
Parsers, Data Structures and Algorithms for
Macromolecular Analysis Toolkit (MAT): Design and

Implementation

Gazal Kalyana, Vivek Jungharea, S John Sb, Anupam Chattopadhyayc,∗,
Pralay Mitrad,∗, Saugata Hazraa,e,∗

aDepartment of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667,
India

b Department of Computer Science and Engineering, Indian Institute of Technology
Roorkee, Roorkee, 247667, India

cSchool of Computer Engineering, Nanyang Technological University, 639798, Singapore
d Department of Computer Science and Engineering, Indian Institute of Technology

Kharagpur , Kharagpur, 721302, India
e Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India

Abstract

The structural information of biological macromolecules are stored in .pdb, .mm-
cif and lately mmtf files and thus it requires accurate and efficient biological tools
for various utilities. Here, we describe Macromolecular Analysis Toolkit (MAT)
that parses .pdb, .mmcif and .mmtf files; and builds data structures from the in-
put. This original program is written in C++ programming language to ensure
efficiency and consistency to organize structural information in an integral way.
The novelty of the program lies in the addition of new structure-based biological
algorithms and applications. This package also stands out from other similar
libraries by being 1) faster and 2) accurate. We also provide detailed compar-
ison of available parsers on the whole PDB database. The parser of MAT is
designed in such a way that it allows quick extraction and organized loading of
the core data structure. The same data structure is extended to accommodate
information from the .mmcif and .mmtf file parsers. Tokenization of the data
allows the extraction of information from disordered text, making it compatible
for accurate identification of the entities present in the .pdb file. Additionally,
we add a new approach of performance optimization by creating a few derived
data structures, namely kD-Tree, Octree and graphs, for certain applications
that need spatial coordinate calculations. MAT provides advanced data struc-
ture which is time efficient and is designed to avail reusability and consistency in

∗Corresponding Authors at: Indian Institute of Technology Roorkee, Roorkee (Saugata
Hazra) and Nanyang Technological University, Singapore (Anupam Chattopadhyay)

Email addresses: gazal@bt.iitr.ac.in (Gazal Kalyan), vivek.junghare@gmail.com
(Vivek Junghare), s@cs.iitr.ac.in (S John S), anupam@ntu.edu.sg (Anupam
Chattopadhyay), pralay@cse.iitkgp.ernet.in (Pralay Mitra), saugata.iitk@gmail.com
(Saugata Hazra)

Preprint submitted to Computational and Structural Biotechnology Journal April 13, 2019

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 13, 2019. ; https://doi.org/10.1101/605907doi: bioRxiv preprint

https://doi.org/10.1101/605907

a systematic framework. MAT parser can be accessed online through bitbucket
at https://bitbucket.org/gazalk/pdb_parser/.

Keywords: , MAT, PDB, Data structure, kD-Tree, Octree

1. Introduction

In the past decades, there has been a boom in the rate of growth of exper-
imentally determined macromolecular structures. The three dimensional (3D)
coordinates along with biological, molecular and experimental information of
those experimentally solved biological macromolecules (protein, DNA, RNA)
are stored in an online database known as Protein Data Bank (PDB) [1]. Each
.pdb file is broadly divided into two parts: descriptive content and coordinate
information. While coordinate information is well structured and easy to infer,
most of the descriptive content is hidden as a running text. Looking into details,
we find that every .pdb file of PDB is presented as an ASCII text file where
each line consists of 80 columns and is terminated by an end-of-line indicator.
In the header section, the information about protein, experimental details and
additional structural attributes are mentioned. Every record starts with specific
predefined keywords, however the information contained in them are predomi-
nantly textual in nature. Some records like ATOM, HETATM, MODEL, etc.
are structured and follow strict rules facilitating easy parsing of its data. The
file format itself is very primitive and with lot of limitations for automatic in-
ferences. An attempt has been made to overcome some of the limitations in the
.pdb file format by introducing the .mmcif format which is again very bulky and
exhaustive. A recent advance has been made to introduce a binary file format as
.mmtf [2] along with its parsers, which has also been integrated in this package.
Our focus is to parse and load the .pdb, .mmcif or .mmtf file in our abstract
data structure such that automatic information retrieval becomes effective and
efficient.
A number of programs were developed as PDB Parsers and PDB based tools.
Some early parsers are outdated due to either poor design or lack of mainte-
nance such as BioC++[3], dsr-pdb[4] and PDBlib [5]. Python based programs
like Biopython PDB Parser [6] does not provide the speed as needed for the
present set of problems due to dynamic types and the use of an interpreter.
With C++, we have much control on the code optimization to achieve high
performance and speed. Many PDB parsers provide only basic data types and
representations for a protein while others focus on specific applications. Victor
C++ library [7] provides large-scale methods for structure manipulation which
makes the code and data structure extra-detailed and heavy. ESBTL [8] is a
library which allows handling of PDB data and also provides computational
geometry methods. BALL [9] is another extensive library for algorithms. Bio-
pLib is a C programming library for loading and manipulating macromolecular
structures [10]. Finally, most of the parsers focus on the coordinate data explic-
itly and none describe handling of the header information especially REMARK

2

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 13, 2019. ; https://doi.org/10.1101/605907doi: bioRxiv preprint

https://bitbucket.org/gazalk/pdb_parser/
https://doi.org/10.1101/605907

section present in the .pdb file. However BiopLib [10] does provide substantial
parsing of the header information which is generally neglected by other parsers.
Haskell based library hPDB

The need of analysing protein structures i.e. their .pdb files is a high-end
requirement of present era for making new drugs, analysing protein interactions,
studying MD simulation intermediates and such other structure based studies.
Now, .pdb files for macromolecular structures especially big ones are already dis-
abled by RCSB and in this context it is very critical to have software platforms
which could also read .mmcif and .mmtf files with good efficiency. Nevertheless,
the existing structural techniques are still heavily based only on the .pdb file
format.

2. Materials and Methods

2.1. Data set

For testing the features of our program, molecular structures for the test
data set were selected from multiple sources:
1. The experimentally derived macromolecular structural data as available on
RCSB-PDB was downloaded in the format .pdb and .mmCIF.
2. Intermediate MD simulation .pdb files.
3. Computationally modelled protein structures.
4. Macromolecular complexes resulting after molecular docking.

