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ABSTRACT 33 
 34 
The disruption of protein folding homeostasis in the endoplasmic reticulum (ER) results in an 35 
accumulation of toxic misfolded proteins and activates a network of signaling events collectively known 36 
as the unfolded protein response (UPR). While UPR activation upon ER stress is well characterized, 37 
how other signaling pathways integrate into the ER proteostasis network is unclear. Here, we sought to 38 
investigate how the target of rapamycin complex 1 (TORC1) signaling cascade acts in parallel with the 39 
UPR to regulate ER stress sensitivity. Using S. cerevisiae, we found that TORC1 signaling is 40 
attenuated during ER stress and constitutive activation of TORC1 increases sensitivity to ER stressors 41 
such as tunicamycin and inositol deprivation. This phenotype is independent of the UPR. Transcriptome 42 
analysis revealed that TORC1 hyperactivation results in cell wall remodelling. Conversely, hyperactive 43 
TORC1 sensitizes cells to cell wall stressors, including the antifungal caspofungin.  Elucidating the 44 
crosstalk between the UPR, cell wall integrity, and TORC1 signaling may uncover new paradigms 45 
through which the response to protein misfolding is regulated, and thus have crucial implications for the 46 
development of novel therapeutics against pathogenic fungal infections. 47 
 48 
 49 
IMPORTANCE 50 
 51 
The prevalence of pathogenic fungal infections, coupled with the emergence of new fungal pathogens, 52 
has brought these diseases to the forefront of global health problems. While antifungal treatments have 53 
advanced over the last decade, patient outcomes have not substantially improved. These shortcomings 54 
are largely attributed to the evolutionary similarity between fungi and humans, which limits the scope of 55 
drug development. As such, there is a pressing need to understand the unique cellular mechanisms 56 
that govern fungal viability. Given that Saccharomyces cerevisiae is evolutionarily related to a number 57 
of pathogenic fungi, and in particular to the Candida species, most genes from S. cerevisiae are highly 58 
conserved in pathogenic fungal strains. Here we show that hyperactivation of TORC1 signaling 59 
sensitizes S. cerevisiae cells to both endoplasmic reticulum stress and cell wall stressors by 60 
compromising cell wall integrity. Therefore, targeting TORC1 signaling and endoplasmic reticulum 61 
stress pathways may be useful in developing novel targets for antifungal drugs. 62 
 63 
 64 
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INTRODUCTION 66 
 67 
The ability of cells to respond to detrimental stresses, such as an aberrant accumulation of toxic 68 
misfolded proteins, dictates cell fate under both normal and pathological conditions. Loss of secretory 69 
protein homeostasis due to pharmacological, genetic, or environmental perturbations activates a 70 
plethora of adaptive responses to help cells overcome the stress (1, 2).  In yeast, the ER resident 71 
protein Ire1 detects changes in the ER misfolded protein and activates a transcriptional response 72 
termed the unfolded protein response (UPR; (3–7). Upon induction of ER stress, the ER chaperone, 73 
Kar2, dissociates from the luminal domain of Ire1, allowing it to oligomerize, trans-autophosphorylate, 74 
and subsequently activate its cytosolic RNase activity (4, 5, 8–10). Ire1 then splices HAC1 mRNA to 75 
generate a functional variant of the transcript, which upon translation functions as a transcription factor 76 
to upregulate genes involved in ER quality control machinery and ribosome biogenesis (5, 8). Cellular 77 
adaptation to ER stress is not only dependent on the amplitude of the UPR signal, but also on the 78 
selective expression of UPR target genes capable of overcoming a particular stress condition (11). 79 
Interestingly, Pincus et al. (2014) show that S. cerevisiae amplify the UPR with time delayed Ras/PKA 80 
signaling, indicating that the response to ER stress is not limited to the UPR (12). Moreover, induction 81 
of ER stress activates transcription of genes associated with other types of stress responses (2).  82 
Therefore, elucidating how the UPR integrates with other signaling pathways under conditions of ER 83 
stress is essential to understand how proteostasis is mediated in the cell. 84 
 85 
Given that protein folding in the ER is a highly energetically demanding process, low nutrient status is a 86 
potent trigger of the UPR (13). Therefore, the interconnection between metabolic regulation and the 87 
UPR is a crucial area of study, one that has thus far been inadequately addressed. Accumulating 88 
evidence suggests that the cellular metabolism mediating AMPK signaling cascade and its subsequent 89 
regulation of crucial proteins acetyl-CoA carboxylase and TOR, may cooperate with the UPR to 90 
mediate cell viability under conditions of ER stress (13–15); however, the mechanisms behind this 91 
crosstalk remain to be elucidated. In yeast, TORC1 inhibition with rapamycin protects yeast cells from 92 
ER stress-induced vacuolar fragmentation and promotes antifungal synergism (16). In addition, 93 
pharmalogical induction of ER stress triggers autophagy, a process negatively regulated by TORC1 94 
(17). It therefore appears that TOR signaling is an important determinant of the yeast ER stress 95 
response.  96 
 97 
In S. cerevisiae, TOR kinases are evolutionarily conserved serine/threonine kinases that function at the 98 
core of signaling networks involved in cell growth, metabolism, and nutrient and hormone sensing (18, 99 
19). These TOR kinases are the central component of two distinct complexes: TOR complex 1 100 
(TORC1) and TOR complex 2 (TORC2), of which only TORC1 is rapamycin sensitive (20). In particular, 101 
the TORC1 signaling network mediates anabolism and catabolism by coordinating cellular and 102 
metabolic processes such as transcription, protein translation, ribosome biogenesis, and cellular 103 
architecture (20–23). In addition to mediating anabolic processes, TORC1 promotes cell growth by 104 
inhibiting a number of stress response pathways (21, 24, 25). Nevertheless, the manner in which the 105 
secretory and TORC1 signaling pathway act in parallel, under conditions of ER stress, remains to be 106 
elucidated.  107 
 108 
To study the effect of TORC1 signaling on protein folding homeostasis, we employed a hyperactive 109 
variant of the TOR1 kinase (TOR1L2134M) and assessed yeast sensitivity to ER stress. We elucidate a 110 
novel interplay between proteostasis and TORC1 signaling and show that attenuation of TORC1 111 
signaling is required for adaptation to ER stress. On the other hand, constitutive activation of TORC1 112 
confers increased sensitivity to ER stressors, including the antifungal caspofungin, by compromising 113 
