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Abstract

Most research into bottlenose dolphins’ (Tursiops truncatus’ ) capacity for
communication has centered on tonal calls termed whistles, in particular individually
distinctive contact calls referred to as signature whistles. While “non-signature” whistles
exist, and may be important components of bottlenose dolphins’ communicative
repertoire, they have not been studied extensively. This is in part due to the difficulty
of attributing whistles to specific individuals, a challenge that has limited the study of
not only non-signature whistles but the study of general acoustic exchanges among
socializing dolphins. In this paper, we propose the first machine-learning-based
approach to identifying the source locations of semi-stationary, tonal, whistle-like
sounds in a highly reverberant space, specifically a half-cylindrical dolphin pool. We
deliver time-of-flight and normalized cross-correlation measurements to a random forest
model for high-feature-volume classification and feature selection, and subsequently
deliver the selected features into linear discriminant analysis, linear and quadratic
Support Vector Machine (SVM), and Gaussian process models. In our 14-point setup,
we achieve perfect classification accuracy and high (MAD of 0.6557 m, IQR = 0.3395 -
1.5694) regression accuracy with fewer than 10,000 features. The regression models
yielded better accuracy than the established Steered-Response (SRP) method when all
training data were used, and comparable accuracy - even when interpolating at several
meters - in the lateral directions when deprived of training data at testing sites; our
methods additionally boast improved computation time and the potential for superior
accuracy in all domains with more training data.

Introduction 1

Dolphin communication research is in an active period of growth. Many researchers 2

expect to find significant communicative capacity in dolphins given their complex social 3

structure [1–3], advanced cognition including the capacity for mirror self-recognition [4], 4

culturally transmitted tool-use and other behaviors [5], varied and adaptive foraging 5

strategies [6], and their capacity for metacognition [7]. Moreover, given dolphins’ 6

well-studied acoustic sensitivity and echolocation ability [8–10], some researchers have 7

speculated that dolphin vocal communication might share properties with human 8

languages [11–13]. However, there is an insufficiency of work in this area to make 9

substantive comparisons. 10
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Among most dolphin species, a particular tonal class of call, termed the whistle, has 11

been identified as socially important. In particular, for the common bottlenose dolphin, 12

Tursiops truncatus – arguably the focal species of most dolphin cognitive and 13

communication research – research has focused on signature whistles, individually 14

distinctive whistles [14–16] that may convey an individual’s identity to 15

conspecifics [15,17] and that can be mimicked, potentially to gain conspecifics’ 16

attention [18]. 17

Signature whistle studies aside, most studies of bottlenose dolphin calls concern 18

group-wide repertoires of whistles and other, pulse-form call types [19–23]; there is a 19

paucity of studies that seek to examine individual repertoires of non-signature whistles 20

or the phenomenon of non-signature acoustic exchanges among dolphins. Regarding the 21

latter, difficulties with sound attribution at best allow for sparse sampling of 22

exchanges [17,24]. Nevertheless, such studies constitute a logical prerequisite to an 23

understanding of the communicative potential of whistles. 24

The scarcity of such studies can be explained in part by a methodological limitation 25

in the way in which dolphin sounds are recorded. In particular, no established method 26

exists for recording the whistles of an entire social group of dolphins so as to reliably 27

attribute the signals to specific dolphins. The general problem of sound attribution, 28

which is encountered in almost every area of communication research, is typically 29

approached in one of two ways: (1) by attaching transducers to all potential sound 30

sources, in which case the source identities of sounds can usually be obtained by 31

discarding all but the highest-amplitude sounds in each source-distinctive recorder, or 32

(2), by using a fixed array (or arrays) of transducers, a physics-based algorithm for 33

identifying the physical origin of each sound, and cameras that monitor the physical 34

locations of all potential sources for matching. 35

While notable progress has been made implementing attached transducers (or tags) 36

to identify the sources of dolphin whistles [25–27], shortfalls include the need to 37

manually tag every member of the group under consideration, the tendency of tags to 38

fall off, and the tags’ inherent lack of convenient means for visualizing caller behavior. 39

