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Abstract 

Obesity is highly heritable, yet only a small fraction of its heritability has been attributed to specific 

genetic variants. These variants are traditionally ascertained from genome-wide association studies 

(GWAS), which utilize samples with tens or hundreds of thousands of individuals for whom a single 

summary measurement (e.g., BMI) is collected. An alternative approach is to focus on a smaller, more 

deeply characterized sample in conjunction with advanced statistical models that leverage detailed 

phenotypes. Here we use novel functional data analysis (FDA) techniques to capitalize on longitudinal 

growth information and construct a polygenic risk score (PRS) for obesity in children followed from birth 

to three years of age. This score, comprised of 24 single nucleotide polymorphisms (SNPs), is 

significantly higher in children with (vs. without) rapid infant weight gain—a predictor of obesity later in 

life. Using two independent cohorts, we show that genetic variants identified in early childhood are also 

informative in older children and in adults, consistent with early childhood obesity being predictive of 

obesity later in life. In contrast, PRSs based on SNPs identified by adult obesity GWAS are not 

predictive of weight gain in our cohort of children. Our research provides an example of a successful 

application of FDA to GWAS. We demonstrate that a deep, statistically sophisticated characterization of 

a longitudinal phenotype can provide increased statistical power to studies with relatively small sample 

sizes. This study shows how FDA approaches can be used as an alternative to the traditional GWAS.  
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Author Summary 

Finding genetic variants that confer an increased risk of developing a particular disease has long been 

a focus of modern genetics. Genome wide association studies (GWAS) have catalogued single 

nucleotide polymorphisms (SNPs) associated with a variety of complex diseases in humans, including 

obesity, but by and large have done so using increasingly large samples-- tens or even hundreds of 

thousands of individuals, whose phenotypes are thus often only superficially characterized. This, in 

turn, may hide the intricacies of the genetic influence on disease. GWAS findings are also usually 

study-population dependent. We found that genetic risk scores based on SNPs from large adult obesity 

studies are not predictive of the propensity to gain weight in very young children. However, using a 

small cohort of a few hundred children deeply characterized with growth trajectories between birth and 

two years, and leveraging such trajectories through novel functional data analysis (FDA) techniques, 

we were able to produce a strong childhood obesity genetic risk score.  
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Introduction 

Obesity is a rising epidemic that is increasingly affecting children. In 2018, 18% of children in the United 

States were obese and approximately 6% were severely obese1—a substantial increase from previous 

years2. Given the strong association between weight gain during childhood and obesity across the life 

course3,4, the search for early life risk factors has become a public health priority. 

 

Obesity is a complex disease with an etiology influenced by environmental, behavioral, and genetic 

factors, which likely interact with each other5. For childhood obesity, dietary composition and sedentary 

lifestyle have often been cited as main contributors6. Evidence also exists for a significant role of 

parents’ socioeconomic status7 and maternal prenatal health factors including gestational diabetes8 and 

smoking9. In addition, obesity risk in children has been associated with appetite,10 which has been 

shown to be partially influenced by genetics11. 

 

The heritability of obesity has been estimated to be between 50% and 90% (with the highest values 

reported for monozygotic twins and the lowest for non-twin siblings and parent-child pairs, reviewed in 

Maes et. al, 1997 12). This is a much higher percentage than currently accounted for by known genetic 

variants13,14. This discord is referred to as “missing heritability”—a broad discrepancy between the 

estimated heritability of the phenotype and the variability explained by genetic variants discovered to 

date. Indeed, the search for specific genetic variants that increase the risk of obesity, in adulthood as 

well as in childhood, is still ongoing. Using whole-genome sequencing, researchers have found variants 

in individual genes that contribute to severe, early-onset obesity15. Moreover, genome-wide association 

studies (GWAS) have identified single nucleotide polymorphisms (SNPs) that are significantly 

associated with obesity phenotypes such as increased body mass index (BMI), high waist-to-hip ratio, 

etc.16–23. Albeit successful, these studies have some shortcomings; the individual contributions of the 
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identified SNPs tend to be very small13, and the prevalent focus is still on adult cohorts—with only one 

childhood obesity study for every 10 adult obesity studies24.  

 

One way to utilize the information gained from GWAS is to summarize the risk from multiple disease-

causing alleles in polygenic risk scores (PRSs) that can be computed for each individual25. These 

scores are either simple counts (unweighted) or weighted sums of disease-causing alleles identified by 

GWAS. Notably, while several studies have constructed PRSs for childhood obesity23,26–29, most have 

done so relying on SNPs identified by GWAS on adult BMI. Since SNPs affecting obesity risk in adults 

and children may differ30,31,32, this may explain the limited13, 33, 23 and age-dependent34,23 explanatory 

power of such scores for children’s weight gain status.  

 

In this study, we contribute to bridging this gap by focusing specifically on SNPs affecting obesity risk in 

children. Using novel, highly effective Functional Data Analysis (FDA) techniques developed by our 

group on data from a small but deeply characterized pediatric cohort35–37, we constructed children’s 

growth curves and treated them as a longitudinal phenotype. FDA fully leverages this longitudinal 

information, extracting complex signals that can be lost in standard analyses of cross-sectional or 

summary measurements (e.g., BMI collected at a single time point). This increases power and 

specificity for assessing potentially complex and combinatorial genetic contributions. Moreover, FDA 

models genetic effects on the entire growth curve non-parametrically. This captures changes in effect 

size over time in a more flexible and effective manner than other statistical methods for longitudinal 

data. With our analyses, we identified genetic variants significantly associated with children’s growth 

curves and combined them in a novel PRS that is predictive of growth patterns and rapid infant weight 

gain38,39, which is associated with obesity later in life. We also investigated how environmental and 

behavioral covariates compound with our novel score in affecting growth curves, and provided 

biological and statistical validations of our findings.  
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Results 

Participants and DNA typing 

Our study utilized 226 first-born children (out of a total of 279) enrolled in the Intervention Nurses Start 

Infants Growing on Healthy Trajectories (INSIGHT) study35. For these children, weight and length were 

measured at birth, 4 weeks, 16 weeks, 28 weeks, 40 weeks, and one year, and weight and height—at 

two and three years. Using the ratio of weight for length or height (henceforth referred to weight-for-

length/height) at these eight time points, we constructed growth curves for all children (Fig. 1a; see 

Methods). Weight-for-length is the recommended measurement for identification of children at risk for 

obesity under the age of two years by the American Academy of Pediatrics (BMI is recommended 

afterwards)40. Since six out of eight time points in our study fall into this category, we utilized weight-for-

length/height ratio for all eight time points analyzed for consistency.  