cell wall architecture. Our study, therefore, expands the role of ER homeostasis beyond the UPR and 114 
defines how TORC1 signaling contributes to the ER stress response.  115 
 116 
 117 
 118 
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RESULTS AND DISCUSSION 120 
 121 
Hyperactive TOR1L2134M sensitizes cells to ER stress.  122 
Previous studies show that the TOR pathway links nutrient status to cell growth and ribosome 123 
biogenesis, under conditions of protein misfolding stress (26–28). However, it remains unclear to what 124 
extent modulation of TORC1 signaling is required for adaptation to ER stress. Thus, we sought to 125 
investigate the effects of TORC1 signaling on the sensitivity to ER stress. 126 
  127 
The phosphorylation of the ribosomal protein, Rps6, is regulated in a TORC1-dependent manner and 128 
serves as a valid readout for TORC1 activity in vivo (29, 30). Previous reports indicate that under 129 
conditions of oxidative- and proteotoxic stress, RPS6 phosphorylation is dramatically reduced (31, 32). 130 
Therefore, we sought to investigate whether ER stress reduces Rps6 phosphorylation in cells with 131 
hyperactive TORC1 signaling (Fig. 1A). As such, cells expressing either WT TOR1 or hyperactive 132 
TOR1L2134M were treated with the canonical ER stress inducer, tunicamycin (Tm; Fig. 1B). Tm is a 133 
potent inducer of the UPR as it inhibits N-glycosylation of proteins, prevents proper protein folding, and 134 
thereby causes an accumulation of misfolded proteins in the ER (33). While the addition of Tm (2.5 135 
ug/mL) significantly decreased Rps6 phosphorylation in cells expressing WT TOR1, there was no 136 
significant difference in cells expressing hyperactive TOR1L2134M (Fig. 1B-C). Rapamycin, an inhibitor of 137 
TORC1, was used as a positive control, for Sch9 downregulation. Combined with previous studies 138 
showing that phosphorylation of Sch9, another TORC1 effector, is decreased during Tm treatment (34), 139 
our results suggest that TORC1 deactivation plays an important role in ER stress tolerance.  As such, 140 
we then sought to determine how impacting proper TORC1 signaling affects the cell’s response to ER 141 
stressors. 142 
 143 
First, we assessed cell growth in the presence of both Tm and the TORC1 inhibitor, rapamycin (Fig. 144 
1D). We found that rapamycin treatment exacerbates the growth defect caused by Tm-induced ER 145 
stress (Fig. 1D). Similarly, cells expressing a rapamycin-resistant hyperactive TOR1L2134M (24) 146 
displayed an increased growth defect upon Tm stress (Fig. 1D). To investigate the effects of 147 
hyperactive TOR1 on a more physiologically relevant ER stressor, cells were exposed to conditions of 148 
inositol withdrawal. While it is unclear how exactly inositol deprivation triggers UPR activation, some 149 
studies have postulated that it triggers the UPR by either changing the lipid composition of the ER 150 
membrane (35–37) or by impairing membrane trafficking (38, 39). In contrast to cells expressing WT 151 
TOR1, cells expressing the hyperactive allele were inositol auxotrophs (Fig. 1D). Increased ER stress 152 
sensitivity of TOR1L2134M was confirmed using liquid growth assays (Fig. 1E-F). As expected, compared 153 
to cells expressing WT TOR1, cells expressing hyperactive TOR1L2134M had a significant growth defect 154 
following treatment with Tm (Fig. 1E) or inositol withdrawal (Fig. 1F). Interestingly, we previously 155 
showed that TOCR1 hyperactivation using the TOR1L2134M strain also sensitizes yeast to expanded 156 
polyglutamine proteins (40) linked to ER stress and UPR activation in yeast and other models of 157 
Huntington’s disease (41, 42). Taken together, our results indicate that defective TORC1 signaling 158 
increases sensitivity to canonical ER stressors. Both phenotypes can be linked to a defective response 159 
to ER stress. 160 
 161 
Cells expressing hyperactive TOR1L2134M have a functional UPR 162 
Having shown that cells expressing hyperactive TOR1L2134M are more sensitive to ER stress, we next 163 
sought to examine whether this increased sensitivity was due to defects in the ability to activate the 164 
UPR. As previously described, under conditions of ER stress, the ER protein folding sensor, Ire1, 165 
splices HAC1 mRNA to produce an active transcription factor (4).  We therefore assessed the ability of 166 
Ire1 to splice HAC1 mRNA using RT-PCR (Fig. 2A-B). Surprisingly, inositol withdrawal induced HAC1 167 
splicing in both WT TOR1 and hyperactive TOR1L2134M mutants (Fig. 2A, arrow). Additionally, after 1 hr 168 
of treatment with Tm, cells expressing hyperactive TOR1L2134M spliced HAC1 mRNA, and this response 169 
was still evident after 2 hrs of induction, as indicated by a smaller fragment in the agarose gel (Fig. 2B, 170 
arrow). As a whole, these results indicate that increased ER sensitivity of cells expressing hyperactive 171 
TOR1L2134M is not due to impaired functionality of the UPR.  172 
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 173 
Spliced HAC1 mRNA is translated into an active transcription factor, which then translocates to the 174 
nucleus where it binds to unfolded protein response element (UPRE) sequences in gene promoters44. 175 
In response to ER stress, Hac1 alone activates over 400 UPR target genes, including ER chaperones, 176 
genes that mediate membrane expansion, and genes involved in ribosome biogenesis (1, 43, 44). As 177 
such, increased sensitivity to ER stress may be due to an inability to transcriptionally activate the UPR.  178 
We tested this possibility by transforming a UPRE-mcherry fluorescent reporter (45) into cells 179 
expressing TOR1 and TOR1L2134M and assessing UPR activation with fluorescence microscopy (Fig. 180 
2C-D). Surprisingly, there was no significant difference between cells expressing TOR1 and 181 
hyperactive TOR1L2134M in their ability to activate the UPR under conditions of Tm stress and inositol 182 
withdrawal. Additionally, we quantitatively assessed the mRNA levels of the yeast resident chaperone 183 
and canonical UPR target gene, KAR2, using qRT-PCR (Fig. 3A). In line with our previous data, 184 
hyperactive TOR1L2134M was able to increase the expression of KAR2, following treatment with Tm and 185 
inositol withdrawal. Taken together, these results suggest that the increased sensitivity of cells 186 
expressing TOR1L2134M to ER stress is unlikely to be due to impaired UPR activation. 187 
 188 
Additionally, actively dividing yeast allocate up to 85% of their transcriptional activity to ribosome 189 
biogenesis (46); however, under conditions of ER stress, there is a downregulation in the expression of 190 
ribosome genes in order to increase the expression of UPR target genes (47, 48). As such, we 191 