Most significant to research with captive dolphins, the use of tags can conflict with best 40

husbandry practices (e.g., due to risk of skin irritation, of ingestion) and be forbidden, 41

as is the case at the National Aquarium. At such locations, less invasive means of sound 42

attribution are necessary. Unfortunately, a reliable implementation of the array/camera 43

approach to dolphin whistles has not been achieved, though it has been achieved for 44

more tractable dolphin clicks [28]. In the context of whistles in reverberant 45

environments, authors have noted the complications introduced by multipath effects – 46

resulting from the combination of sounds received from both the sound source and 47

acoustically reflective boundaries – to standard signal processing techniques. These 48

complications generally arise from the overlap of original and reflected sounds that 49

confound standard, whole-signal methods of obtaining time-of-flight differences. 50

Standard techniques have at best obtained modest results in relatively irregular, 51

low-reverberation environments where they have been evaluated [29–32]. In unpublished 52

work, we have achieved similar results. One method of improving a standard signal 53

processing tool for reverberant conditions, the cross-correlation, has been proposed 54

without rigorous demonstration and has not be reproduced [33]. Among all previous 55

methods we have identified those falling under the umbrella of Steered-Response Power 56

(SRP) most effective. In short, these methods rely on maximizing the sum of 57

cross-correlations between all pairs of hydrophone signals with respect to sets of time 58

shifts between signals/hydrophones, each set corresponding to a hypothetical source 59

location in the pool [34]; hypothetical source locations may correspond to equally-spaced 60

grid points in the suspect zone, the naive approach, or be iteratively chosen in a more 61

efficient fashion [35]. While the details of the particular SRP method employed are left 62
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vague, Rebecca E. Thomas et al. [36] have rigorously demonstrated such a method with 63

reasonable success (used for about 40% recall of caller identity) [36]. 64

We propose the first machine-learning-based solution to the problem of localizing 65

whistle-like sounds in a highly reverberant environment, a half-cylindrical concrete 66

dolphin pool, located at the National Aquarium in Baltimore, Maryland. We apply it to 67

a broad variety of artificial tonal whistle-like sounds that vary over a range of values 68

within a universally recognized parameter space for classifying dolphin sounds, for a 69

limited number of sampling points. We begin with a random forest classification model 70

and later find that a linear classification model achieves similar results, as well as a 71

regression model that achieves dolphin-length accuracy depending on training 72

circumstances (discussed below). The latter two models rely on small (or parsimonious) 73

feature sets containing fewer than 10,000 features to locate single whistles. We 74

implement an SRP method to compare our results. 75

Materials and methods 76

Sample Set 77

All data were obtained from equipment deployed at the Dolphin Discovery exhibit of 78

the National Aquarium in Baltimore, Maryland. The exhibit’s 110-ft-diameter 79

cylindrical pool is subdivided into one approximate half cylinder, termed the exhibit 80

pool (EP), as well three smaller holding pools, by thick concrete walls and 6 ft x 4.25 ft 81

(1.83 m x 1.30 m) perforated wooden gates; all pools are acoustically linked. The data 82

were obtained from the EP, when the seven resident dolphins were in the holding pools; 83

their natural sounds were present in recordings. 84

To ensure that the sound samples used for classification were not previously 85

distorted by multipath phenomena (i.e., were not pre-recorded), were obtained in 86

sufficient quantity at several precise, known locations inside the EP, and were 87

representative of the approximate “whistle space” for Tursiops truncatus, we chose to 88

use computer-generated whistle-like sounds that would be played over an underwater 89

Lubbell LL916H speaker. 90

We generated 128 unique sounds (with analysis done on 127) to fill the available 91

time. To be acoustically similar to actual T. truncatus whistles, these sounds were to be 92

“tonal” – describable as smooth functions in time-frequency space, excluding harmonics – 93

and to be defined by parameters and parameter ranges, given in Table 1, representative 94

of those used and observed by field researchers to characterize dolphin whistles [37,38]. 95