2.2. Tokenization of input file

Despite having format specifications for .pdb files, formatting deviations are
often observed, as the .pdb file format is merely a plain ASCII .txt file. The
lack of rigidity during creation and modification of .pdb files thus allows illegal
token inclusions. This hinders the application of any automated software for
data extraction based upon the guidelines specified for pdb format. Hence,
the first step of our software is the tokenization. The process of tokenization
is where the .pdb file data is broken into so called tokens or fragments. The
lexical patterns in the file are identified using Flex [11] and the rule section
of flex code is used to define the tokens. We utilize start conditions in Flex
where we can conditionally switch between rules to tokenize the sections like
REMARK, ATOM, HETATM, CONNECT, etc. In our program, we have two
modes of tokenization: strict and casual. In casual mode, each record is read
as one line per token and fed to next program for column-wise processing. It is
difficult for computer programs to differentiate the identity of the atom without
proper naming. Using strict mode in the MAT parser we have identified all the
atoms that use non-standard atom names or disallowed characters in the file.
Due to column wise distribution of the attributes in the .pdb file, there may
be lack of delimiters and the values are compelled to merge. Hence, we use
regular expressions instead of any delimiter for each column of the ATOM and
HETATM record. As there are many sections in the .pdb files, we require various
set of grammar rules for tokenization of each section which are elaborated in

3

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 13, 2019. ; https://doi.org/10.1101/605907doi: bioRxiv preprint

https://doi.org/10.1101/605907

the Supplementary Tables S1 and S2.
The parser can be called in the following way, where the variable optarg is the
file name for any of the .pdb/.mmcif/.mmtf file:
File::m get instance()->m parse file(optarg);

When you want to use the PDB ID of the structure and download it through
the program, you can call the following function; here optarg being PDB ID:
File::m get instance()->m download pdb(optarg);

File::m get instance()->m parse file();

2.3. Syntax Tree formation

The individual tokens generated by the program are analysed and used by
Bison (a parser generator) to identify the variables and add them to the internal
data structure. To load data from PDB file in the data structure, we divide the
file into various sections, start conditions from Flex program categorizes the
section of the PDB file. PDB basically contain static representation of atoms in
terms of X, Y and Z coordinates and header information related to that macro-
molecular structure. A set of coordinates specifies the location of a point as
an analogy for atom. However, we need to know the complete description of a
single atom to describe its features that are mentioned in the .pdb file. The com-
plete file is parsed by MAT PDB parser and the information (including atoms
and header information) is stored in our data structure designed specifically for
atoms. In our program, we avail the Qt library (https://www.qt.io/) for its
container classes. The individual tokens generated by the program are analysed
and used by Bison to identify the variables and add them to the internal data
structure. Figure 1 explains the syntax tree formation and how components of
the PDB are read and stored in our program.

2.4. Data structures

2.4.1. Atom bucket

Atom bucket is constructed as an elementary abstract data structure using
QList container. This data structure is simplistic in nature, all the atom(s)/
hetatm(s) are deposited in this primary bucket. The atom bucket class uses
singleton design pattern which has only one instance. It has a global scope of
accessibility. Atom is the smallest representation of protein structure in the
PDB file; all the information and the properties that are associated to them are
given for individual atom. Lastly, all the functions are which are available for a
QList can also be used directly with the Atom bucket. On the whole, the atom
bucket contains information on each of the protein points described in the .pdb
file.

2.4.2. Structural Hierarchy

For each level of structural hierarchy: atom/hetatm, residue and chain; we
have a different bucket data structure which provides ease of accessibility to the
information as they provide iterators for each level. Furthermore, every element
of the level is represented as an object typed with its respective class. Since

4

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 13, 2019. ; https://doi.org/10.1101/605907doi: bioRxiv preprint

https://doi.org/10.1101/605907

Fig 1: Syntax tree. This shows various components of the .pdb file. These are broken and
identified into tokens and the macromolecular structure is maintained in our data structure
for accessibility of atom/hetatm and accompanying information. The .pdb file attributes, info,
remark, matrix, atom, model, fasta, anisou can be accessed using member functions provided.
Some of data which is read but commented out is shown in comment section

every level-element has been treated as a class, their properties, members and
methods are also grouped separately. In doing so, we take in mind that all the
groups at each level points to the same data. Therefore we can access, modify
and use the information in atom-wise, residue-wise, chain-wise fashion. These
designed buckets together make up the core data structure to handle the entire
information of a protein system. Internally data structure looked like:

QList<Atom*> m Atom Bucket;

QList<Residue*> m Residue Bucket;

QList<Chain*> m Chain Bucket;

And these are the iterator types to access these information

Atom iterator

Residue iterator

Chain iterator

5

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 13, 2019. ; https://doi.org/10.1101/605907doi: bioRxiv preprint

https://doi.org/10.1101/605907

2.4.3. Bonded Graph

A graph G(V,E) is defined to store the molecular structures, where V is the
set of atoms and E is the set of covalent bonds among the corresponding atoms.
The covalent bond information is stored as adjacency lists [12]. The interpreta-
tion of a chemical molecular structure is best represented by this data structure.
It features identification of missing atoms in the structure and visualization of
an atom in a structure even with multiple occupancies. For example, we can
create a graph for all atoms in Atom Bucket as follows:

BondedGraph *m Bonds

= new BondedGraph((AtomRoot::m get instance())->m get atom bucket());

2.5. Protein space partitioning

2.5.1. KD-tree

k-dimensional (kD) tree is a binary tree with each node having maximum
two children [13]. In case of protein structure, it is a 3D spatial tree which stores
the 3D atom coordinates of a protein. It is used for searching the atomic nearest
neighbors (NN) with respect to a query atom [14]. NN searches are performed
very often while analyzing the structural aspects of the protein. kD-tree has
been extensively used in related software such as ESBTL, BALL, Victor C++
library, etc.
We have iterated over the atom buckets to divide the protein space and store
in kD tree. The root node represents the whole data space, at each level of the
tree, the data is partitioned into two halves by the median point. This step is
performed recursively for each dimensions X, Y and Z in the order of alternate
turns. The median is selected from the list considering one dimension at a time
by using quickselect algorithm which splits the dimension into two, for instance
when a median is selected from X-axis the space is divided by the YZ plane.
The left subtree would have values of the corresponding dimension greater than
the median and the right subtree would have lesser values. This method cre-
ates a balanced tree which makes the search related to nearest neighbors fast.
Figure 2 shows a simplistic example of a small kD-Tree. A few methods for NN
search include k-nearest-neighbor, orthogonal search, circular search helping in
the variety of biological problems. Algorithm 1 is for spherical search for kD-
Tree radius search in atomic structures. It can be used and called in the steps
mentioned below:

KD Tree* kd tree1 = new KD Tree(true);

Here, the variable query node is the query point of type Atom and range is
the radial range for the neighbour search to be given in Å.