employed qRT-PCR to assess the expression of RPL30, a gene involved in ribosome biogenesis (Fig. 192 
3B). Cells expressing hyperactive TOR1L2134M significantly downregulated expression of RPL30 (Fig. 193 
3B). This is probably due to the fact that multiple pathways regulate ribosome biogenesis. For example, 194 
PKA deactivation during ER stress is also responsible for repressing transcription of ribosomal protein 195 
genes (12). Furthermore, depleting inositol triggers the ER stressor, Ire1, which induces transcription of 196 
the inositol biosynthetic gene, INO1 (8, 49). Therefore, we investigated whether the inositol auxotrophy 197 
of cells expressing TOR1L2134M was due to the inability to synthesize INO1. Cells expressing TOR1 and 198 
TOR1L2134M were treated with inositol withdrawal and qRT-PCR was conducted to assess the 199 
expression of INO1 and RPL30 (Fig. 3C-D). Interestingly, hyperactive TOR1L2134M impaired the 200 
transcription of INO1 (Fig. 3C) but did not impair ribosome biogenesis (Fig. 3D). Taken together, these 201 
results suggest that under conditions of ER stress, cells expressing hyperactive TOR1L2134M are 202 
defective in regulating INO1 transcription. 203 
 204 
Defects in cell wall integrity underlie TOR1L2134M sensitivity to ER stress 205 
Despite having a functional UPR, our studies show that cells expressing hyperactive TOR1L2134M have 206 
increased sensitivity to canonical ER stressors. Therefore, to assess how ER stress alters the 207 
transcriptome in hyperactive TOR1L2134M mutants, we treated two independent cultures of WT TOR1 208 
and hyperactive TOR1L2134M cells with Tm and used microarray analysis to uncover genes that were 209 
differentially expressed in hyperactive TOR1L2134M cells (Fig. 4A-D). Data was analyzed by filtering for 210 
genes that showed a two-fold change in expression with a p value < 0.05.  The transcripts of the genes 211 
that were differentially downregulated (Fig. 4C) and upregulated (Fig. 4D) were categorized based on 212 
their cellular components using the yeast SGD GO term finder. Interestingly, among the genes that 213 
were upregulated, a large majority encoded proteins that localized to the cell periphery and plasma 214 
membrane (Fig. 4D). Of note, genes encoding three cell wall incorporated mannoproteins, FIT1, FIT2, 215 
and FIT3 were upregulated in hyperactive TOR1L2134M cells (Fig. 4D). Fit proteins are involved in iron 216 
uptake (50). Validation with qRT-PCR revealed that hyperactive TOR1L2134M cells had significantly 217 
higher steady-state levels of FIT1, FIT2, and FIT3, compared to cells expressing WT TOR1 (Fig. 4E-G). 218 
Interestingly, FIT genes are also upregulated in cells carrying deletions in genes encoding the 219 
phosphatases PTC1 and PTC6 that displayed compromised TORC1 signaling (51).   Additionally, the 220 
expression of both FIT2 and FIT3 was significantly higher compared to WT TOR1 cells following 221 
treatment with Tm (Fig. 4F-G). Interestingly, increased mannoprotein levels is observed in cells with 222 
compromised cell wall (52). Taken together, these results suggest that hyperactive TOR1L2134M alters 223 
the cell wall composition of yeast cells.  224 
 225 
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ER stress tolerance in yeast depends on the activation of the cell wall integrity pathway, which is, in 226 
part, regulated by TORC1 (53–57). Additionally, cells with defects in cell wall integrity exhibit inositol 227 
auxotrophy (58). As such, we investigated whether the increased sensitivity of cells expressing 228 
hyperactive TOR1L2134M was due to defects in cell wall integrity. A general approach to assess whether 229 
a specific phenotype is due to a cell wall defect is to test the remediating effects of the cell wall 230 
stabilizer sorbitol (59). Interestingly, supplementing with sorbitol rescued the toxicity caused by Tm 231 
stress in hyperactive TOR1L2134M mutants (Fig. 5A), suggesting that these cells have a defective cell 232 
wall. To further examine cell wall composition, cells expressing TOR1 and TOR1L2134M were treated with 233 
the cell wall antagonist, calcofluor white (CFW) and liquid growth assays were assessed (Fig. 5B). In 234 
line with our previous results, cells expressing hyperactive TOR1L2134M were significantly more sensitive 235 
to CFW than cells expressing WT TOR1 (Fig. 5B). Previous literature indicates that due to increased 236 
activation of cell wall stress responses, yeast strains with defects in cell wall integrity have a greater 237 
deposition of chitin in their cell wall and become more sensitive to the CFW (60). Therefore, cells 238 
expressing TOR1 and TOR1L2134M were stained with CFW and chitin staining was analyzed using 239 
fluorescence microscopy and flow cytometry (Fig. 5C). Compared to WT TOR1 cells, cells expressing 240 
hyperactive TOR1L2134M appeared more clustered and displayed significantly more chitin content (Fig. 241 
5C). Taken together, our data suggests that the increased sensitivity of hyperactive TOR1L2134M mutants 242 
can be traced back to defects in cell wall integrity.  243 
 244 
Consistent with a defect in cell wall biogenesis, loss of function of any kinase downstream of the 245 
canonical MAPK cell wall integrity pathway (CWI) results in growth defects at elevated temperatures 246 
(61–64).  Therefore, we investigated whether the increased sensitivity of hyperactive TOR1L2134M to ER 247 
stress could be attributed to defects in the canonical CWI pathway. Surprisingly, compared to WT 248 
TOR1 cells, cells expressing hyperactive TOR1L2134M showed no growth defect at elevated 249 
temperatures (Fig. 5D).  To further investigate whether the CWI pathway was impaired, we assessed 250 
the effects of constitutive activation of the CWI pathway by transforming a hyperactive BCK1-20 allele 251 
into WT TOR1 and hyperactive TOR1L2134M cells (Fig. 5E). Interestingly, BCK1-20 overexpression 252 
equally rescued Tm toxicity in both WT TOR1 and hyperactive TOR1L2134M cells (Fig. 5E), with 253 
TOR1L2134M cells still displaying increased sensitivity compared to wild-type. These results indicate that 254 
other regulators of the cell wall composition downstream of Bck1 may be defective in the mutant cells.   255 
 256 
Hyperactive TOR1L2134M cells have defects in glucan synthase expression and are more sensitive 257 
to caspofungin 258 
Within the host organism, pathogenic fungi face numerous environmental stressors such as low nutrient 259 
availability and changes in pH and temperature (65, 66). As such, the fungal cell wall acts as the first 260 
line of defense, providing a rigid cellular boundary to withstand internal turgor pressure and 261 
extracellular stresses (67). Proper cell wall architecture requires three major components: β-1-3-glucan, 262 
chitin, and mannoproteins– all of which come together to form a large macromolecular complex (67, 263 