To construct a waveform to be played, we began with an instantaneous frequency, f(t), 96

that described a goal time-frequency (or spectrographic) trace, for instance the trace 97

shown in Fig 1. For simplicity, and consistent with the parameters typically used to 98

describe dolphin whistles, we approximated dolphin whistles as sinusoidal traces in 99

spectrographic space – thus f(t) was always a sinusoid. Based on the standard 100

definition of the instantaneous frequency as f(t) = 1
2π

dΦ(t)
dt , we obtained the phase Φ(t) 101

by integration of f(t) with respect to time. The phase could be straightforwardly 102

transformed into a playable waveform y(t) as y(t) = A(t)sin(Φ(t)), where A(t) 103

represented a piecewise function that modulated the intensity of the signal at different 104

times (the beginning and end of a signal were gradually increased to full intensity and 105

decreased to zero, respectively, as functions of the “Power Onset/Decay Rate,” and the 106

absolute beginning occurred at a peak or trough of the sinusoid f(t) according to 107

“Phase Start”). Alternatively, the phase derived for f(t) could be transformed with a 108

heuristic into a waveform corresponding to a slightly modified version of f(t), 109

specifically a quasi-sinusoid with “sharpened” peaks and approximate 110

whistle-harmonic-like traces higher in frequency than the fundamental. This heuristic is 111
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Table 1. Parameters of training set sinusoids.

Parameter Value Set
Duration (sec) [0.3, 1]
Number of Cycles [1, 2 ]
Center Frequency (Hz) [6000, 10500]
Cycle Amplitude (Hz) [2000, 5000]
Phase Start (rad) [−π2 , π

2 ]
Power Onset/Decay Rate * [0.1, 0.25]

* Values indicate fraction of signal length over which a sin2 rise/falls occurs.

y(t) = A(t)arcsin(m·sin(Φ(t)))
arcsin(Φ(t)) , where m is a parameter that simultaneously affects the 112

“sharpness” of the peaks and the number of harmonics; we used a value of 0.8. 113

Waveforms were played in Matlab through a MOTU 8M audio interface at calibrated 114

volumes and a sampling rate of 192 kHz. An example of pre-speaker output is given in 115

Fig 1. 116

Fig 1. Spectrogram of an artificial whistle. Displayed is a standard, 1024-bin,
Hamming-window spectrogram of one of the 128 whistle-like sounds that were generated
(and here sampled) at 192 kHz; frequency resolution of the plot is 187.5 Hz (smoothing
added). Note that the spectrogram was constructed from the unplayed source signal. In
this case, Duration = 1 second, Number of Cycles = 2, Center Frequency = 10500
Hertz, Cycle Amplitude = 2000 Hertz, Phase Start = -π/2.

The 128 sounds were played at each of 14 locations within the EP; they 117

corresponded to 7 unique positions on the water surface on a 3 x 5 cross, at 6 ft (1.83 118
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m) and 18 ft (5.49 m) deep. Approximate surface positions are shown in Fig 2; the 119

difference between adjacent horizontal and vertical positions was 10-15 ft (3.05-4.57 m). 120

The LL916H speaker was suspended by rope from a custom flotation device and moved 121

across the pool surface by four additional ropes extending from the device to research 122

assistants standing on ladders poolside. Importantly, the speaker was permitted to sway 123

from its center point by approximately 1/3 m (as much as 1 m) in arbitrary direction 124

during calibration. These assistants also used handheld Bosch 225 ft (68.58 m) Laser 125

Measure devices to determine the device’s distance from their reference points (several 126

measurements were taken for each location), and through a least-squares trilateration 127

procedure [39] the device location could always be placed on a Cartesian coordinate 128

system common with the hydrophones. Each sound in a 128-sound run was played after 129

a 2-second delay as well as a 0.25-second, 2-kHz tone, that allowed for the creation of a 130

second set of time-stamps in order to compensate for clock drift during the automated 131

signal extraction. 132

Fig 2. Pool grid point and hydrophone array layout. The National Aquarium
Exhibit Pool (EP) is shown, as visualized by the central overhead AXIS P1435-LE
camera. Circled in red are the approximate surface projections of the fourteen points
(each of the seven points represents a pair) at which sounds were played. Circled in
yellow are the four hydrophone arrays, each containing four hydrophones; they are
numbered 1-4 from left to right.