Atom* query node = new Atom(88457, "C", ".", "TYR", "A", 188, ".",

138.719, 33.258, 41.444, 1.00, 13.43, "C");

6

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 13, 2019. ; https://doi.org/10.1101/605907doi: bioRxiv preprint

https://doi.org/10.1101/605907

kd tree1->m set querynode(query node);

QList<KD Node*> KD neighbors = kd tree1->m get sphere nn(query, range);

kd tree1->m print list(KD neighbors);

Fig 2: kD-Tree. The example of constructed kD-tree is shown with example of a 2-dimensional
dataset. Searching for nearest neighbors of a query point(yellow star) is started at the root
node of kD-Tree which is shown in blue. A recursive approach is then followed to check all
the nodes and prune unnecessary sections.

2.5.2. Octree

Octree is a space partitioning tree with each node having exactly eight chil-
dren. The root node contains the whole dataset and represents the orthogonal
cuboid bounding box (voxel) for the data points as represented in Figure 3.
These trees have been popularly used in the dynamic data sets and hence will
be useful to deal with MD simulation data. The advantage of this tree is that
insertion of the new data point does not need the tree rebalancing as each point
finds its positions in this hierarchical spatial tree. For its construction, we first
get the bounding box specifications for the data set i.e. the min and max values
for X, Y and Z defining the enclosure for all the atom points. Then the space
is divided recursively until it reaches the smallest node dimension possible i.e.
voxel, as specified or until it contains single point in the cell. For n points, the
insert function is called n times for insertion of each point in the octree data
structure as explained in the Algorithm 2.

We have implemented spherical search which is mostly used for molecular
structures. The neighbor search is explained in Algorithm 3.

Octree contruction and Nearest-Neighbor searching can be used in following
way. First we are giving an example of calling a function to ignore alternate
locations of same atom:

Rule::m get instance()->m keep highest occ();

Octree* octree1 = new Octree();

7

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 13, 2019. ; https://doi.org/10.1101/605907doi: bioRxiv preprint

https://doi.org/10.1101/605907

Algorithm 1: kD-Tree spherical search

Input: root: root node , query: point , r: radius , axis: splitting dimension
Output: neighborlist: list of all neighboring atoms
1: function spherical search(root, query, r, axis)
2: if root = NULL then
3: return
4: end if
5: if Is inside(root,query,r) ← true then
6: neighborlist← root
7: end if
8: if Is leaf(root) ← true then
9: return

10: end if
11: Let left and right be children of root
12: if left[axis] > query[axis] then
13: spherical search(left, query, r, axis+ 1)
14: if axis distance(root, query, axis) ≤ r then
15: spherical search(right, query, r, axis+ 1)
16: end if
17: end if
18: else
19: if left[axis] < query[axis] then
20: spherical search(right, query, r, axis+ 1)
21: if axis distance(root, query, axis) ≤ r then
22: spherical search(left, query, r, axis+ 1)
23: end if
24: end if
25: return neighborlist
26: end function

8

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 13, 2019. ; https://doi.org/10.1101/605907doi: bioRxiv preprint

https://doi.org/10.1101/605907

Algorithm 2: Octree construction

Input: root: root voxel , a: atom
1: function insert atom(root, a)
2: if Is leaf(root) ← true and count atoms(root) < capacity then
3: root← a
4: return
5: end if
6: if Is leaf(root) ← true and count atoms(root) = capacity then
7: subdivide(root)
8: for all a atoms of root do
9: insert atom(root, a)

10: end for
11: end if
12: for all voxel of root do
13: if contains(voxel, a) ← true then
14: insert atom(voxel, a)
15: end if
16: end for
17: end function

Algorithm 3: Octree spherical search

Input: root: root voxel , query: point , r: radius
Output: neighborlist: list of all neighboring atoms
1: function spherical search(root, query, r)
2: if Is leaf(root) ← true then
3: for all atom ∈ root do
4: if distance(atom,query) < r ← true then
5: neighborlist← root
6: end if
7: end for
8: end if
9: for all voxel of root do . 8 voxels

10: if overlaps(voxel, query, r) ← true then
11: spherical search(voxel, query, r)
12: end if
13: end for
14: return neighborlist
15: end function

9

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 13, 2019. ; https://doi.org/10.1101/605907doi: bioRxiv preprint

https://doi.org/10.1101/605907

Fig 3: Octree nodes. The outer bounding box is set as the root node shown. Each spatial
division splits the volume into its constituent eight separate volumes. 1st division is shown
in and in this level, we see the volume for 6th node (06) is not visible in the 3D cubic display.
Each voxel is also uniquely represented and encoded as shown to identify its location.

Here again, the variable the variable query node is the query point of type
Atom and range is the radial range for the neighbour search to be given in Å.

QList<Atom*> octree neighbors =

octree1->m get radius neighbors(query, double(range));

octree1->m print list(octree neighbors);

3. Results

3.1. Computational efficiency and speed comparison

For evaluating the performance and speed of our parser we have used the
whole PDB database. Some files were incompatible due to bad formatting of the
files (see section 3.2); however with regression testing and improvements in the
code we are able to load all of the .pdb files successfully in our data structure
with maximum accuracy. We also reported files which were non-standard with
the pdb format. We have compared the runtime performance and efficiency of
our software shown in Figure 4 with popular parsers. The benchmarks were
made for MAT parser with programs: Pymol, BioJulia, BioPython, BioPerl,
Victor C++, hPDB and ESBTL. It was observed to be fastest among all other
packages that we tested for. The accuracy is based on the number of error
occurrences while parsing the test data set as well as the ability to detect total
number of atoms in the input file correctly plotted in the graph Figure 5. To
compare the accuracy of count of atoms, the total number of atoms were cal-
culated by counting the number of lines starting with ATOM and HETATM.
The graph shows the number of files where the programs were either not able
to read all the atoms in the file or they were not able to read the whole file.