68). Our results indicate that cells expressing hyperactive TOR1L2134M increase expression of 264 
mannoprotein genes as well as chitin aggregation, both of which are phenotypes associated with 265 
impaired  β-1-3-glucan synthesis (69–71). To test this possibility, we used qRT-PCR to assess the 266 
expression of the β-1-3-glucan synthase genes, FKS2 and FKS1 (Fig. 6A-B). Interestingly, expression 267 
of both FKS2 (Fig. 6A) and FKS1 (Fig. 6B) was significantly decreased in hyperactive TOR1L2134M cells, 268 
following treatment with Tm. Given that Ca2+/ calcineurin and CWI signaling converge to mediate 269 
FKS1/2 expression (70, 72), we differentially assessed the activity of these pathways. There was no 270 
evidence that the Ca2+/ calcineurin pathway was impaired in presence of Tm-induced ER stress 271 
(Supplementary Fig. 1). Additionally, we examined the activation of Rlm1 – another transcription factor 272 
regulating cell wall integrity– by assessing the expression of its downstream target, PRM5 (Fig. 6C). 273 
We found that activation of the Rlm1 branch was not impaired in hyperactive TOR1L2134M cells (Fig. 6C). 274 
Taken together, our results support the notion that defects in the cell wall architecture of hyperactive 275 
TOR1L2134M mutants may be due to dysregulation of other regulators of the cell wall integrity such as the 276 
SWI4/6-SBF complex. More comprehensive studies will be required to uncover the complex role of 277 
TORC1 in the control of cell wall biogenesis and maintenance.  278 
 279 
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Given that the cell wall is essential for fungal survival and its composition is unique to the fungal 280 
organism, this structure acts as an ideal target for antifungal drugs (73). Notably, echinocandins 281 
represent the first class of antifungal drugs that specifically target the fungal cell wall (74, 75). In 282 
particular, the echinocandin caspofungin acts as a fungicide by noncompetitively inhibiting the β-1-3-283 
glucan synthases, Fks1 and Fks2, thereby blocking cell wall synthesis (76). Since our results indicate 284 
that hyperactive TOR1L2134M impairs FKS2 and FKS1 synthesis, we investigated whether this defect 285 
sensitizes cells to the antifungal, caspofungin (Fig. 6D). Indeed, cells expressing hyperactive 286 
TOR1L2134M exhibited a growth defect as compared to WT TOR1 cells, and this defect was further 287 
exacerbated with increasing concentrations of caspofungin (Fig. 6D). To further elucidate the 288 
connection between ER stress signaling and sensitivity to antifungal drugs, we examined the growth of 289 
ire1Δ cells following treatment with caspofungin (Fig. 6E). Compared to wild-type strains, ire1Δ showed 290 
hypersensitivity to caspofungin, suggesting that a functional ER stress response is required for 291 
resistance to this antifungal drug (Fig. 6E). Similarly, UPR-deficient strains of pathological fungi such as 292 
C. neoformans and A. fumigatus show decreased virulence in animal models (77–80). Interestingly, 293 
deletion of MDS3 in Candida albicans leads to TORC1 hyperactivation resulting in filamentation 294 
defects, supporting a negative role for TORC1 hyperactivation in pathogenicity (81). Conversely, 295 
reduced TORC1 signaling in oma1Δ strains resulted in attenuated TORC1 signaling and increased 296 
virulence in Candida albicans (82). Thus, the amplitude of TORC1 signaling emerges as an important 297 
determinant of the capacity of C. albicans cells to withstand stress such as oxidative stress (83) and 298 
perhaps ER stress, thus impacting its virulence and pathogenicity.  299 
 300 
While initially described as distinct pathways, our research points to a functional interaction between 301 
the UPR, TORC1, and CWI signaling pathways. Here, we use a hyperactive variant of TOR1 to present 302 
a novel mechanism of ER stress regulation by TORC1 signaling. We show that attenuation of TORC1 303 
signaling is required for adaptation to ER stress, and that hyperactive TORC1 signaling results in 304 
compromised cell wall architecture. Taken together, we propose that hyperactivation of TORC1 305 
signaling alters cell wall composition, sensitizing cells to ER stress causing agents such as antifungal 306 
drugs. 307 
 308 
Conclusion 309 
The high prevalence of pathogenic fungal infections, coupled with the emergence of new fungal 310 
pathogens, has rapidly brought these diseases to the forefront of global health problem. Of particular 311 
concern are the millions of people worldwide that will contract life-threating invasive fungal infections 312 
(IFI) – diseases with a mortality rate which exceeds 50%, even with the availability of antifungal 313 
treatments (84, 85). As a whole, the aetiological agents responsible for more than 90% of IFI-related 314 
deaths fall largely within four genera of fungi: Cryptococcus, Candida, Aspergillus, and Pneumocytis 315 
(84, 86). While antifungal treatments have advanced over the last decade, patient outcomes have not 316 
substantially improved (87). These shortcomings are largely attributed to the evolutionary similarity 317 
between fungi and humans, which limits the scope of drug development against fungal specific targets. 318 
As such, there is a pressing need to understand the unique cellular mechanisms that govern fungal 319 
viability. Given that S. cerevisiae is evolutionarily related to a number of pathogenic fungi, and in 320 
particular to the Candida species (88), most genes from S. cerevisiae are highly conserved in 321 
pathogenic fungal strains. Among the shared genomic features includes similar mechanisms for cell 322 
wall homeostasis (89–91) and activation of stress responses (92). Here we show that hyperactivation of 323 
TORC1 signaling sensitizes yeast cells to both ER stress and cell wall stressors by compromising cell 324 
wall integrity. Therefore, targeting TORC1 signaling and ER stress pathways may be useful in 325 
developing novel targets for antifungal drugs. 326 
 327 
MATERIALS AND METHODS 328 
 329 
Yeast strains and methods 330 
The Saccharomyces cerevisiae strains and plasmids used in this study are listed in Tables 2.1 and 2.2, 331 
respectively. All yeast strains are derivatives of BY4742. The TS161 (TOR1) and TS184 (TOR1L2134M) 332 
strains were kind gifts from Dr. Maeda (24). BY4742 or derivatives were thawed from frozen stocks and 333 
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grown on YPD (yeast extract peptone dextrose) or selective SC (synthetic complete) media for 2 days 334 
at 30°C before being transferred to liquid cultures. All experiments were carried out using either SC 335 
media containing 2% wv-1 glucose supplemented with 100x inositol or YPD media. Cultures were grown 336 
at 30°C with constant agitation or on selective agar plates. 337 
 338 