Recording System 133

Acoustic and visual data were obtained from a custom audiovisual system consisting of 134

16 hydrophones (SQ-26-08’s from Cetacean Research Technology, with approximately 135

flat frequency responses between 200 and 25,000 Hz) split among 4 semi-permanent, 136

tamper-resistant arrays and 5 overhead cameras – for the purpose of this study, only 137

one central AXIS P1435-LE camera, managed by Xeoma surveillance software, was used. 138

The four arrays were spaced approximately equally around the half-circle boundary of 139

the EP (a “splay” configuration). The physical coordinates of all individual 140

hydrophones were obtained by making underwater tape-measure measurements as well 141

as above-water laser-rangefinder measurements; various calibrations were performed 142

that are outside the scope of the present paper. Audio recordings were collected at 192 143
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kHz by two networked MOTU 8M audio interfaces into the Audacity AUP sound 144

format, to avoid the size limitations of standard audio formats. The same two audio 145

interfaces were involved in playing the sounds. Standard passive system operation was 146

managed by Matlab scripts recording to contiguous WAV files; for consistency Matlab 147

was also used for most data management and handling. Data are available at 148

https://doi.org/10.6084/m9.figshare.7956212. 149

Classification and Regression 150

1,605 recorded tones were successfully extracted to individual 2-second-long, 16-channel 151

WAV’s that were approximately but not precisely aligned in time. Each tone was 152

labeled with a number designating at which of 14 pool locations it was played. A 153

random 10% of sounds were set aside for final testing, with sinusoids and 154

quasi-sinusoids with the same parameters grouped together given their close similarity. 155

Each sound was initially digested into 1,333,877 continuous, numerical features (or 156

variables), together composing the so-called feature set. 157

The first 120 features were time-difference-of-arrivals (TDOA’s) obtained using the 158

Generalized Cross-Correlation Phase Transform (GCC-PHAT) method [40], which in 159

currently unpublished work we found to be most successful among correlation-based 160

methods for obtaining whistle TDOA’s. Briefly, a TDOA is the time difference between 161

the appearance of a signal (such as a whistle) in one sensor (such as a hydrophone) 162

versus another. Possession of a signal’s TDOA’s for all pairs of 4 sensors (with known 163

geometry) in 3-dimensional space is theoretically, but often not practically, sufficient to 164

calculate the exact source position of that signal from geometry [41]. While we establish 165

elsewhere that the 120 TDOA’s (i.e., one TDOA for each distinct pair of our 16 166

hydrophones, excluding self-pairs) obtained from GCC-PHAT are practically not 167

sufficient to calculate the exact source position of our signals using a standard 168

geometric technique that accommodates more than four sensors, Spherical 169

Interpolation [42,43], we suspected that these TDOA’s might still contain information 170

helpful to a machine learning model. 171

The next 6601 x 136 features consisted of elements from standard, normalized 172

circular cross-correlations [44]: for each unique pair of the 16 hydrophones (including 173

self-pairs), 136 in total, we computed the standard circular cross-correlation of a 174

whistle’s two audio snippets. While each correlation series was initially 384,000 elements 175

long (192,000 samples/second x 2 seconds), we only kept the central 6601 elements from 176

each, corresponding to a time-shift range of approximately ±17 milliseconds; based on 177

geometry, the first incidence of any sound originating from inside the pool must have 178

arrived within 17 milliseconds between any two sensors (conservatively), meaning 179

cross-correlation elements corresponding to greater delays could be expected to be less 180

helpful to in-pool source location prediction. 181

Lastly, we included 27,126 x 16 discrete Fourier transform elements (one set for each 182

of 16 hydrophones, for frequencies from 0 Hz to 27,126 Hz). However, preliminary 183

analysis found these features to be unhelpful to classification. Thus, they were 184

discarded from the feature set, leaving 897,871 features. 185

Possessing the above feature set for each whistle, each “labeled” by the whistle 186

source location and coordinates, we constructed predictive models on the 90% of 187

whistles made available for model construction (or training). We began with multiclass 188

classification [45], training models to predict which of the 14 possible locations a novel 189

whistle originated from. Given our limited computational resources, our feature set 190

remained too large to accommodate most classifiers. A notable exception was the 191