The algorithms of nearest neighbor search for our data structures were com-
pared and tested for their accuracy and speed using Google Test [15]. It was
found that both the kD-tree and Octree are fairly faster than simple linear

10

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 13, 2019. ; https://doi.org/10.1101/605907doi: bioRxiv preprint

https://doi.org/10.1101/605907

Fig 4: Speed comparison. The chart illustrates the speed of related software showing their
relative performances on a UNIX based 64-bit system with Intel ® CoreTM i7-3770 CPU @
3.40GHz × 8 with 8GB RAM. This test was made on 145787 number of files and the values
were sorted based on ascending time. BioPerl has been skipped to obtain a clean graph. Total
time taken for parsing the whole database is given in the format HH:MM:SS.

Fig 5: Parsing total atoms in a file. This graph shows the number of instances of misread
files. MAT Parser and hPDB were completely accurate and did not show any errors. Although
rest of the parsers encountered misreading of files as shown with BioJulia, ESBTL and Victor
C++ throwing errors on 2, 132, 964 files respectively.

search. The neighbors were exactly accurate in all the test cases. Furthermore,
Figure 6 shows speed comparison of different voxel capacities of Octree and
kD-Tree, the latter being fastest. We found that voxel size of 3 was optimum

11

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 13, 2019. ; https://doi.org/10.1101/605907doi: bioRxiv preprint

https://doi.org/10.1101/605907

and if we start to increase the voxel capacity more than 32, we see a noticeable
difference in the speed. We have used kD-Tree extensively in finding networks
of non-covalent interactions such as salt bridge and hydrogen bonds. It is ad-
vantageous to use this data structure especially where there is a requirement of
frequent neighborhood search queries multiple times, for example, interaction
studies. Secondly, it is stated that kD-Tree can only be used with static data
set. If we consider semi-dynamic or dynamic data sets, it is advantageous to use
Octree. Therefore for molecular dynamics and energy minimization, Octree can
be used. It is so because the updation in this data structure does not involve
altering the whole data set but it only refer to positional changes inside the
local reference frame of the bounding box. The benchmarks are given in the
supplementary material.

0 10 20 30 40 50
Query no.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

T
im

e
 (
m
s)

linear
octree_128

octree_32

octree_4

octree_3

kd_tree

Fig 6: Comparison of kD-Tree and Octree. kD-Tree is most efficient for neighbor searching.
Octree is slightly slower, for dynamic or semi dynamic data sets of macromolecules voxel
capacity of 3 to 32 is best but it could be improvised based on the nature of data set.

3.2. Exception handling

The casual-parse mode in our parser does not check any passing criteria for
handling individual attributes of ATOM/HETATM. However, strict-parse mode
ensures only those attributes which fulfil the PDB format guidelines for naming
and representation of the values. Many faulty .pdb files can be validated using
this method at parsing stage. We were able to detect a few such .pdb files using
our parser, some of them are also reported to the RCSB database administrators.
There are other faults which we have tried to overcome; labeled as PDB format
faults, structural faults and uncorrectable faults.

1. We have attempted to correct and overcome some of the PDB format lim-
itations in our program. We have parsed all the important header section

12

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 13, 2019. ; https://doi.org/10.1101/605907doi: bioRxiv preprint

https://doi.org/10.1101/605907

data and stored in our data structure which is easily accessible. Using
various ligand names for single ligand in PDB file highly discouraged,
for example water molecule is found as H2O, WAT, HOH, etc but it is
simplified into a single name as HOH.

2. The structural faults are identified and reported; showing un-natural di-
hedral angles, giving contradictory UNIPROT and structural sequence
alignments, removing solvents which are present because of experimental
techniques. Graph data structure specially designed to represent covalent
bonds of only highest occupancy atoms and reports missing atoms.

3. We are still left with many faults which are uncorrectable due to errors
that stem from experimental data, for instance, the electron density might
not match with the coordinates. Plenty of PDB format limitations are
intrinsic, these have been addressed in newer formats like mmCIF [16]
and mmTF.

4. Discussion

4.1. Extension for biochemical applications

The developed parser can be used in different aspects of macromolecular
system analysis such as: sequence and structure comparison, surface atoms de-
tection, active water molecule identification and salt bridge determination etc.
In addition to this, the program is also able to detect the active site in a protein
and identify the presence of any metal and its interactions.

We have used this parser in our lab for analyzing numerous macromolec-
ular structures, virtual screening and docking results, non-covalent interaction
studies, .pdb files from molecular dynamics simulations and other structure
based data-set studies. In a case study (see supplementary material), we are
able to identify stabilizing and destabilizing salt bridges from two homologous
mesophilic and thermophilic α-carbonic anhydrase[17]. Studying these types
of structural factors like salt bridges, surface residues, and active site water
molecules for any macromolecular system is much more simple, fast and error-
free.

The protein’s coordinate, bonding; dihedral and other such structural data
can be used to study different structural and functional aspects of it. The new
parser, which as discussed so far, provides an innovative, faster and necessary
platform to prepare the data in structured form for further analysis. Using which
we have incorporated various macromolecular analytical tools at one place. The
motivation of our work is to provide a integrative tool for in-silico studies that
range from getting FASTA sequence to getting active site information.

13

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 13, 2019. ; https://doi.org/10.1101/605907doi: bioRxiv preprint

https://doi.org/10.1101/605907

4.2. Applicability and scope

The user interface provides physical abstractions (e.g. atoms, bonds, molecules)
of the data that could be easily manipulated by the user.Having active and grow-
ing international developer community, ongoing and future developments will
improve performance further, introduce transparent parallelization schemes to
utilize multi-core and GPU systems efficiently, and interface with high perfor-
mance data analytics algorithms [18]. We think that this will be a major step
in bringing forward C++ language for biology and it being used for open source
for its performance and therefore contributing in improving the popularity and
current lack of any ongoing projects.

