observations. “Good” predictions (matching the 100% predictions) are depicted
in green, “Bad” predictions (predicted differently than the 100% predictions) in red and “Missing”
predictions (not predicted) in blue. For each category, four curves are plotted representing, from
top to bottom, the maximum, median, mean and minimum number of predictions of this type.
Curves are normalized to the number of predictions obtained for each set of sampled data.
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Figure 4 Consistency constraints. Given a signed graph, where green edges depict activations,
and red edges, inhibitions, two partial labelings for the nodes A and B are proposed in the first
and second rows. In both cases there are 32 different possible labelings for C and D taking 3 signs
{+,−, 0} corresponding to colors green, red and blue, respectively. We depicted here only one
consistent and one inconsistent scenario according to the sign-consistency constraints.

List of positive (up-regulated) predictions
ADRA2A prot, BDKRB2 prot, BMP4 gen, CCL11 prot, CCL13 gen, CCL13 prot,
CCL17 gen, CCL17 prot, CCL19 prot, CCL21 prot, CCL22 prot, CCL26 prot,
COL1A1 prot, COL1A2 prot, COL3A1 prot, COL4A2 prot, COL4A3 prot, COL6A1 prot,
COL6A2 prot, COL6A3 prot, COMP prot, CTBP2 prot, CTSK prot, CXCL12 prot,
CXCL14 prot, CXCL5 prot, CXCL6 prot, DCN prot, DKK2 prot, DUSP4 prot, EFNB3 prot,
EIF4EBP2 prot, EPHA3 prot, FGF18 prot, FGF1 prot, FHL2 prot, FPR1 prot, GLI3 prot,
HGF prot, HHIP prot, HIF1A prot, HTR2B prot, ICAM1 gen, IL34 prot, IL6 prot,
JAG1 prot, KRAS gen, LAMA1 prot, LAMA2 prot, LAMC2 prot, LAMC3 prot, LIF prot,
NFATC1 prot, NFKB1::BCL3, NFKB2::RELB, NOTCH1 gen, NOTCH2 gen, NOTCH4 gen,
NR0B2 gen, NR0B2 prot, NR1H4 gen, NR1H4 prot, NR3C2 gen, NR3C2 prot, NRG3 prot,
NTF3 prot, NTRK3 prot, PMAIP1 prot, PPP2R2C prot, PRKG1 prot, PTGER1 prot,
PTGIR prot, PTH1R prot, PTHLH prot, PTPRR prot, RASAL1 prot, SCTR prot,
SEMA3C prot, SFRP1 prot, SFRP2 prot, SFRP4 prot, SFRP5 prot, SGK1 gen, SLIT2 prot,
TGFA prot, THBS2 prot, THRA prot, TNC prot, TNXB prot, VDR gen, VDR prot,
WTIP prot

List of negative (down-regulated) predictions
APAF1 gen, APAF1 prot, BAK1 gen, BAX gen, BID gen, CCL15 prot, CCL16 prot,
CHAD prot, CREB1 prot, CSNK2B prot, DKK4 prot, EIF2B4 prot, EIF2B5 prot,
ELMO1 prot, FOXO3 prot, IGFBP3 gen, IGFBP3 prot, JUND::NACA, LRP5 gen, LRP6 gen,
MDM2 gen, PHLPP1 prot, PIDD1 gen, PIDD1 prot, PPP2R5A prot, PPP2R5D prot,
PTEN gen, RAD9A prot, RFNG prot, RXRB prot, SENP2 prot, SESN1 gen, SESN1 prot,
SESN2 gen, SESN2 prot, SESN3 gen, SESN3 prot, SFN gen, SFN prot, SIVA1 gen,
SIVA1 prot, SLC38A9 prot, SPDYC prot, SREBF1 gen, SREBF1 prot, THBS1 gen,
THBS4 prot, THEM4 prot, THPO prot, TNFRSF10A gen, TNFRSF10B gen, TP53 prot,
TP73 prot, TSC2 gen

Table 1 List of all predictions returned by Iggy.
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Additional Files
Additional file 1 — Additional tables, figures and explanations

This PDF file contains additional figures and tables related to all parts of this manuscript, along with a detailed

explanation of the KEGG graph extraction that was summarized in Section 5.2.

Additional file 2 — Input data and results of the application of our pipeline regarding hepatocellular carcinoma

progression

This archive contains input and output data related to hepatocellular carcinoma agressiveness that were used in this

work to illustrate the benefits of our pipeline. The input data consists of differentially expressed genes (in CSV

format) and the KEGG graph extraction (in SIF format). The output data consists in a Cytoscape session to explore

the graph and the computational prediction results along with dynamic plots of the results (volcano plots, precision

and stability studies, in HTML format).

Additional file 3 — Additional information to generate differentially expressed genes from ICGC database

This archive contains a SH script to filter dataset and a R script for data clustering and differential analysis

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2019. ; https://doi.org/10.1101/605519doi: bioRxiv preprint 

https://doi.org/10.1101/605519

	Abstract
	Background
	Results
	Overview of the pipeline
	Integration of Gene Expression in Signaling and Regulatory Network
	Computational Predictions Validation
	Impact of data incompleteness on computational predictions
	Precision Rate
	Stability Study
	Insights of the Stability Results

	Biological Validation of the Computational Results
	Activation of NFkB signaling in aggressive HCC


	Discussion
	Conclusion
	Methods
	Identification of gene differentially expressed between low and high aggressive HCC
	Building a signed interaction graph from the KEGG Pathway database
	Signed interaction graph built from KEGG's regulatory knowledge
	Extracting up-stream signaling pathways

	Sign consistency - Iggy
	Modeling our case-study using sign-consistency: inputs and outputs of Iggy

	Computational Validation of the results
	Recovery rate of the sub-predictions
	Stability of the sub-predictions