Breiman random forest [46,47], which was suitable not only for classification – being a 192

powerful nonlinear multiclass classifier with built-in resistance to overfitting – but for 193

feature reduction (i.e., the process of shrinking feature set size while minimizing loss of 194
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classification accuracy), via the permuted variable delta error metric. The permuted 195

variable delta error roughly describes the increase in classification error when a 196

particular feature is effectively randomized, providing a measure of that feature’s 197

importance in classification. We grew a Breiman random forest composed of CART 198

decision trees [48] on the training data; each tree was sequentially trained on a random 199

subset of ˜75% of the training samples using a random ˜
√

897, 871 feature subset (as 200

per standard practice). Out-of-bag (OOB) error, referring to the classification error on 201

samples not randomly chosen for the training subset, was used for validation. While an 202

introduction to machine learning is beyond the scope of this paper, these and 203

subsequent techniques are standard with reader-friendly documentation available at 204

such sources as MathWorks (https://www.mathworks.com) and sciikit-learn 205

(https://scikit-learn.org/stable/), to which we direct interested readers. 206

We subsequently used permuted variable delta error as a measure of feature 207

importance, both to examine the selected features for physical significance – recall that 208

cross-correlation element features correspond to pairs of sensors – and to obtain a 209

reduced feature set appropriate for training additional models. The reduced feature set 210

included the 6,788 features with nonzero permuted variable delta error. On the reduced 211

feature set, we considered a basic CART decision tree [45,48], a linear and quadratic 212

Support Vector Machine (SVM) [45,49], and linear discriminant analysis [50]. 213

We also considered Gaussian process regression (also termed kriging) [51,52] – a 214

nontraditional, nonparametric method of regression that could accommodate our 215

under-constrained data. Whereas the purpose of our classification models was to predict 216

from which of 14 possible points a sound originated, the purpose of our regression 217

models was to predict the three Cartesian coordinates from which the sound originated. 218

Localization by regression was performed two ways. In the first way, all training sounds 219

were used to generate three models (one per dimension) for predicting the coordinates 220

of all test sounds. In the second way, training sounds from all but one grid point were 221

used to generate models for predicting the coordinates of test sounds from the excluded 222

point; the process was repeated for all grid points, the results aggregated. While we 223

were doubtful of our models’ ability to precisely interpolate at distances of several 224

meters from 14 points, this test was envisioned to show that reduced-feature-set models 225

are capable of a degree of spatial interpolation. 226

For comparison, we employed a Steered-Response Power approach [34] to localizing 227

the sounds in the test set. As the details to the particular method used by Thomas et 228

al. [36] are unpublished, we followed a standard procedure: for a hypothetical sound 229

originating from each of every point of a 6” (15.25 cm) virtual gridding of the pool, we 230

calculated the theoretical differences in the time of arrival for our 16 hydrophones. 231

Shifting the 16 signals of a received whistle in our test set by each of every set of 232

differences, then cross-correlating the shifted signals and summing the results along 233

both axes, the predicted source location corresponded to the grid point that produced 234

the largest value thus computed. We calculated the speed of sound from the Del Grosso 235

equation [53]; the pool salinity was 31.5 ppt and temperature 26.04 °C. As an aside, we 236

attempted to replace the standard cross-correlation in the prior calculation with the 237

Generalized Cross Correlation with Phase Transform [40], which constitutes the 238

SRP-PHAT technique for sound localization discussed in [34], but quickly found the 239

results to be inferior. 240

Lastly, we obtained a minimal, nearly sufficient feature set by training a single, 241

sparse-feature (or parsimonious) decision tree classifier on all features of all training 242

data. We then investigated these minimal features for physical significance, by mapping 243

features’ importance (again, using a random forest’s permuted variable delta error) back 244

to the sensor and array pairs from which they were derived. 245
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Results 246