 

In addition to growth curves, we computed the conditional weight gain for each child (change in weight 

between birth and 6 months, corrected for length, see Methods). Conditional weight gain was shown to 

be an effective indicator of risk for developing obesity later in life in a previous study41. Also in our 

study, children who experienced rapid infant weight gain, i.e. those with a positive conditional weight 

gain, had a significantly greater weight at one (p<2.2x10-16), two (p=9.1x10-14), and three (p=6.2x10-13) 

years of age than children who did not experience rapid infant weight gain (one-tailed t-tests, Fig. S1). 

 

We isolated genomic DNA from blood samples from the 226 children and genotyped it on the Affymetrix 

Precision Medicine Research Array containing 920,744 SNPs across the genome. SNPs that had 

missing information, a minor allele frequency below 0.05, or were in the mitochondrial DNA were 

removed from the dataset—leaving a total of 329,159 SNPs for subsequent analyses (Fig. S2). With 
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these SNPs we calculated individuals’ relatedness to assess the presence of population substructure 

that may confound the analysis of genomic associations. After computing a relationship matrix we 

regressed conditional weight gain on the top five principal components of relatedness and found no 

significant correlation (R²=-0.003, p=0.4992). This indicates that there is no need to incorporate a 

population stratification into downstream analyses. 

 

FDA-based Polygenic Risk Score predicts growth curves and rapid infant weight gain 

The sample size of our study is small for a traditional GWAS. However, the use of FDA techniques 

allowed us to leverage the longitudinal information in growth curves to identify significant SNPs and 

combine them into a polygenic risk score (PRS). To use FDA we restricted ourselves to a subset of 210 

children and 79,498 SNP for which we had complete information (no missing values).  

 

We first used FDA screening42 to reduce the analysis to the top 10,000 potentially relevant SNPs (Fig. 

S2). Next, we used Functional Linear Adaptive Mixed Estimation (FLAME)43 to identify 24 SNPs as 

significant predictors of children’s growth curves (Table 1). Using information from the 24 selected 

SNPs, we constructed our novel FDA PRS as a weighted sum of allele counts, with weights determined 

with additional FDA techniques (see Methods).  

 

Table 1. SNPs identified as significant predictors of children’s weight gain patterns by 

functional data analysis. SNPs and corresponding weights in bold are the top 5 SNPs and are used in 

FDA5 PRS. 

SNP 
Associated 

gene1 
Chr 

Position 
(bp) 

Effect 
Allele 

Weight GWAS association2 Folds3 
Up-down- stream gene4 & 
associated GWAS trait2 

rs72679478 DNAJC6 1 65826847 C 0.111  12 LEPR - early onset extreme obesity 

rs12039940 ZNF648 1 181952711 C 0.221  17 
CACNA1E - longitudinal BMI 

measurement 

rs10494802 NR5A2 1 199663441 A 0.152 Waist-hip ratio 9  

rs4915535 NAV1 1 201500537 T -0.218 
BMI, waist circumference, 

obesity related traits 
12  

rs638348 RHOU 1 229100364 T 
-0.358 
-0.691 

Type 2 diabetes 20  
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rs113822101 NOL10 2 10763339 - 
0.230 
0.421 

 19  HPCAL1 - type 2 diabetes 

rs9837708 FOXP1  3 71487582 T -0.181 
LDL cholesterol, subcutaneous 

adipose tissue 
14 EIF4E3 - eosinophil counts 

rs921551 TNIP3 4 122110975 C -0.159  11 
NDNF - body weight; ANXA5 - waist-
hip ratio, type 2 diabetes; PRDM5 - 

body weight 

rs17057519 FABP6 5 159637815 G 0.115  8 
CCNJL - BMI-adjusted waist 

circumference 

rs16889349 MTCH1 6 36948528 G 0.158 HDL cholesterol 18 
FGD2 - HDL cholesterol, 

hypothyroidism 

rs17626544 RNF144B 6 18404450 T 0.126 BMI 10  

rs4716760 PTPRN2 7 157376644 T 0.213 
Energy intake, BMI, type 2 

diabetes 
19 UBE3C - BMI, type 2 diabetes 

rs1701822 PPP1R3A 7 112947322 G 0.135 BMI 11  

rs62475261 POR 7 75533388 C 
0.217 
0.396 

Eosinophil counts 20 
HIP1 - BMI; 

 RHBDD2 - eosinophil counts 

rs10227226 SEC61G 7 54678150 T -0.322  14 
VSTM2A - BMI-adjusted waist-hip 

ratio 

rs58307428 OLFM1 9 138038493 C 0.189 
Obesity-related traits  

 (estradiol measurement) 
13 COL5A1 - waist-hip ratio 

rs9409226 BRINP1 9 122850776 A 
0.173 
0.308 

 19 

FBXW2 - BMI-adjusted hip 
circumference; 

PHF19 - birth weight; 
CDK5RAP2 - asthma 

rs2389157 LINC00557 13 95433968 A 0.183 Body composition measurement 11 
GPC6 - body composition 

measurement, visceral adipose tissue 
measurement 

rs17648524 RBFOX1 16 7459683 C 0.205 

BMI, visceral adipose tissue 
adjusted for BMI, subcutaneous 
adipose tissue measurement, 

body weight, body composition 
measurement 

10  

rs72815409 DNAH9 17 11751186 A 
-0.155 
-0.305 

 20 
SHISA6 - insulin sensitivity 

measurement 

rs4969367 BAIAP2 17 79032015 A 0.200 BMI, lean body mass 18 RPTOR - BMI, obesity 

rs141177192 TGIF1 18 3451388 AA -0.162  13 
DLGAP1 - obesity-related traits (igfbp-

3 measurement) 

rs1539759 TIAM1 21 32895851 C 0.204 
Hypertension, renal sinus 

adipose tissue measurement 
17 

SCAF4 - LDL cholesterol; 
HUNK - type 2 diabetes, periodontitis 

rs133709 ELFN2  22 37827248 A -0.296  7 LGALS1 - body fat distribution 

1As determined by Affymetrix 
2Association determined by the NHGRI-EBI GWAS catalog of published genome-wide association studies (https://www.ebi.ac.uk/gwas/) 
3The number of times the SNP is selected in 20-fold cross validation 
4Determined via LD-Link69  

 

Our FDA PRS is indeed a strong predictor for growth curves, with a significant positive effect on weight-

for-length/height ratios across time (function-on-scalar regression, in-sample R2=0.52, p=9.2x10⁻⁵; see 

Methods), and especially between ~10 and ~30 months of age (Fig. 2a). This can also be observed 

noting that growth curves of children with high PRS values are concentrated above the mean curve 

(Fig. 1b). Moreover, again in-sample, FDA PRS is significantly larger for children with rapid infant 

weight gain compared to those without (one-tailed t-test, p=3.3x10-8; Fig. 3b), and is positively 
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correlated with conditional weight gain (R2=0.16, p<1x10-05; Fig. 3c) as well as with weight-for-

length/height ratio at one (R2=0.50, p<1x10-5), two (R2=0.53, p<1x10-5), and three (R2=0.46, p<1x10-5) 

years of age (Fig. S3). 