We, strongly recommend that the format of the .pdb file should be recon-
sidered for making it software-friendly so as to improve the performance of the
software as well as to improve the digital readability of the format. A more
detailed and strict organization of the attributes is called for. These attributes
should be separated by something like space aiding in the distinction of the
values which are currently merged in many cases and, therefore, become vague.
Now, for solving this problem, we have developed a efficient parser which can
arrange all the important data in a well-mannered form as being a fastest pro-
gram among various others. In addition to the task of parsing of the .pdb, .cif
and .mmtf files for working with static structures for molecular analysis; we also
wish to add dynamic molecular structural analysis in future.

4.3. Availability

The source is available on bitbucket at https://bitbucket.org/gazalk/

pdb_parser/. It is based on C++11 and requires Qt >5.6 and MsgPack for C to
be pre-installed. MAT is available as a web-service at http:/mat.iitr.ac.in/.

5. Supplementary Material

See Supplementary material for grammar rules and grammar table in Tables
S1 and S2 for tokenization of each section in the parser. The benchmarks for
hydrogen bond finding are shown in Figure 1. Construction and searching of
the data structures, kD-Tree and Octree is given in Figure 2 and Figure 3 of
the Supplementary data. The case study of α-carbonic anhydrase to mutation
design in Figure 4 and Figure 5 while showing non-covalent interactions in Table
S3.

6. Funding

This research was supported by the Department of Biotechnology (DBT),
Ministry of Science and Technology, Government of India [Grant number DBT/
2015/IIT-R/325] to G.K.

14

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 13, 2019. ; https://doi.org/10.1101/605907doi: bioRxiv preprint

https://bitbucket.org/gazalk/pdb_parser/
https://bitbucket.org/gazalk/pdb_parser/
http:/mat.iitr.ac.in/
https://doi.org/10.1101/605907

7. Acknowledgements

The work was partially conducted in the context of the Bioinformatics Re-
sources and Applications Facility (BRAF), C-DAC, Pune, India. Institute Com-
puter Center, IIT-Roorkee and Bioinformatics Facility, Department of Biotech-
nology, IIT-Roorkee granted the provision of computational facilities and sup-
port.

[1] F. C. Bernstein, T. F. Koetzle, G. J. Williams, E. F. Meyer, M. D. Brice,
J. R. Rodgers, O. Kennard, T. Shimanouchi, M. Tasumi, The Protein Data
Bank: a computer-based archival file for macromolecular structures., Jour-
nal of molecular biology 112 (3) (1977) 535–542.

[2] A. R. Bradley, A. S. Rose, A. Pavelka, Y. Valasatava, J. M. Duarte, A. Prlić,
P. W. Rose, Mmtf—an efficient file format for the transmission, visualiza-
tion, and analysis of macromolecular structures, PLOS Computational Bi-
ology 13 (6) (2017) 1–16. doi:10.1371/journal.pcbi.1005575.
URL https://doi.org/10.1371/journal.pcbi.1005575

[3] Z. Honguy, J. Michael, M. Parag, C++ computational libraries for bioin-
formatics, version 0.3 (2006).
URL http://biocpp.sourceforge.net/

[4] R. Daniel, A simple c++ pdb reader (2004).
URL http://graphics.stanford.edu/~drussel/pdb/index.html

[5] W. Chang, I. Shindyalov, C. Pu, P. Bourne, Design and application
of pdblib, a c++ macromolecular class library, Computer applications
in the biosciences : CABIOS 10 (6) (1994) 575–586. doi:10.1093/

bioinformatics/10.6.575.

[6] T. Hamelryck, B. Manderick, Pdb file parser and structure class im-
plemented in python, Bioinformatics 19 (17) (2003) 2308–2310. doi:

10.1093/bioinformatics/btg299.

[7] L. Hirsh, D. Piovesan, M. Giollo, C. Ferrari, S. C. Tosatto, The victor
c++ library for protein representation and advanced manipulation, Bioin-
formaticsdoi:10.1093/bioinformatics/btu773.

[8] S. Loriot, F. Cazals, J. Bernauer, Esbtl: efficient pdb parser and data struc-
ture for the structural and geometric analysis of biological macromolecules,
Bioinformatics 26 (8) (2010) 1127–1128. doi:10.1093/bioinformatics/

btq083.

[9] A. Hildebrandt, A. K. Dehof, A. Rurainski, A. Bertsch, M. Schumann,
N. C. Toussaint, A. Moll, D. Stöckel, S. Nickels, S. C. Mueller, H.-P. Lenhof,
O. Kohlbacher, BALL–biochemical algorithms library 1.3., BMC bioinfor-
matics 11 (1) (2010) 531.

15

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 13, 2019. ; https://doi.org/10.1101/605907doi: bioRxiv preprint

https://doi.org/10.1371/journal.pcbi.1005575
https://doi.org/10.1371/journal.pcbi.1005575
http://dx.doi.org/10.1371/journal.pcbi.1005575
https://doi.org/10.1371/journal.pcbi.1005575
http://biocpp.sourceforge.net/
http://biocpp.sourceforge.net/
http://biocpp.sourceforge.net/
http://graphics.stanford.edu/~drussel/pdb/index.html
http://graphics.stanford.edu/~drussel/pdb/index.html
http://dx.doi.org/10.1093/bioinformatics/10.6.575
http://dx.doi.org/10.1093/bioinformatics/10.6.575
http://dx.doi.org/10.1093/bioinformatics/btg299
http://dx.doi.org/10.1093/bioinformatics/btg299
http://dx.doi.org/10.1093/bioinformatics/btu773
http://dx.doi.org/10.1093/bioinformatics/btq083
http://dx.doi.org/10.1093/bioinformatics/btq083
https://doi.org/10.1101/605907

[10] C. T. Porter, A. C. Martin, Bioplib and bioptools—a c programming li-
brary and toolset for manipulating protein structure, Bioinformatics 31 (24)
(2015) 4017–4019. doi:10.1093/bioinformatics/btv482.

[11] A. V. Aho, R. Sethi, J. D. Ullman, Compilers: Principles, Techniques, and
Tools, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1986.