The random forest classification model trained on the full feature set, as described above, 247

reached 100.0% OOB accuracy at a size of approximately 180 trees. We continued 248

training to 300 trees, and evaluated the resulting model on the test set: 100.0% accuracy 249

was achieved, with 6,788 features possessing permuted variable delta error greater than 250

0 (based on OOB evaluations). Note that, given the stochastic construction of the 251

random forest, these features did not represent a unique set or superset of sufficient 252

features for obtaining 100.0% test accuracy. When we considered which array pairs the 253

6,778 TDOA and cross-correlation features represented, we found that all pairs of the 254

four hydrophone arrays were represented with no significant preference. 255

We trained several more models on the reduced, 6,788-item feature set, including a 256

basic decision tree, a linear and quadratic SVM, and linear discriminant analysis, using 257

10-fold cross-validation. The quadratic SVM as well as linear discriminant analysis 258

achieved 100.0% cross-validation and 100.0% test accuracy, the basic decision tree 259

achieved 96.90% cross-validation and 97.75% test accuracy (95% CI [97.06 - 98.44]), and 260

the linear SVM achieved 100.0% cross-validation accuracy and 99.44% test accuracy 261

(95% CI [98.34 - 100.0]). Confidence intervals reflect Wilson scores. 262

Fig 3. Predictions of test sound coordinates by Gaussian process
regressors. The half-cylindrical National Aquarium EP is depicted. Large unfilled
circles indicate the true coordinates of the test sounds; each has a unique color. Small
filled circles indicate the test sound coordinates predicted by Gaussian process
regression, colors matching their respective true coordinates.

Again using the reduced feature set, we performed Gaussian process regression 263

(kriging) to predict test sound coordinates, generating one model for each Cartesian axis. 264

A random subset of predicted coordinates are plotted in Fig 3. The calculated 265

Euclidean (straight-line) error or median absolute deviation (MAD) was 0.6557 m (IQR 266

= 0.3395 - 1.5694); along the “EP Front” axis MAD was 0.1909 m (IQR = 0.0702 - 267

0.3891), along the “EP Side” axis MAD was 0.1301 m (IQR = 0.0481 - 0.3367), and 268

along the “EP Wall” axis MAD was 0.5191 m (IQR = 0.1644 - 1.1771). 269

When the Gaussian process regression models were generated to predict the 270

coordinates of test sounds on grid points from which they received no training data 271

(three models were generated for each grid point, generated from training data from all 272

other grid points), Euclidean MAD was 3.3691 m (IQR = 2.8497 - 3.7480); along the 273
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(a) (b)

(c)

Fig 4. Multi bar graphs displaying the histogrammed localization error
(absolute deviation) for three whistle localization methods. Both straight-line
(Euclidean) error and error along each of three component Cartesian axes are displayed.
(A) Localization error for Gaussian process regression, training on all training whistles
and predicting coordinates of all test whistles. (B) Localization error for Gaussian
process regression, using models deprived of training data from grid points of evaluated
test sounds. (C) Localization error for SRP on test whistles.

“EP Front” axis MAD was 0.5617 m (IQR = 0.2583 - 1.0282), along the “EP Side” axis 274

MAD was 0.5024 m (IQR = 0.1658 - 1.6241), and along the “EP Wall” axis MAD was 275

2.7324 m (IQR = 2.1410 - 3.3854). 276

For the SRP method applied to the test sounds, Euclidean MAD was 1.5572 m (IQR 277

= 0.7277 - 2.4839); MAD along the “EP Front” axis was 0.4267 m (IQR = 0.1829 - 278

0.7315), MAD along the “EP Side” axis was 0.5182 m (IQR = 0.2134 - 0.9754), and 279