 

In order to assess the robustness of our FDA-based SNP selection, we performed a sub-sampling 

stability analysis akin to a 20-fold cross-validation. Specifically, we randomly split the subjects into 20 

equal parts (folds) and applied FLAME43 to perform SNP selection 20 times, with each iteration omitting 

a different fold. We next counted how many times (out of 20) each SNP was selected, to ascertain the 

stability of SNP selection. Notably, for the 24 SNPs included in our FDA PRS, the weights computed to 

construct the PRS correlate with the number of times the SNPs are selected in this sub-sampling 

scheme (Fig. 3). The frequency of selection captures how stable the effect of a genetic variant is amid 

the complex and combinatorial signals in this type of data. Moreover, SNPs which have both the 

highest selection frequency and the largest weights may be the most important to interpret and validate 

in future studies.  

 

In addition to calculating a PRS based on the full complement of 24 SNPs selected by FLAME43, we 

computed a PRS restricted to the top 5 SNPs in terms of selection frequency and weight magnitude, as 

highlighted by our stability analysis in the previous paragraph (Fig. 3; see also Table 1). These 5 SNPs 

are rs72815409, rs638348, rs9409226, rs113822101, and rs62475261, and we refer to the PRS 

calculated on them as FDA5 PRS. FDA5 PRS too has a significant positive effect on weight-for-

length/height ratios across time (function-on-scalar regression, in-sample R2=0.21, p=4.3x10-⁵; Fig. 2d), 

a positive correlation with conditional weight gain (R²=0.045, p=0.002; Fig. 2f), and values that are 

significantly higher for children with rapid infant weight gain compared to those without (one-tailed t-

test, p=0.001; Fig. 2e). We note here that explanatory power evaluated after model selection (in our 

case, post selection of SNPs) and in-sample can be highly inflated, just as in any GWAS. However, as 
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part of the biological validation analysis presented in the section “BMI in two independent cohorts”, we 

confirmed the predictive performance of our scores on two completely independent data sets. 

 

Based on the NHGRI-EBI GWAS catalog (https://www.ebi.ac.uk/gwas/), one of the FDA5 PRS SNPs is 

located in a gene linked to a metabolic disorder: rs638348 is located within gene RHOU associated with 

type 2 diabetes (Table 1). Additionally, two other SNPs of the FDA5 PRS are downstream of genes 

also associated with diabetes: rs72815409 is downstream of SHISA6 (associated with an insulin 

sensitivity measurement) and rs113822101 is downstream of HPCAL1 (associated with type 2 

diabetes). The fourth SNP in FDA5 PRS, rs9409226, is upstream of FBXW2 (associated with BMI-

adjusted hip circumference), PHF19 (associated with birth weight), and CDK5RAP2 (associated with 

asthma). The fifth SNP in FDA5 PRS (rs62475261) is located upstream of HIP1 (associated with BMI) 

and downstream of RHBDD2 (associated with eosinophil counts, an asthma-related trait). Thus, 

rs9409226 and rs62475261 are located in the vicinity of genes associated with obesity-related traits 

and asthma. There is unequivocal epidemiological evidence linking obesity with asthma (reviewed in 

Peters et al. 2018 44), but a shared genetic underpinning has been challenging to elucidate45; our 

results suggest further investigation is warranted. 

 

Among the 19 SNPs included in our FDA PRS but not in the FDA5 PRS (Table 1), twelve more are 

located within genes linked to obesity-related traits such as BMI (rs4915535, rs471670, rs17648524, 

rs4969367, rs17626544, rs1701822), cholesterol levels (rs9837708 and rs16889349), body 

composition measurement (rs2389157), waist-to-hip ratio (rs10494802), hypertension (rs1539759), and 

estradiol measurement (rs58307428). Seven additional SNPs are located in the vicinity of other 

obesity-related genes: for example, rs72679478 is located just upstream of the leptin receptor gene 

(LEPR) which has been associated with early-onset adult obesity46. In summary, while none of the 

SNPs we identified are located in the most typical and well known obesity genes (e.g., FTO34,47 and 
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MC4R16,47), all of them are located either within or in the vicinity of genes linked to obesity or metabolic 

disorders in previous studies.  

Sample size vs. depth  

While our sample size is smaller than those of most recent GWAS studies, there is much to gain from 

the use of the longitudinal information in growth curves. We demonstrate this through a simulation 

procedure that builds upon our actual data, as to guarantee realistic settings. We considered the 210 

curves employed in our analysis, and re-sampled them to create simulated populations of growth 

curves with different sample sizes. We associated these resampled curves to a feature akin to the PRS 

(referred to as “pseudo-PRS”, see Methods) sampled independently from a 𝑁(0,0. 52). The strength of 

this association was calibrated on our results, using the estimated effect coefficient curve of FDA PRS 

(see Fig. 2a) computed on the original data. We then performed function-on-scalar regression and 

recorded the resulting p-value. Next, to simulate a comparable scenario with a scalar, cross-sectional 

response, we randomly selected one time point in each curve. We then regressed this cross-sectional 

response on the pseudo-PRS and the individual’s age at the time point selected, and recorded the p-

value of the feature. To more realistically account for the variability in less controlled studies (e.g. based 

on Electronic Medical Records), we also generated cross-sectional responses with larger 

variation/noise, adding Gaussian errors with mean 0 and variance 𝑠2. Overall we considered three 

cases: no additional noise (i.e. 𝑠2=0), 𝑠2=5x10-5 and 𝑠2=5x10-4 . These variances were conservatively 

calibrated: 𝑠2=5x10-5 is the within-day variability estimated from a mixed effects model on the INSIGHT 

data (see Methods) and 𝑠2=5x10-4 mimics a study where measurements are considerably less 

accurate. Noisy responses were also regressed on the pseudo-PRS and age, and p-values recorded. 

The entire procedure was repeated 100 times - producing the mean p-values and standard error bands 

shown in Fig. 4. We observed that a small (say n=200, close to our 210) but deeply characterized 

sample can be just as effective as a sample more than 4 times larger where only a cross-sectional 
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response is measured -- even when this response contains no additional noise. Adding noise akin to 

that in INSIGHT increases this factor to greater than 5 times, and one would need sample sizes well 

beyond n=1000 to obtain comparable significance at higher levels of noise.  