Table 1: Yeast Strains 339 

Strains Genotype Reference 
BY4742 MATα his3Δ1 leu2Δ0 lys2Δ0 

ura3Δ0 
(93, 94) 

TS161  MATα ura3-52 (24) 

TS184  MATα ura3-52 TOR1L2134M (24) 
 BY4742 ire1Δ 
 

MATα his3Δ1 leu2Δ0 lys2Δ0 
ura3Δ0 IRE1::KAN 

Deletion collection 

 340 
Table 2: Plasmids 341 

Plasmids Number Vector Backbone Resistance Reference 
pPM47 (UPR-RFP 
CEN/ARS URA3) 

Addgene 
plasmid # 20132 

pRS316 URA (45) 

pAMS366 (4X 
CDRE-lacZ URA3) 

_ pAMS366 URA (95) 

pRS316 BCK1-20 – pRS316 URA (96) 
pRS416 GPD ATCC 87360 pRS416 URA (97) 
 342 
Spotting and liquid growth assays 343 
Cell growth was assessed by both spot assay and liquid culture as previously described by Duennwald 344 
(2013). Briefly, spotting assays were performed with yeast cells that were cultured overnight in selective 345 
media with 2% glucose as the sole carbon source. Cells were then diluted to equivalent concentrations 346 
of OD600 0.2 and were spotted in 4 sequential five-fold dilutions. Equal spotting was controlled by 347 
simultaneously spotting cells using a multi-channel ultra-high-performance pipette (VWR International). 348 
Cells were grown on selective plates at 30°C for 2 days and imaged using a Geldoc system (Bio-RAD). 349 
For liquid cultures cells were diluted to OD600 0.15 and incubated at 30°C. OD600 was measured every 350 
15 mins using a BioscreenC plate reader (Growth curves USA) for 24 h. Growth curves were generated 351 
and the area under the curve was calculated for biological replicates. Statistical significance was 352 
determined using a two-tailed student T-test and GraphPad (Prism). 353 
 354 
Yeast Transformation 355 
Yeast transformations were performed using the lithium acetate transformation protocol as previously 356 
described(98). Briefly, 1 mL of OD600 = 1, overnight cultures were pelleted at 3000 xg for 1 min. Cells 357 
were aspirated and washed with 1.5 mL sterile 0.1 M LiAc in TE buffer. Cells were then pelleted and 358 
resuspended in 285 µL sterile 50% PEG 4000 in 0.1M LiAc, 2.5 µL plasmid, and 10 µL boiled salmon 359 
sperm DNA, and incubated at 30°C for 45 mins. After that, 43 µL of sterile DMSO was added and cells 360 
were heat shocked for 15 min at 42°C before being plated on amino acid selection plates. 361 
 362 
Drugs 363 
Stock solutions of tunicamycin (5 µg mL-1 in DMSO; Amresco), calcofluor white (30 mg mL-1 in H2O; 364 
Sigma Aldrich), rapamycin (1 mg ml-1 in DMSO; Fisher Bioreagents), sorbitol (3 M in H2O; Fisher 365 
Bioreagents), and fluorescent brightener 28 (Calcofluor white stain; 25µM; Sigma Aldrich) were used at 366 
the indicated concentrations.  367 
 368 
 369 
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Stress Condition Experiments 370 
In all the experiments, yeast cultures were grown to log phase (OD600 ~0.3) before being exposed to 371 
different stress conditions. Endoplasmic reticulum stress was achieved by adding 0.5 µg mL-1, 1.0 µg 372 
mL-1, or 2.5 µg mL-1 tunicamycin (Amresco) or by inositol withdrawal. For inositol depletion experiments, 373 
cells were washed twice in SC media (YNB-Inositol; Sunrise Science) and then resuspended into pre-374 
warmed SC media lacking inositol. Cell wall stress was achieved by adding 5-20 µg mL-1 calcofluor 375 
white. Sorbitol rescue assays were facilitated by adding 1 M sorbitol to the media. 376 
  377 
qRT-PCR 378 
RNA extraction was performed using the MasterPure Yeast RNA Purification Kit (Epicentre). cDNA was 379 
synthesized using the RevertAid H Minus First Strand cDNA Synthesis Kit (Thermoscientific). The 380 
cDNA preparations were used as templates for amplification using SsoAdvancedTm Universal SYBR ® 381 
Green Supermix (Bio-Rad). The primers used are listed in Table 3. The relative expression levels were 382 
calculated using the comparative Ct method with U3 as a reference gene.  383 
 384 
Table 3: Primers 385 