[12] D. Bonchev, Chemical Graph Theory: Introduction and Fundamentals,
Chemical Graph Theory, Taylor & Francis, 1991.
URL https://books.google.co.in/books?id=X0AG7HhiccoC

[13] J. L. Bentley, Multidimensional binary search trees used for associative
searching, Commun. ACM 18 (9) (1975) 509–517. doi:10.1145/361002.

361007.

[14] J. H. Friedman, J. L. Bentley, R. A. Finkel, An algorithm for finding best
matches in logarithmic expected time, ACM Trans. Math. Softw. 3 (3)
(1977) 209–226. doi:10.1145/355744.355745.

[15] Google, Google’s c++ test framework (August 2016).
URL https://github.com/google/googletest

[16] S. R. Hall, F. H. Allen, I. D. Brown, The crystallographic information file
(cif): a new standard archive file for crystallography, Acta Crystallograph-
ica Section A 47 (6) (1991) 655–685. doi:10.1107/S010876739101067X.
URL https://doi.org/10.1107/S010876739101067X

[17] S. K. Bharatiy, M. Hazra, M. Paul, S. Mohapatra, D. Samantaray, R. C.
Dubey, S. Sanyal, S. Datta, S. Hazra, In silico designing of an industrially
sustainable carbonic anhydrase using molecular dynamics simulation, ACS
Omega 1 (6) (2016) 1081–1103. doi:10.1021/acsomega.6b00041.
URL http://dx.doi.org/10.1021/acsomega.6b00041

[18] J. Qiu, S. Jha, A. Luckow, G. C.Fox, Towards hpc-abds: An initial high-
performance big data stack (2014).

[19] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-oriented Software, Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995.

[20] M. B. Kennel, KDTREE 2: Fortran 95 and C++ software to efficiently
search for near neighbors in a multi-dimensional Euclidean space, ArXiv
Physics e-printsarXiv:physics/0408067.

[21] R. Chowdhury, D. Beglov, M. Moghadasi, I. C. Paschalidis, P. Vak-
ili, S. Vajda, C. Bajaj, D. Kozakov, Efficient maintenance and update
of nonbonded lists in macromolecular simulations, Journal of Chemical
Theory and Computation 10 (10) (2014) 4449–4454, pMID: 25328494.
doi:10.1021/ct400474w.

16

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 13, 2019. ; https://doi.org/10.1101/605907doi: bioRxiv preprint

http://dx.doi.org/10.1093/bioinformatics/btv482
https://books.google.co.in/books?id=X0AG7HhiccoC
https://books.google.co.in/books?id=X0AG7HhiccoC
http://dx.doi.org/10.1145/361002.361007
http://dx.doi.org/10.1145/361002.361007
http://dx.doi.org/10.1145/355744.355745
https://github.com/google/googletest
https://github.com/google/googletest
https://doi.org/10.1107/S010876739101067X
https://doi.org/10.1107/S010876739101067X
http://dx.doi.org/10.1107/S010876739101067X
https://doi.org/10.1107/S010876739101067X
http://dx.doi.org/10.1021/acsomega.6b00041
http://dx.doi.org/10.1021/acsomega.6b00041
http://dx.doi.org/10.1021/acsomega.6b00041
http://dx.doi.org/10.1021/acsomega.6b00041
http://arxiv.org/abs/physics/0408067
http://dx.doi.org/10.1021/ct400474w
https://doi.org/10.1101/605907

[22] M. Cieslik, Z. Derewenda, C. Mura, Abstractions, Algorithms and
Data Structures for Structural Bioinformatics in PyCogent, ArXiv e-
printsarXiv:1407.5218.

[23] S. Kumar, R. Nussinov, Salt bridge stability in monomeric proteins1,
Journal of Molecular Biology 293 (5) (1999) 1241 – 1255. doi:http:

//dx.doi.org/10.1006/jmbi.1999.3218.

[24] S. Kumar, R. Nussinov, Relationship between ion pair geometries and elec-
trostatic strengths in proteins, Biophysical Journal 83 (3) (2002) 1595 –
1612. doi:http://dx.doi.org/10.1016/S0006-3495(02)73929-5.

[25] J. E. Donald, D. W. Kulp, W. F. DeGrado, Salt bridges: Geometrically
specific, designable interactions, Proteins: Structure, Function, and Bioin-
formatics 79 (3) (2011) 898–915. doi:10.1002/prot.22927.

[26] M. Paul, M. Hazra, A. Barman, S. Hazra, Comparative molecular dynamics
simulation studies for determining factors contributing to the thermostabil-
ity of chemotaxis protein ”CheY”, Journal of Biomolecular Structure and
Dynamics 32 (6) (2014) 928–949. doi:10.1080/07391102.2013.799438.

[27] J. Levine, Flex & Bison, 1st Edition, O’Reilly Media, Inc., Sebastopol, CA,
2009.

[28] B. DJ, T. JM, Ion-pairs in proteins, Journal of Mol Biol. 168 (4) (1983)
865–885.

[29] R. W. W. Hooft, G. Vriend, C. Sander, E. E. Abola, Errors in protein
structures, Nature 381 (1996) 272. arXiv:physics/0408067.

[30] S. Hazra, S. Ort, M. Konrad, A. Lavie, Structural and kinetic character-
ization of human deoxycytidine kinase variants able to phosphorylate 5-
substituted deoxycytidine and thymidine analogues,, Biochemistry 49 (31)
(2010) 6784–6790, pMID: 20614893. doi:10.1021/bi100839e.

[31] S. Kumar, R. Nussinov, Fluctuations in ion pairs and their stabilities in
proteins, Proteins: Structure, Function, and Bioinformatics 43 (4) (2001)
433–454. doi:10.1002/prot.1056.

[32] J. Luo, J.-D. Maréchal, S. Wärmländer, A. Gräslund, A. Perálvarez-Maŕın,
In Silico analysis of the apolipoprotein e and the amyloid β peptide inter-
action: Misfolding induced by frustration of the salt bridge network, PLoS
Comput Biol 6 (2) (2010) 1–7. doi:10.1371/journal.pcbi.1000663.

[33] E. A. Mackenzie, L. S. Klig, Computational modeling and in silico anal-
ysis of differential regulation of myo-inositol catabolic enzymes in cryp-
tococcus neoformans, BMC Molecular Biology 9 (1) (2008) 1–9. doi:

10.1186/1471-2199-9-88.