Biological Validation of the FDA-based Polygenic Risk Score  

 

BMI in our cohort. To provide an initial biological validation of the FDA PRS constructed using weight-

for-length/height ratio growth curves, we considered growth curves for the children in our INSIGHT 

cohort constructed using a different (albeit highly related) measure of weight gain, i.e. BMI. As 

mentioned above, weight-for-length/height ratio is recommended for children under two years of age by 

the American Academy of Pediatrics40, however, our cohort is also observed at ages two and three, 

when BMI is recommended as the most meaningful measurement40. Notably, our weight-for-

length/height FDA PRS is also a strong predictor for the BMI growth curves (R2=0.40, p=2.9x10-5, 

function-on-scalar regression)—suggesting a reasonable consistency between the information 

conveyed by the two measurements, at least up to the age of three years. FDA5 PRS is a strong 

predictor for BMI-based growth curves as well (R²=0.18, 9.1x10-⁵).  

 

BMI in two independent cohorts. Among publicly available datasets, none provides genome-wide 

SNP data and longitudinal weight and length or height measurements for children under the age of 

three. Notwithstanding the unavailability of a good match to our study design, we were able to 

successfully validate FDA5 PRS on two independent dbGaP cohorts consisting of older children and 

adults. The first dataset consists of 283 children between the ages of 8 and 9 from the Philadelphia 

Neurodevelopment Cohort (dbGaP study phs000607.v3.p248–50) who are identified as European 

Americans. The average FDA5 PRS, when individuals are grouped according to BMI deciles, exhibits 

an increasing trend as BMI increases (Fig. 5a). Moreover, the FDA5 PRS of children in the highest BMI 
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decile is significantly higher than in the lowest one (p=0.041, one-tailed t-test), and there is a marginally 

significant, positive correlation between FDA5 PRS and BMI (R²=0.011, p=0.081). 

 

The second dataset consists of 2,486 adults (≥18 years of age) from the eMERGE study (dbGaP study 

phs000888.v1.p1) who identify as white. We see again a significant difference in average FDA5 PRS 

between the lowest and highest deciles of BMI (p=0.03, one-tailed t-test; Fig. 5b). The correlation 

between FDA5 PRS and BMI, though still marginally significant, is weaker in this adult cohort than in 

the Philadelphia children’s cohort considered above (R²=0.0012, p=0.087)—perhaps due to the larger 

difference in age with individuals in our study. Nevertheless, and remarkably, the FDA5 PRS based on 

our children’s weight gain patterns is predictive of extreme obesity later in life.  

 

Considering the broader FDA PRS comprising all 24 SNPs instead of the FDR5 PRS, we did find a 

significant and in fact more pronounced difference between the first and 10th BMI decile in the 

eMERGE adults’ cohort. However, we did not find a significant difference between those BMI deciles in 

the Philadelphia children’s cohort (Table S1). The latter result may be due to the difficulty of validating a 

score based on a larger number of SNPs on small cohorts; for the 283 Philadelphia children, there are 

fewer allele counts across all 24 SNPs—in fact, some of the FDA PRS SNPs are completely missing. 

This issue does not arise for the 2,486 eMERGE adults. Notably, if we do not filter based on race and 

analyze the full cohort of 3,098 extremely obese and non-obese adults from eMERGE, decile 

differences and correlations are even more significant (Table S1). We conducted a number of other 

tests on these two validation cohorts (e.g., contrasting underweight and obese individuals), which 

further demonstrated the presence of a predictive signal in our scores (see Table S1).  
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Polygenic Risk Scores based on adult obesity SNPs are not predictive 

of children’s growth curves and rapid infant weight gain in our cohort 

 

While our FDA5 PRS based on children’s weight gain trajectories does validate in independent cohorts 

of older children and adults, PRSs based on adult GWASs do not validate in our cohort of children. 

First, we considered Belsky PRS—a weighted PRS based on 29 SNPs identified through adult obesity 

GWAS as described by Belsky and colleagues28. This PRS was shown to correlate with BMI outcomes 

from age three to 38, so we hypothesized it may also be a good predictor of weight outcomes in very 

early life. However, Belsky PRS is not a significant predictor of our children’s growth curves from birth 

through age three (R2=0.0032, p=0.35, function-on-scalar regression, Fig. 2g). Furthermore, Belsky 

PRS is not significantly larger for children with rapid infant weight gain compared to those without (one-

tailed t-test, p=0.22; Fig. 2h) and does not display significant correlations with conditional weight gain 

(R2=0.0009, p=0.66; Fig. 2i) and weight-for-length/height ratio at one (R2=0.0064, p=0.25), two 

(R2=0.0036, p=0.37), and three (R2=0.0009, p=0.71) years of age (Fig. S4).  

 

In addition to Belsky’s PRS, we considered four other previously published PRSs specific to childhood 

obesity—Elks PRS27, den Hoed PRS26, Li PRS29 and the recent “life-long” Khera PRS23 (see Methods). 

Similar to the Belsky PRS, the den Hoed, Li, and Khera PRSs were not significantly associated with our 

children’s growth curves (Fig. S5d,g, j), were not significantly different between children with vs. without 

rapid infant weight gain (Fig. S5e,h,k), and did not have a significant correlation with conditional weight 

gain (Fig. S5f,i,l). The Elks PRS showed weak but significant association with our children’s growth 

curves (R2=0.021, p=0.019; Fig. S5a) and correlation with conditional weight gain scores (R2=0.02, 

p=0.032; Fig. S5c), but no significant difference between children with vs. without conditional weight 

gain (two-tailed t-test, p=0.20; Fig. S5b).  
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Contributions of environmental and behavioral covariates 

In addition to genetics, children’s weight gain patterns can be affected by a variety of environmental 

and behavioral factors. To evaluate their potential effects on our results, we considered a regression of 

conditional weight gain41 on FDA PRS plus 11 potential confounding covariates, namely: maternal pre-

pregnancy BMI, paternal BMI, child’s birthweight, maternal gestational weight gain, maternal 

gestational diabetes, maternal smoking during pregnancy, mode of delivery, the child’s gender, mother-

reported child’s appetite score, INSIGHT intervention group, and family socioeconomic status (Table 2). 

A Best Subset Selection51 procedure identified only the FDA PRS (p=8.5x10-8) and the appetite score 

(p=2.4x10-3) as significant predictors. A regression comprising these two predictors had an R2 of 0.22 

(Table S2), only six percentage points higher than the one obtained with FDA PRS alone (R2=0.16). 