Gene Forward Primer Reverse Primer 
U3 CCCAGAGTGAGAAACCGAAA AGGATGGGTCAAGATCATCG 
KAR2 CCGGTGAAGAAGGTGTCGAA CATGGCTCTTTCACCCTCGT 
RPL30 ATCATTGCCGCTAACACTCC CCGACAGCAGTACCCAATTC 
INO1 TCGACGTACAAGGACAACGA GGCCACTAAAGTGGAGCCAT 
HAC1 ACGACGCTTTTGTTGCTTCT TCTTCGGTTGAAGTAGCACAC 
PRM5 GACATAAGGAAACCCGCAAA CCAGCATGTGCTCGAGATAA 
FKS2 CTGAGCGCCGTATTTCATTT CGGGTGTAATTGCTTCAGGT 
FKS1 TTTGGTTCCAATTGGGTGTT CCGCAAACACTTCGAACATA 
FIT1 GTGAACGTGCTCCTGTCTCA GTTCACCCTCACCAGTCCAT 
FIT2 GACACCGCTGACCCTATCAT GATGATTCGACGGCTTGAGT 
FIT3 TATCACTGCCACCAAGAACG AATTCAGCGGTGCTAGAGGA 
 386 
Fluorescence Microscopy 387 
TOR1 and TOR1L2134M cells expressing a UPR-mcherry fluorescent reporter were grown to mid-log 388 
phase before being treated with 2.5 µg mL-1 tunicamycin (Amresco) or inositol withdrawal for 3 h. Cells 389 
were diluted 10X, transferred to a 96 well plate, and imaged at room temperature.  Fluorescence 390 
microscopy was performed using the Cytation 5 Cell Imaging Multi-Mode Reader (BioTek); the 20X 391 
objective lens and Texas Red Filter cube (586  647-1  nm) were used. Images were analyzed using 392 
ImageJ software (https://imagej.nih.gov/ij/). Violin plots presented in Figure 2D were generated using 393 
the PlotsOfData software (99). 394 
 395 
HAC1 Splicing Assay 396 
Cells were cultured to mid-log phase before being treated with either 1.0 µg/mL tunicamycin (Amresco) 397 
or inositol withdrawal for 2 h. RNA extraction was performed using the MasterPure Yeast RNA 398 
Purification Kit (Epicentre). cDNA was synthesized from the extracted RNA using the RevertAid H 399 
Minus First Strand cDNA Synthesis Kit (Thermoscientific). The cDNA preparations were then used as 400 
templates for RT-PCR with HAC1 primers (listed in Table 4). The resulting reaction product was 401 
separated by electrophoresis on an agarose gel and bands were visualized using a Geldoc system 402 
(Bio-Rad).  403 
 404 
β-galactosidase Assay 405 
TOR1 and TOR1L2134M  yeast strains transformed with plasmids carrying the CDRE-LacZ reporter were 406 
assayed as previously described (100). Briefly, cells were grown to log phase in selective SC media, 407 
harvested by centrifugation, then cultured in SC media containing the indicated concentrations of 408 
stressors or CaCl2. After incubation at 30°C for 2 h, cells were harvested by centrifugation and 409 
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resuspended in lacZ buffer. To measure β-galactosidase activity, 50 µL cell lysate was mixed with 950 410 
µL lacZ buffer containing 2.7 µL β-mercaptoethanol, 1 drop 0.1% SDS, 2 drops CHCl3 and incubated at 411 
30°C for 15 min. The reaction was started by adding 100 µL ONPG (4 mg mL-1) and incubated at 30°C 412 
till the colour changed to yellow. The reaction was stopped by adding 300 µL of 1 M Na2CO3. β-413 
galactosidase activity was determined at 420 nm absorbance using a plate reader, normalizing data to 414 
cell density. 415 
 416 
Protein Extraction and Western Blot 417 
Cells were lysed using alkaline lysis with 0.1 M NaOH (101) and proteins were extracted into 4x 418 
Laemmli sample buffer containing 100 mM DTT. Protein samples were separated using SDS-PAGE 419 
(BioRad Mini-PROTEAN TGX Pre-Cast gels, 4-15%) and transferred to nitrocellulose membranes 420 
using the BioRad Trans-Blot® TurboTM RTA Transfer Kit. Membranes were blocked with 5%  fat free 421 
milk for 30 mins, before probing with P-S6 Ribosomal Protein S235 236-1 Rabbit Ab (Cell Signaling 422 
Technology) or anti-PGK1 (Invitrogen) overnight at 4°C. Membranes were then incubated with the 423 
Alexa Fluor 488 goat anti-rabbit for 1 hr. Membranes were imaged using a BioRad infrared imager 424 
(BioRad). 425 
 426 
Calcofluor White Stain Microscopy and Flow Cytometry 427 
TOR1 and TOR1L2134M cells were grown in triplicate to mid-log phase in YPD media, before being 428 
treated with Fluorescent Brightener 28 (Sigma-Adlrich) to a final concentration of 25 µM. Cells were 429 
grown for 20 min at 30°C with continuous shaking before they were pelleted and washed in SC media. 430 
Cells were diluted 10x in growth media and plated in Lab-Tek (Thermo Inc.) imaging chambers and 431 
processed for fluorescence microscopy. Images were acquired using a Zeiss AxioVert A1 wide filed 432 
fluorescence microscopy equipped with a 63X NA 1.4 Plan Apopchromat objective, 359 nm excitation 433 
461 nm-1 emission (DAPI) long pass filter and an AxioCam ICm1 R1 CCD camera (Carl Zeiss inc.). 434 
Images were analyzed using ImageJ software. For flow cytometric analysis, cells were cultured in 435 