17

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 13, 2019. ; https://doi.org/10.1101/605907doi: bioRxiv preprint

http://arxiv.org/abs/1407.5218
http://dx.doi.org/http://dx.doi.org/10.1006/jmbi.1999.3218
http://dx.doi.org/http://dx.doi.org/10.1006/jmbi.1999.3218
http://dx.doi.org/http://dx.doi.org/10.1016/S0006-3495(02)73929-5
http://dx.doi.org/10.1002/prot.22927
http://dx.doi.org/10.1080/07391102.2013.799438
http://arxiv.org/abs/physics/0408067
http://dx.doi.org/10.1021/bi100839e
http://dx.doi.org/10.1002/prot.1056
http://dx.doi.org/10.1371/journal.pcbi.1000663
http://dx.doi.org/10.1186/1471-2199-9-88
http://dx.doi.org/10.1186/1471-2199-9-88
https://doi.org/10.1101/605907

[34] S. G. Kurz, K. A. Wolff, S. Hazra, C. R. Bethel, A. M. Hujer, K. M.
Smith, Y. Xu, L. W. Tremblay, J. S. Blanchard, L. Nguyen, R. A.
Bonomo, Can inhibitor-resistant substitutions in the mycobacterium tu-
berculosis β-lactamase blac lead to clavulanate resistance?: a biochemical
rationale for the use of β-lactam-β-lactamase inhibitor combinations, An-
timicrobial Agents and Chemotherapy 57 (12) (2013) 6085–6096. doi:

10.1128/AAC.01253-13.

[35] S. Costantini, G. Colonna, A. M. Facchiano, Esbri: a web server for evalu-
ating salt bridges in proteins, Bioinformation 3 (2) (2008) 137–138.

[36] C. Jackins, S. Tanimoto, Oct-trees and their use in representing three-
dimensional objects, Computer Graphics and Image Processing 14 (3)
(1980) 249–270. doi:10.1016/0146-664X(80)90055-6.

[37] W. Wang, S. M. McKinnie, M. Farhan, M. Paul, T. McDonald, B. McLean,
C. Llorens-Cortes, S. Hazra, A. G. Murray, J. C. Vederas, G. Y. Oudit,
Angiotensin-converting enzyme 2 metabolizes and partially inactivates pyr-
apelin-13 and apelin-17novelty and significance, Hypertension 68 (2) (2016)
365–377. doi:10.1161/HYPERTENSIONAHA.115.06892.
URL http://hyper.ahajournals.org/content/68/2/365

[38] Schrödinger LLC, The PyMOL molecular graphics system, version 1.8
(November 2015).

[39] T. Nakane, Glmol – molecular viewer on webgl/javascript, version 0.47
(2012).
URL http://webglmol.sourceforge.jp/index-en.html

[40] B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, Gromacs 4: algo-
rithms for highly efficient, load-balanced, and scalable molecular simu-
lation, Journal of Chemical Theory and Computation 4 (3) (2008) 435–
447, pMID: 26620784. arXiv:http://dx.doi.org/10.1021/ct700301q,
doi:10.1021/ct700301q.
URL http://dx.doi.org/10.1021/ct700301q

[41] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan,
M. Karplus, Charmm: A program for macromolecular energy, minimiza-
tion, and dynamics calculations, Journal of Computational Chemistry 4 (2)
(1983) 187–217. doi:10.1002/jcc.540040211.
URL http://dx.doi.org/10.1002/jcc.540040211

[42] D. A. Pearlman, D. A. Case, J. W. Caldwell, W. S. Ross, T. E.
Cheatham, S. DeBolt, D. Ferguson, G. Seibel, P. Kollman, Am-
ber, a package of computer programs for applying molecular me-
chanics, normal mode analysis, molecular dynamics and free energy
calculations to simulate the structural and energetic properties of
molecules, Computer Physics Communications 91 (1) (1995) 1 – 41.
doi:https://doi.org/10.1016/0010-4655(95)00041-D.

18

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 13, 2019. ; https://doi.org/10.1101/605907doi: bioRxiv preprint

http://dx.doi.org/10.1128/AAC.01253-13
http://dx.doi.org/10.1128/AAC.01253-13
http://dx.doi.org/10.1016/0146-664X(80)90055-6
http://hyper.ahajournals.org/content/68/2/365
http://hyper.ahajournals.org/content/68/2/365
http://dx.doi.org/10.1161/HYPERTENSIONAHA.115.06892
http://hyper.ahajournals.org/content/68/2/365
http://webglmol.sourceforge.jp/index-en.html
http://webglmol.sourceforge.jp/index-en.html
http://dx.doi.org/10.1021/ct700301q
http://dx.doi.org/10.1021/ct700301q
http://dx.doi.org/10.1021/ct700301q
http://arxiv.org/abs/http://dx.doi.org/10.1021/ct700301q
http://dx.doi.org/10.1021/ct700301q
http://dx.doi.org/10.1021/ct700301q
http://dx.doi.org/10.1002/jcc.540040211
http://dx.doi.org/10.1002/jcc.540040211
http://dx.doi.org/10.1002/jcc.540040211
http://dx.doi.org/10.1002/jcc.540040211
http://www.sciencedirect.com/science/article/pii/001046559500041D
http://www.sciencedirect.com/science/article/pii/001046559500041D
http://www.sciencedirect.com/science/article/pii/001046559500041D
http://www.sciencedirect.com/science/article/pii/001046559500041D
http://www.sciencedirect.com/science/article/pii/001046559500041D
http://dx.doi.org/https://doi.org/10.1016/0010-4655(95)00041-D
https://doi.org/10.1101/605907

URL http://www.sciencedirect.com/science/article/pii/

001046559500041D

[43] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa,
C. Chipot, R. D. Skeel, L. Kalé, K. Schulten, Scalable molecular dynamics
with namd, Journal of Computational Chemistry 26 (16) (2005) 1781–1802.
doi:10.1002/jcc.20289.
URL http://dx.doi.org/10.1002/jcc.20289

[44] M. Karplus, J. A. McCammon, Molecular dynamics simulations of
biomolecules, Nature Structural Biology 9 (2002) 646, review Article.
URL http://dx.doi.org/10.1038/nsb0902-646