Very similar results were obtained using FDA5 PRS in place of FDA PRS (see Table S2). However, 

and not unexpectedly given its lack of association with children’s growth patterns, when we reran the 

analysis using the Belsky PRS in place of the FDA PRS, we did not identify it as a significant predictor. 

Best Subset Selection for the regression of conditional weight gain on the Belsky PRS plus the 11 

environmental and behavioral covariates retained only appetite as a positive and significant predictor 

(p=5.53x10-5); all other predictors, including the Belsky PRS itself, were eliminated. 

Table 2. Description of the study participants 

 Rapid infant weight gain (n=104) Non-rapid infant weight gain 
(n=122) 

Children (n=226)   

 Gender: # males/ # females 53/51 67/55 

 Birth weight (g): mean(S.D.) 3486 (449) 3420 (412) 

 Delivery Mode: Vaginal (%) 36 (35) 33 (27) 

 Weight-for-Length (kg/m) at 1 year: mean (S.D.) 13.67 (0.98) 12.23 (0.93) 

 Weight-for-Height (kg/m) at 2 years: mean (S.D.) 15.13 (1.18)1 13.79 (1.21) 

 Weight-for-Height (kg/m) at 3 years: mean (S.D.) 16.06 (1.29)2 14.70 (1.14)3 

 Appetite score: mean (S.D.) 4.011 (0.92)4 3.38 (1.00)5 

Mothers (n=226)   

 Pre-pregnancy BMI: mean (S.D.) 25.90 (5.75) 25.14 (4.97) 

 Gestational weight gain status: did not gain enough/met 
guidelines/gained excess 

16/29/59 25/43/54 

 Gestational diabetes: had gestational diabetes (%) 6 (5.8) 7 (5.7) 

 Smoked during pregnancy: smoked (%) 8 (7.7) 5 (4.1) 

Fathers (n=209)   
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 BMI: mean (S.D.) 29.53 (6.28)6 27.72 (4.79)7 

Ethnicity of the children (as reported by their mothers)   

 Black 6 (5.8) 5 (4.1) 

 White 94 (90.4) 109 (89.3) 

 Native Hawaiian or Pacific Islander 1 (0.4) 0 (0) 

 Asian 2 (0.9) 5 (4.1) 

 Other 1 (0.4) 3 (1.3) 

Annual Household Income   

 < $10,000 2 4 

 $10,000 - $24,999 6 9 

 $25,000 - $49,999 13 8 

 $50,000 - $74,999 30 34 

 $75,000 - $99,999 25 23 

 $100,000 or more 24 38 

1. Missing 3 measurements 
2. Missing 9 measurements 
3. Missing 7 measurements 
4. Missing 16 measurements 
5. Missing 20 measurements 
6. Missing 9 measurements 
7. Missing 8 measurements 

 

Clinical translation of the FDA-based Polygenic Risk Score 

A high polygenic risk score is obviously not deterministic in an individual developing a particular 

disease. So, it is important to assess whether an intervention on individuals with a high PRS can be 

successful in mitigating disease progression. Due to the nature of our children’s cohort (collected for a 

randomized, early-life intervention clinical trial for the prevention of obesity35), this question can be 

answered in a retrospective manner. We found that, among children with an above-average FDA PRS, 

those who were part of the intervention group (n=115) had a significantly lower conditional weight gain 

than those who were part of the control group (n= 111) (two-sided t-test, p-value = 0.036). This 

suggests that a screen based on the FDA PRS could potentially be used in future studies proposing 

intervention.  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2020. ; https://doi.org/10.1101/606277doi: bioRxiv preprint 

https://paperpile.com/c/kABgCs/Au5q
https://doi.org/10.1101/606277
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

Discussion 

Genetics of childhood and adult obesity. In this study, we used FDA techniques to construct a novel 

polygenic risk score (FDA PRS) which includes 24 SNPs selected based on children’s longitudinal 

weight gain patterns. Among our study participants, this score explains approximately 52% of the in-

sample variability in growth curves from birth to the age of three years, and approximately 16% of the 

in-sample variability in conditional weight gain. We also assessed the stability of our SNP selection and 

constructed a second score (FDA5 PRS) using the 5 most stable SNPs among the 24. This restricted 

score explained approximately 21% and 4% of the in-sample variability in growth curves and 

conditional weight gain, respectively.  

 

As with all genetic studies, our in-sample figures for explained variability are inflated and do not reflect 

predictive performance at large. We were in fact able to validate our FDA5 PRS and FDA PRS in two 

independent datasets comprising older children and adult individuals, but our results should still be 

considered preliminary. Replication in a large, prospective infant cohort would be of great benefit to 

show the generalizability of our risk scores as clinical markers for childhood obesity. 

 

Interestingly, while our risk scores did validate on older individuals, none of the published PRSs based 

on adult BMI SNPs showed a significant association with growth curves and conditional weight gain 

measurements in our children cohort—with the exception of the Elks PRS 27, which did show a weak 

but detectable association signal. Notably, Elks PRS was based on SNPs identified in adult BMI GWAS 

but sub-selected specifically for their association with weight in children, which may explain its 

improved performance over other adult PRSs. Previous studies also supported only a weak relationship 

between PRSs based on adult BMI SNPs and childhood weight gain status26–29—and pointed out that 

the relationship became weaker the younger the age of the children14,26,28. In fact, Belsky and 

colleagues28 found no relationship between their PRS and BMI at birth and a very weak relationship at 
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three years of age. Similarly, Khera and colleagues23 documented relatively weak (albeit significant) 

associations between their PRS and birth weight and stronger, more significant associations at age 

eight. These PRSs based on adult SNPs are consistent in that they show increasing effects on obesity-

related phenotypes as individuals age, but almost no effect on the small children comprising our cohort. 

In contrast, our FDA PRSs based on childhood SNPs show a significant association with obesity-

related phenotypes later in life. Even though, based on the validation datasets at our disposal, the 

association appears to weaken with increasing age, SNPs affecting weight gain in early childhood (i.e. 

those included in our scores) do retain some predictive power. This is consistent with the notion that 

early life weight gain, and hence its genetic underpinning, predispose to obesity across the lifecourse3.  

 

The 24 SNPs identified by our study do not appear in prior PRSs for either childhood or adult obesity, 

except for the genome-wide Khera PRS, which contains 13 of our SNPs (as part of their set of 

2,046,991 SNPs). However, all 24 are located in, or in the vicinity of, genes linked to obesity-related or 

metabolic disorder phenotypes in previous GWAS studies (Table 1). As with all GWAS, it is important to 

note that some of the identified SNPs may not be truly “causal”, but may be in linkage disequilibrium 

with causal SNPs—and the genes in the immediate vicinity of such SNPs may not be those through 

which the phenotype is influenced (e.g., rs72679478 located upstream of the leptin receptor gene). 