appropriate media and processed for flow cytometry using a BD Bioscience FACS Celesta flow 436 
cytometer equipped with a 405 nm Violet laser. Data was analyzed using the BD FACS Diva Software. 437 
All conditions were performed in triplicate, 20 000 cells were analyzed, and mean fluorescence 438 
intensities were calculated. No gates were applied.  439 
 440 
Microarray Analysis 441 
TOR1 and TOR1L2134M yeast cultures were grown to log phase (OD600 ~0.3) before being treated with 442 
tunicamycin (2.5 µg/mL). RNA was extracted from two independent cultures (n=2) and quality was 443 
assessed with Bioanalyzer as previously described (102). Microarray analysis was conducted with the 444 
GeneChip® Yeast Genome 2.0 Array (Affymetrix, Santa Clara, California, USA). Briefly, biotinylated 445 
complimentary RNA (cRNA) was prepared from 100 ng of total RNA as per the GeneChip 3’ IVT PLUS 446 
Reagent Kit manual (ThermoFisher Scientific, Waltham, MA). 447 
(https://www.thermofisher.com/order/catalog/product/902416). Data was analyzed using the 448 
Transcriptome Analysis Console (TAC) software (Affymetrix) by filtering for genes that showed a two-449 
fold change in expression with a p-value of 0.05 using sacCer3 as a reference genome. Gene lists were 450 
created using the gene ontology term finder on the Saccharomyces genome database 451 
(https://www.yeastgenome.org/). All microarray data were submitted to the GEO database as series 452 
GSE129200.  453 
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FIGURE LEGENDS 468 
 469 
Figure 1: Cells expressing hyperactive TOR1L2134M are more sensitive to ER stress.  470 
(A) Representative schematic of the downstream targets of TORC1 kinase activity. (B) Western blot 471 
analysis of Rps6 phosphorylation following treatment with tunicamycin (Tm; 2.5 µg/mL) or rapamycin 472 
(Rap; 200 ng/mL). Pgk1 was used as a loading control. (C) Quantification of (B). Rps6 phosphorylation 473 
is not significantly attenuated in hyperactive TOR1L2134M cells following treatment with tunicamycin (n=4; 474 
± SD). (D) Cell growth of WT TOR1 and TOR1L2134M cells was assessed by serial dilutions on YPD 475 
plates supplemented with rapamycin (Rap; 10 ng/mL), tunicamycin (Tm; 1.0 µg/mL), both Rap and Tm, 476 
or SC plates supplemented without inositol (+/- Inositol). Cells expressing hyperactive TOR1L2134M were 477 
more resistant to rapamycin treatment and more sensitive to tunicamycin stress and inositol withdrawal. 478 
(E-F) Liquid growth assays of yeast cells expressing WT TOR1 and TOR1L2134M were used to further 479 
assess sensitivity to tunicamycin stress (Tm; 1.0 µg/mL) and inositol withdrawal (-Ino). Data is 480 
quantified as area under the curve (AUC; *p < 0.01; mean ± SD; n=3). All conditions were run 481 
simultaneously. Control conditions are reproduced on both panels for clarity.  482 
  483 
Figure 2: The UPR is not impaired in yeast cells expressing hyperactive TOR1L2134M. 484 
(A) Treatment with ER stressors induces HAC1 mRNA splicing. WT TOR1 and hyperactive TOR1L2134M 485 
mutant were either untreated (Ctrl.), subjected to inositol withdrawal (-Ino) for 2hrs, or (B) treated with 486 
tunicamycin (Tm; 1.0 µg/mL) for up to 2 hrs. RT-PCR was conducted using HAC1 primers. Arrows 487 
indicate Ire1 mediated HAC1 splicing. (C) Representative fluorescence microscopy images of WT 488 
TOR1 and TOR1L2134M cells expressing UPR-mcherry fluorescent reporters, following treatment with 489 
tunicamycin (Tm; 1.0 µg/mL) and inositol withdrawal (-Ino) for 2 hours. (D) Quantification of (C). 490 
 491 
Figure 3: Hyperactive TOR1L2134M can transcriptionally activate the UPR, but has impaired 492 
inositol synthesis. 493 
(A) Hyperactive TOR1L2134M can upregulate expression of the ER chaperone KAR2 following treatment 494 
with tunicamycin (Tm; 2.5 µg/mL) or inositol withdrawal (-Ino) (n =3; ± SD). (B) Following treatment with 495 
tunicamycin stress (Tm; 2.5 µg/mL), hyperactive TOR1L2134M can downregulate expression of RPL30 496 
(n=3; ± SD). (C) Under conditions of inositol withdrawal (-Ino), cells expressing hyperactive TOR1L2134M 497 
have impaired synthesis of INO1. Cells expressing WT TOR1 and hyperactive TOR1L2134M were treated 498 
with inositol withdrawal for 2 hrs. qRT-PCR was conducted using INO1 primers (n= 3; ± SD). (D) 499 
Inositol withdrawal does not induce downregulation of RPL30. Cells expressing WT TOR1 and 500 
hyperactive TOR1L2134M were subjected to inositol withdrawal for 2 hrs  (n=3; ± SD). 501 
 502 
Figure 4: ER stress induces a change in the cell wall composition of cells expressing 503 