[45] M. C. Zwier, L. T. Chong, Reaching biological timescales with all-
atom molecular dynamics simulations, Current Opinion in Phar-
macology 10 (6) (2010) 745 – 752, endocrine and metabolic dis-
eases/New technologies - the importance of protein dynamics.
doi:https://doi.org/10.1016/j.coph.2010.09.008.
URL http://www.sciencedirect.com/science/article/pii/

S1471489210001463

[46] M. Cascella, M. Dal Peraro, Challenges and perspectives in biomolec-
ular simulations: From the atomistic picture to multiscale modeling,
CHIMIA International Journal for Chemistry 63 (1-2) (2009) 14–18.
doi:doi:10.2533/chimia.2009.14.
URL http://www.ingentaconnect.com/content/scs/chimia/2009/

00000063/F0020001/art00003

[47] F. R. Salsbury, Molecular dynamics simulations of protein dy-
namics and their relevance to drug discovery, Current Opinion in
Pharmacology 10 (6) (2010) 738 – 744, endocrine and metabolic
diseases/New technologies - the importance of protein dynamics.
doi:https://doi.org/10.1016/j.coph.2010.09.016.
URL http://www.sciencedirect.com/science/article/pii/

S1471489210001542

[48] J. Gosling, H. McGilton, The java language environment a white paper,
Tech. rep. (1996).

[49] D. R. Roe, T. E. Cheatham, Ptraj and cpptraj: Software for processing
and analysis of molecular dynamics trajectory data, Journal of Chemical
Theory and Computation 9 (7) (2013) 3084–3095, pMID: 26583988. arXiv:
http://dx.doi.org/10.1021/ct400341p, doi:10.1021/ct400341p.
URL http://dx.doi.org/10.1021/ct400341p

[50] M. Bostock, V. Ogievetsky, J. Heer, D3: Data-driven documents, IEEE
Trans. Visualization & Comp. Graphics (Proc. InfoVis).
URL http://vis.stanford.edu/papers/d3

19

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 13, 2019. ; https://doi.org/10.1101/605907doi: bioRxiv preprint

http://www.sciencedirect.com/science/article/pii/001046559500041D
http://www.sciencedirect.com/science/article/pii/001046559500041D
http://dx.doi.org/10.1002/jcc.20289
http://dx.doi.org/10.1002/jcc.20289
http://dx.doi.org/10.1002/jcc.20289
http://dx.doi.org/10.1002/jcc.20289
http://dx.doi.org/10.1038/nsb0902-646
http://dx.doi.org/10.1038/nsb0902-646
http://dx.doi.org/10.1038/nsb0902-646
http://www.sciencedirect.com/science/article/pii/S1471489210001463
http://www.sciencedirect.com/science/article/pii/S1471489210001463
http://dx.doi.org/https://doi.org/10.1016/j.coph.2010.09.008
http://www.sciencedirect.com/science/article/pii/S1471489210001463
http://www.sciencedirect.com/science/article/pii/S1471489210001463
http://www.ingentaconnect.com/content/scs/chimia/2009/00000063/F0020001/art00003
http://www.ingentaconnect.com/content/scs/chimia/2009/00000063/F0020001/art00003
http://dx.doi.org/doi:10.2533/chimia.2009.14
http://www.ingentaconnect.com/content/scs/chimia/2009/00000063/F0020001/art00003
http://www.ingentaconnect.com/content/scs/chimia/2009/00000063/F0020001/art00003
http://www.sciencedirect.com/science/article/pii/S1471489210001542
http://www.sciencedirect.com/science/article/pii/S1471489210001542
http://dx.doi.org/https://doi.org/10.1016/j.coph.2010.09.016
http://www.sciencedirect.com/science/article/pii/S1471489210001542
http://www.sciencedirect.com/science/article/pii/S1471489210001542
http://dx.doi.org/10.1021/ct400341p
http://dx.doi.org/10.1021/ct400341p
http://arxiv.org/abs/http://dx.doi.org/10.1021/ct400341p
http://arxiv.org/abs/http://dx.doi.org/10.1021/ct400341p
http://dx.doi.org/10.1021/ct400341p
http://dx.doi.org/10.1021/ct400341p
http://vis.stanford.edu/papers/d3
http://vis.stanford.edu/papers/d3
https://doi.org/10.1101/605907

[51] J. D. Hunter, Matplotlib: A 2d graphics environment, Computing In Sci-
ence & Engineering 9 (3) (2007) 90–95. doi:10.1109/MCSE.2007.55.

[52] M. Heinig, D. Frishman, Stride: a web server for secondary structure assign-
ment from known atomic coordinates of proteins, Nucleic Acids Research
32 (suppl 2) (2004) W500–W502. doi:10.1093/nar/gkh429.
URL http://dx.doi.org/10.1093/nar/gkh429

[53] Z. S. Hendsch, B. Tidor, Do salt bridges stabilize proteins? a continuum
electrostatic analysis, Protein Science 3 (2) (1994) 211–226. doi:10.1002/
pro.5560030206.
URL http://dx.doi.org/10.1002/pro.5560030206

[54] M. J. Gajda, hpdb–haskell library for processing atomic biomolecular struc-
tures in protein data bank format, BMC research notes 6 (1) (2013) 483.

20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 13, 2019. ; https://doi.org/10.1101/605907doi: bioRxiv preprint

http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1093/nar/gkh429
http://dx.doi.org/10.1093/nar/gkh429
http://dx.doi.org/10.1093/nar/gkh429
http://dx.doi.org/10.1093/nar/gkh429
http://dx.doi.org/10.1002/pro.5560030206
http://dx.doi.org/10.1002/pro.5560030206
http://dx.doi.org/10.1002/pro.5560030206
http://dx.doi.org/10.1002/pro.5560030206
http://dx.doi.org/10.1002/pro.5560030206
https://doi.org/10.1101/605907

	Introduction
	Materials and Methods
	Data set
	Tokenization of input file
	Syntax Tree formation
	Data structures
	Atom bucket
	Structural Hierarchy
	 Bonded Graph

	Protein space partitioning
	KD-tree
	Octree

	Results
	Computational efficiency and speed comparison
	Exception handling

	Discussion
	Extension for biochemical applications
	Applicability and scope
	Availability

	Supplementary Material
	Funding
	Acknowledgements