Additionally we showed that there were performance differences between the FDA PRS (with 24 SNPs) 

and FDA5 PRS (with only the 5 most stable SNPs from FDA PRS). Comparing the two, the FDA PRS 

was more effective on the growth curves and conditional weight gain score within our study sample as 

well as the adult validation cohort. However, FDA5 PRS successfully validated on both child and adult 

cohorts in spite of the smaller sample size (n = 283 for children vs 2486 for adults). 

 

An important advantage of using a score comprising a small number of SNPs, such as ours, is that it is 

much more practical to compute on individuals belonging to other studies (for comparison purposes) as 

well as in clinical settings (for screening and potential intervention purposes). If some, potentially 
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several, of the SNPs included in a PRS are not available for an individual, one must choose to either 

omit them from the calculation or identify and use proxies in their place. The larger the number of SNPs 

included in a score, the more SNPs may need to be omitted or proxied, reducing the fidelity of the 

calculation52 and the usefulness of the score for prediction. For instance, even having as many as 12.5 

million imputed SNPs for our study cohort, we were only able to build the Khera PRS with 37% of the 2 

million SNPs included in that score. In principle, this could be one explanation as to why this score did 

not validate in our dataset. 

 

The power of FDA-based GWAS. Our results demonstrate a key advantage of GWAS employing 

longitudinal information and FDA techniques over traditional GWAS. We faced an ultra-high 

dimensional problem—with many more predictors (i.e. SNPs) than observations (i.e. individuals). By 

integrating FDA techniques into every step of the analysis, from the screening and selection of SNPs 

through the construction of the PRS, we were able to utilize a more dynamic and information-rich 

phenotype than the ones used in traditional cross-sectional analyses. In turn, this allowed us to unveil 

subtler, more complex effects with a limited sample size. We illustrated this with simulations built upon 

our actual data -- to guarantee realistic settings. Using longitudinal data and FDA techniques, a sample 

size around 200 can be as effective as a cross-sectional study with more than four or five times as 

many individuals. This potentially expands the scope of GWAS to studies that do not comprise tens of 

thousands of individuals—but instead hundreds of deeply characterized participants53. With FDA we 

exploit a series of observations collected longitudinally for each individual, with benefits that include a 

better understanding of within-subject variability, an estimation of time-varying effects in the form of 

smooth curves (which reduces noise in the phenotype measurements), and a substantial gain in power. 

This can be very useful for investigating populations that are difficult to sample -- of course with the 

draw-back that collecting longitudinal data requires low participant dropout and may induce other costs 

or complications. Even so, this approach can provide an effective alternative to traditional GWAS, in 
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light of the costs and benefits of collecting a single measurement on hundreds of thousands of 

individuals versus longitudinal measurements on a fraction of the subjects.  

 

Other contributing factors and perspectives. Behavioral and environmental factors are important 

variables to consider when investigating the etiology of complex diseases. In our study we considered 

11 such factors that could influence child weight gain trajectories and found that, while the FDA PRS is 

by far the dominant predictor, an appetite score computed on our cohort (see Methods) has a 

significant effect. It has been shown that a child’s appetite behavior impacts early weight gain and may 

have a strong genetic basis33,11. In agreement with this, a recent study found a positive relationship 

between a childhood obesity PRS and appetite54. In our study, a child’s appetite behaviour was 

reported by his/her mother—which could have introduced some biases. Because appetite is emerging 

as an interesting predictor of child weight gain status, it should be explored in more detail in future 

studies.  

 

In addition to the type of environmental and behavioral factors considered in our study, other factors 

may interact with genetics in shaping obesity risks. These include the microbiome, the metabolome, 

and the epigenome. We found previously that children’s oral microbiota composition is associated with 

growth curves55. Moreover, we are collecting data on the metabolomes and epigenomes of the children 

in our study cohort. Our overarching goal is to develop a multi-omic model to comprehensively 

understand the development of childhood obesity and identify a combination of risk factors that can be 

used for accurate identification of children who would benefit most from early life intervention programs. 

 

Our FDA-based polygenic risk score was computed considering the longitudinal change in weight-for-

length/height ratio from birth through three years of age. An ongoing follow-up of our study participants, 

with weight and height collected at later time points, will allow us to further evaluate the predictive 

power of the FDA PRS as age progresses. Additionally, we note that our cohort (Table 2), as well as 
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the cohorts of older children and adults used for validation, consisted predominantly of individuals of 

European ancestry. It will be important to conduct similar analyses on individuals of non-European 

ancestries, and identify differences and commonalities in the genetic factors contributing to obesity 

risks among different ethnicities. 

 

The critical advantage of a PRS based on childhood vs. adult weight gain information is that the former 

is potentially more actionable. While INSIGHT35 was not designed to test an obesity intervention on 

individuals with high genetic risk, we were able to observe a significant weight gain velocity difference 

between individuals with high genetic risk in the INSIGHT intervention vs. control groups. To fully 

understand the clinical implications of using a PRS as a screening tool for obesity intervention 

additional clinical trials are needed that would combine genetic screening with early life intervention. 

Methods 

Study sample, growth curves, and conditional weight gain 

We collected genetic information from 226 children recruited from the 279 families involved in the 

INSIGHT study35. These children are full-term singletons born to primiparous mothers in Central 

Pennsylvania. The INSIGHT study is a randomized, responsive-parenting behavioral intervention aimed 

at the primary prevention of childhood obesity against a home safety control. INSIGHT collected 

clinical, anthropometric, demographic, and behavioral variables on the children between birth and the 

age of three years (Table 2). In this study we utilized 11 of these variables including maternal pre-

pregnancy BMI, paternal BMI, maternal pregnancy health variables (gestational weight gain, gestational 

diabetes, and smoking during pregnancy), family income (as a proxy for socioeconomic status), mode 

of delivery, child’s gender, child’s birth weight, INSIGHT intervention group (intervention or control), and 

mother-reported child’s appetite at 44 weeks. The appetite score is an ordinal variable on a scale from 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2020. ; https://doi.org/10.1101/606277doi: bioRxiv preprint 

https://paperpile.com/c/kABgCs/Au5q
https://paperpile.com/c/kABgCs/Au5q
https://doi.org/10.1101/606277
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

1-5 which summarizes the Child Eating Behavior Questionnaire (CEBQ)56. Domains on the CEBQ 

include food responsiveness, emotional over-eating, food enjoyment, desire to drink, satiety 

responsiveness, slowness in eating, emotional under-eating, and food fussiness. Length was measured 

using a recumbent length board (Shorr Productions) for visits before two years (birth, 3-4 weeks, 16 

weeks, 28 weeks, 40 weeks, and one year). Standing height was measured with a stadiometer (Seca 

216) at two and three years.  