hyperactive TOR1L2134M.  504 
(A) Microarray analysis of genes differentially expressed in yeast cells expressing WT TOR1 or 505 
hyperactive TOR1L2134M, following treatment with tunicamycin (Tm; 2.5 µg/mL). Arrows indicate cell wall 506 
genes that are differentially expressed in cells expressing hyperactive TOR1L2134M. (B) Microarray 507 
analysis of genes differentially expressed in TOR1 and TOR1L2134M control cells compared to TOR1 and 508 
TOR1L2134M cells treated with tunicamycin (Tm; 2.5 µg/mL). (C)Genes downregulated two-fold in 509 
hyperactive TOR1L2134M cells in response to tunicamycin stress (Tm; 2.5 µg/mL). (D) Genes upregulated 510 
two-fold in hyperactive TOR1L2134M cells in response to tunicamycin stress. Gene ontology lists were 511 
generated with the gene ontology term finder on the Saccharomyces genome database. Numerous cell 512 
wall genes are differentially expressed in hyperactive TOR1L2134M cells compared to cells expressing 513 
WT TOR1. (E) qRT-PCR was used to validate the microarray analysis and assess expression of 514 
mannoprotein genes FIT1, (F) FIT2, and (G) FIT3 following treatment with tunicamycin (Tm; 2.5 µg/mL; 515 
n=3; ± SD). 516 
 517 
 518 
 519 
 520 
 521 
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Figure 5: Increased sensitivity of hyperactive TOR1L2134M, in response to ER stress, is due to 522 
defects in cell wall integrity. (A) Cell growth of WT TOR1 and TOR1L2134M cells was assessed by 523 
serial dilutions on YPD plates supplemented with various concentrations of tunicamycin (Tm), sorbitol 524 
(1 M), or both tunicamycin and sorbitol. Sorbitol rescues tunicamycin toxicity caused by hyperactive 525 
TOR1L2134M. (B) Liquid growth assay of TOR1 and TOR1L2134M cells following treatment with calcofluor 526 
white (CFW; 20 µg/mL). Data was quantified by measuring area under the curve (AUC; n=3; *p < 0.001; 527 
mean ± SD). C) Representative fluorescence microscopy images of cells expressing WT TOR1 and 528 
hyperactive TOR1L2134M, following treatment with calcofluor white (CFW; 20 µg/mL). Cells expressing 529 
hyperactive TOR1L2134M are aggregated and have increased fluorescence, corresponding to an increase 530 
in chitin synthesis (Left panel). Flow cytometric analysis of cells treated with calcofluor white (CFW; 2.5 531 
µg/mL). Cells expressing hyperactive TOR1L2134M have significantly higher mean fluorescence intensity 532 
compared to WT TOR cells (right panel; n = 3; mean ± SD). (D) Growth of WT TOR1 and TOR1L2134M 533 
cells in response to elevated temperature was assessed by serial dilution on YPD plates. There was no 534 
growth defect caused by hyperactive TOR1L2134M. (E) Cell growth of WT TOR1 and TOR1L2134M 535 
transformed with either an empty vector or BCK1-20 was assessed by serial dilution on SC-ura plates 536 
supplemented with various concentrations of tunicamycin (Tm). 537 
 538 
Figure 6: Cell wall perturbations in hyperactive TOR1L2134M cells may be due to defects in glucan 539 
synthesis. (A) Cells expressing WT TOR1 or hyperactive TOR1L2134M were treated with tunicamycin 540 
(Tm; 2.5 µg/mL) for 2 hrs. Tm induced a significant decrease in the expression of glucan synthase 541 
genes FKS2 and (B) FKS1 as measured by qRT-PCR (n=3; ± SD). (C) qRT-PCR was also used to 542 
assess the expression of the Rlm1 target, PRM5 (n=3; ± SD). (D) Cell growth of WT TOR1 and 543 
TOR1L2134M cells was assessed by serial dilutions on YPD plates supplemented with various 544 
concentrations of caspofungin. Compared to WT TOR1, hyperactive TOR1L2134M cells displayed 545 
reduced growth. (E) Growth of wild-type cells and Ire1Δ cells was assessed by serial dilutions on YPD 546 
plates supplemented with various concentrations of caspofungin.  547 
 548 
Supplemental Figure 1: The Ca2+/calcineurin pathway is not impaired in hyperactive TOR1L2134M 549 
mutants. (A) β-galactosidase activity (measured in LacZ units) was used to assess expression of 550 
calcineurin dependent response element (CDRE) following treatment with CaCl2 (1 M), tunicamycin 551 
(Tm; 1.0 µg/mL), or inositol withdrawal (-ino; n=6). (B-E) Growth of cells expressing WT TOR1 or 552 
hyperactive TOR1L2134M was assessed by liquid growth assay following treatment with 0.05 M CaCl2, 553 
0.08 M CaCl2, 0.1 M CaCl2, or 0.2 M CaCl2. The area under the curve (AUC) was quantified for each 554 
replicate (n=3). All conditions were run simultaneously. Control conditions are reproduced on each 555 
panels for clarity.  556 
 557 
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