 

To construct growth curves, we utilized the anthropometric data collected above to calculate weight-for-

length/height ratio at each time point for our analysis. We used FDA to analyze these longitudinally as 

individual functions through the fdapace package in R. This package implements the Principal Analysis 

by Conditional Estimation (PACE) algorithm57, which pools information across subjects for more 

accurate curve construction. We used the default settings and represented them in Fig. 1a using 51 

cubic spline functions with evenly spaced knots. 

 

Conditional weight gain z-scores were calculated as the standardized residuals from a regression of 

age- and sex-specific weight-for-age z-score at 6-months on the weight-for-age z-score at birth 

(determined using the World Health Organization sex-specific child growth standards)36. Length-for-age 

z-score at 6-months, length at birth, and precise age at the 28-week visit were considered as cofactors 

in this regression and thus only the change in weight between birth and 6-months was captured36,38. 

These scores are approximately normally distributed and have, by construction, a mean of 0 and a 

standard deviation of 1. Positive conditional weight gain z-scores correspond to a greater than average 

weight gain and are used to define rapid infant weight gain, which is a risk factor for developing obesity 

later in life39,58,59.  
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Genotyping 

Blood from a fingerstick was collected at the child’s one year clinical research visit. Genomic DNA was 

isolated (Qiagen DNeasy Blood and Tissue Kit) and genotyped on the Affymetrix Precision Medicine 

Research Array (PMRA). Initial quality filtering was performed using the following criteria: we removed 

SNPs with minor allele frequency >0.05 and/or present in less than 5% of individuals and SNPs located 

in mitochondrial DNA. All quality filtering steps were performed in PLINK v1.960,61 with 329,159 SNPs 

remaining after quality filtering. 

 

We calculated relatedness of the INSIGHT individuals using the --make-rel command in PLINK 1.960,61. 

Principal components (eigenvalues and eigenvectors) of the relationship/relatedness matrix were then 

computed using the eigen function in R. 

 

To obtain missing genotype calls and genotypes not included on the PMRA, we performed imputation. 

We used 294,987 of the above quality-controlled SNPs for imputation (34,172 SNPs were removed 

because they were not found in the 1000 Genomes Project reference). Individual’s genotypes were first 

phased leveraging pedigree information (genotypes were also collected for mother and father in most 

cases, and some younger siblings) using SHAPEIT262,63. The phased haplotypes were then used for 

imputation using the 1,000 Genomes Project phase 3 data64 as a reference panel with IMPUTE265. 

SNPs with imputation probability <90% were removed. Following imputation, we had information for 

12,479,343 SNPs. 

Functional Data Analysis techniques 

First, to apply FDA techniques we further limited the number of SNPs by removing those with missing 

values (resulting in 210 individuals with 79,498 corresponding SNPs). After this step, we used an FDA 
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feature screening method42, which is an effective and fast procedure to filter out SNPs that are clearly 

unimportant, yielding a substantially smaller subset of SNPs that can then be used in a more advanced 

joint model66. This method is specifically designed for longitudinal GWAS and can handle up to millions 

of SNPs. The method evaluates each SNP individually fitting a simplified model comprising only that 

SNP (with no other SNPs involved) and calculating a weighted mean squared error. This is then used 

to rank the SNPs. In our study, the top 10,000 SNPs were selected with this feature screening step. 

See Supplementary Note S1 for additional details about FDA feature selection. 

After feature screening, we used FLAME (Functional Linear Adaptive Mixed Estimation)43, a method 

that simultaneously selects important predictors and produces smooth estimates for function-on-scalar 

linear models. This method further downselects from the pool of the top 10,000 SNPs as ranked within 

our screening step. In addition, it provides smooth estimates of the effects of the selected SNPs on the 

growth curves. To tune the penalty involved in FLAME, we split our observations into training (75%) 

and test (25%) sets. This procedure resulted in 24 SNPs and their corresponding estimated effect 

curves. See Supplementary Note S2 for additional details about FLAME. 

Next, we used the estimated effect curves produced by FLAME for each of the 24 selected SNPs to 

construct our FDA-based Polygenic risk score. This was done choosing SNP-specific weights that 

maximize the squared covariance between weighted SNP counts and growth curves fitted through the 

FLAME43 estimates—thus incorporating both the dynamic nature of the SNP effects and linkage 

disequilibrium between the SNPs themselves. We applied the weights to the allele counts of each child, 

and computed his/her FDA PRS as the weighted sum of counts across the selected SNPs. Thus, FDA 

allows us to exploit the longitudinal structure of our data to not only screen and select SNPs, but also 

weight them using estimates of how their effects change over time.  

FLAME was also used to assess the statistical robustness of SNP selection and create a more stable 5 

SNP score (FDA5 PRS) through a 20-fold sub-sampling scheme where the study subjects were split at 
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random and selection was repeated 20 times, each time on 19/20 of the data. For this exercise we fixed 

the penalty level in FLAME to be consistent across folds (see Supplementary Note S2 for additional 

details). The top 5 SNPs were identified based on their selection frequency and weight magnitude as 

produced by FLAME. We note that like most regularization techniques for variable selection, FLAME 

operates on standardized inputs (0 mean and unit variance). To generalize to other data sets, we re-

scaled the weights by regressing the curves back on the raw, un-standardized values of the 24 (and 5) 

SNPs. 

We assessed the in-sample association between growth curves and our FDA-based scores fitting 

function-on-scalar linear models67. The significance of the scores as predictors of the growth curves 

was determined based on three tests68 employing different types of weighted quadratic forms. One 

employs a simple L2 norm of the parameter estimate (L2), another uses principal components to 

reduce dimension prior to a Wald-type test (PCA), and the last blends the two through the addition of a 

weighted scheme in the PCA (Choi). We reported the more conservative of the three values. 

Simulation study to evaluate sample size vs depth 

We created simulated populations of growth curves with different sample sizes by re-sampling the 

original 210 curves we used with FDA techniques (see above). In each artificial sample, we proceeded 

as follows. We altered the curves associating them to an artificial feature 𝐹, which plays the role of the 

PRS (the pseudo-PRS) in this abstract setting. This was done taking 𝑌𝑖(𝑡) = 𝐺𝑖(𝑡) + 𝛽(𝑡)𝐹𝑖where 𝐺𝑖(𝑡) 

is the i-th original growth curve, 𝐹𝑖 ∼ 𝑁(0,0. 52) is the ith value of the artificial feature and 𝛽(𝑡) is the 

estimated coefficient curve of the FDA PRS (based on 24 selected SNPs) from our original analysis. 

We then performed function-on-scalar regression and recorded the resulting p-value. Next, to simulate 

a comparable scenario with a “cross-sectional” response 𝑌, we randomly selected one time point in 

each curve 𝑌𝑖(𝑡) -- this corresponds to a measurement at a given age 𝑡 = 𝐴. We then performed a 

standard regression of 𝑌 on 𝐹and 𝐴; in other words, while this regression does not use the longitudinal 
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phenotype, it does correct for age when evaluating the effect of 𝐹 on the cross-sectional phenotype. 

We recorded the p-value for 𝐹. Next, to simulate a larger variability occurring in less controlled or 

observational studies, we increased the noise adding a Gaussian error (mean 0 and variance 𝑠2) to the 

cross-sectional response. In a first scenario, the variance was “calibrated” on the INSIGHT data; we 

took 𝑠2=5x10-5, the within-day variation estimated from a mixed effects model for the growth index 

(fixed effect for age, random effects for individual and observation number -- for visits where multiple 

measurements were taken). In a second scenario, meant to mimic a study where measurements are 

less accurate than those collected in INSIGHT, we took 𝑠2= 5x10-4. In both scenarios we again 

performed a standard regression on 𝐹 and 𝐴, and recorded the p-value for 𝐹. The whole procedure -- 

creating simulated samples of different sizes, generating the artificial explanatory feature (pseudo-PRS) 

and the various responses (growth curves), performing the various regressions and recording p-values 

-- was repeated 100 times, allowing us to compute averages and standard errors for the negative log p-

values plotted in Fig. 4. 

Polygenic Risk Scores constructed by other studies 

To calculate Belsky PRS28, Elks PRS27, den Hoed PRS26, Li PRS29, and Khera PRS23 on the INSIGHT 

cohort we employed the Allelic Scoring function in PLINK v1.960,61. For Belsky PRS, Elks PRS, and Li 

PRS some proxy alleles had to be used in place of SNPs that were not assessed on the PMRA. Such 

proxies were determined using linkage disequilibrium with LDlink69. Tables describing the composition 

of each PRS can be found in the Supplemental Materials (Tables S3-S6). We used the INSIGHT 

imputed data, which include 12,479,343 SNPs (see above), to calculate the Khera PRS. The Khera 

PRS comprises a very large number of SNPs, as many as 2,100,30223, but we were only able to 

calculate this score using 751,735 SNPs (37% of total Khera SNPs). 
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Validation datasets 

We used two validation datasets downloaded from dbGaP. The first dataset was obtained from 

Neurodevelopmental Genomics: Trajectories of Complex Phenotypes (dbGaP dataset accession 

number phs000607.v3.p248–50). We considered 283 children between the ages of 8 and 9 years who 

self-reported as being of European descent. Using their height and weight measurements, we 

calculated BMI and then split individuals into deciles to compare those with the 10% lowest and highest 

BMI. BMI groups were determined using sex-specific, BMI-for-age percentiles as described by the 

Centers for Disease Control and Prevention. The second dataset was obtained from the eMERGE 

Network Imputed for 41 Phenotypes (dbGaP dataset accession number phs000888.v1.p1, variable 

number phv00225989.v1.p1). We considered 2,486 adults who self-identified as white. As with the 

children cohort we considered BMI of these individuals and categorized them based on BMI deciles 

(see above). For both datasets the FDA PRS was calculated using the score function in PLINK 

v1.960,61. Proxies for SNPs were determined using LDLink69 and are summarized in Table S7.  

Analysis of environmental and behavioral covariates  

Using the Bayesian Information Criterion option of the leaps package in R70, we applied best subset 

selection51 to the regression of conditional weight gain scores36 on 11 potentially confounding 

covariates (described in the Results section). We included (separately) Belsky PRS, FDA PRS, or 

FDA5 PRS as a 12th predictor in the regression. Once the best subset of predictors was selected, we 

fit a linear model using the lm function in the R stats package. 

 

Data Availability 

Phenotypic and Genetic data are/will be available under dbGaP study number: phs001498.v2.p1.  
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Code for carrying out the statistical methods (screening, applying FLAME, PRS construction and 

evaluation) can be found at https://github.com/makovalab-psu/InsightPRSConstruction.  
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Figures 

 

Figure 1. Growth curves. Growth curves from birth to three years for 226 children enrolled in the 

INSIGHT study are shown (a) color-coded by participant’s ID, and (b) color-coded based on a gradient 

corresponding to our FDA-based Polygenic Risk Score. The dashed black line is the mean curve. 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2020. ; https://doi.org/10.1101/606277doi: bioRxiv preprint 

https://doi.org/10.1101/606277
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 

 

Figure 2. Polygenic risk scores (PRSs) and children’s growth patterns. Estimated effect coefficient 

for a PRS as a predictor of children’s growth curves in a function-on-scalar regression for (a) FDA PRS, 

(d) FDA5 PRS, or (g) Belsky PRS. Boxplots comparing a PRS between children with vs. without rapid 

infant weight gain (i.e. RIWG vs. no-RIWG) for (b) FDA PRS, (e) FDA5 PRS, or (h) Belsky PRS. 

Scatterplot of conditional weight gain vs. a PRS using (c) FDA PRS, (f) FDA5 PRS, or (i) Belsky PRS. 
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Figure 3. Statistical validation of FDA-based SNP selection. The frequency with which the 24 SNPs 

included in the FDA PRS are re-selected in a 20-fold sub-sampling scheme is plotted against their 

absolute statistical weight in the FDA PRS—showing a strong positive association. The SNPs with both 

the largest weights and the highest re-selection frequency (top five SNPs marked by arrows) may be 

the most important to interpret and validate in future studies. 
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Figure 4. P-value curves of simulations across sample sizes. Average significance (-log(p-value)) 

and standard error bands as a function of the sample size, from 100 replications of a simulation 

procedure. Synthetic growth curves, as well as cross-sectional responses with varying levels or noise, 

are regressed on an artificial feature representing a polygenic risk score. The dashed black horizontal 

line corresponds to a p-value of 7x10⁻⁹, which is the one obtained using growth curves and a sample 

size of 200 (similar to that of our study).  
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Figure 5. FDA-based Polygenic Risk Score and obesity in adolescent and adults validation 

cohorts. (a) Distributions of FDA5 PRS in adolescents (age 8 and 9 years) from The Philadelphia 

Neurodevelopment Cohort by BMI decile (n=28 per decile). (b) Distributions of FDA PRS in adults (over 

18 years of age) either classified as normal or extremely obese in the eMERGE study by BMI decile 

(n=284 per decile). 
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