MAD along the “EP Wall” axis was 0.9144 m (IQR = 0.1524 - 1.9812). 280

The histogrammed localization errors (absolute deviations) for all the above 281

predictions are displayed in Fig 4. Anderson-Darling tests rejected the null hypotheses 282

that the sets of errors were drawn from normal distributions (5% significance level), and 283

we therefore proceeded with non-parametric statistics. A Kruskal-Wallis test on the 284

error sets’ mean ranks determined the sets did not originate from the same distribution 285

(5% significance level); results for Dunn’s post-hoc comparisons of individual pairs are 286

given in Fig 5. 287

Lastly, we trained a single, sparse-feature decision tree (a so-called parsimonious 288

model) on the full training set. The severe feature reduction left 22 features. While the 289

decision tree achieved only 96.63% accuracy (95% CI [93.98 - 99.28]) on the test set, a 290

random forest trained on the same features achieved 98.88% test accuracy (95% CI 291
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Fig 5. Mean ranks of test sound localization error. The mean rank for each test
protocol and axis of localization, computed ahead of a Kruskal-Wallis test (discussed in
the text), are shown with 95% CI’s. Comparing every pair of groups using post-hoc
Dunn’s tests with an overall significance threshold of 0.05, we confirmed that interval
overlaps visualized here reflect an inability to reject the null hypothesis that the
underlying samples are drawn from the same distribution; similarly, interval
non-overlaps visualized here reflect rejection of the null hypothesis that the underlying
samples are drawn from the same distribution. Note, “S GR” (Standard Gaussian
regression) refers to Gaussian regression performed with training data from grid
locations of test sounds made available for model building; ”LO GR” (Leave-out
Gaussian regression) refers to Gaussian regression performed with training data for grid
locations of test sounds excluded from model building.

[97.73 - 100.0]). Thus, we considered this feature set both sufficient and sparse enough 292

to meaningfully ask whether classification is making use of features derived from a 293

spatially mixed set of hydrophone and hydrophone array pairs, consistent with a 294

geometric approach to sound source localization. The permuted variable delta error was 295

summed across hydrophone and hydrophone array pairs, which is visualized in Fig 6. 296

Overall, we note that, directly or indirectly, features representing all pairs of 297

hydrophone arrays are utilized for classification. 298

Discussion 299

We provided a proof of concept that sound source localization of semi-stationary 300

bottlenose whistle playbacks can be achieved implicitly as a classification task and 301

explicitly as a regression task in a standard, highly reverberant, half-cylindrical captive 302

dolphin enclosure. Moreover, for the same conditions we showed that, for the 303

localization of whistles originating near training-set sounds (within ˜1/3 m, the speaker 304

sway range), Gaussian regression outperforms a standard Steered-Response Power (SRP) 305

approach to whistle localization. Localizing in the lateral directions, which is often 306

sufficient for distinguishing among potential sound sources based on overhead imaging, 307
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(a) (b)

(c) (d)

Fig 6. Cross-hydrophone and cross-hydrophone-array feature importances
for the parsimonious random forest. Feature importance values for a
parsimonious, 22-feature random forest model, summed across corresponding
hydrophone pairs and averaged across corresponding hydrophone array pairs. (A)
Cross-hydrophone importances for cross-correlation features. Hydrophones belonging to
common panels (1-4, 5-8, 9-12, 13-16) are grouped by red boxes. (B)
Cross-hydrophone-array importances for cross-correlation features. Panels are numbered
1-4 from left-to-right in Fig 2. (C) Cross-hydrophone importances for TDOA features.
(D) Cross-hydrophone-array importances for TDOA features.

Gaussian process models prompted to predict test sound coordinates at novel grid points 308

(potentially interpolating over several meters) did so with similar accuracy to SRP. 309

The data consisted of 16 independent recordings (from four four-hydrophone arrays) 310

of 127 unique bottlenose-dolphin-whistle-like sounds played at 14 positions in the 311

dolphin exhibit pool (EP) at the National Aquarium, semi-randomly divided into 312

“training” and “test” sets for model building and evaluation, respectively. First, we 313

showed that a random forest classifier with fewer than 200 trees can achieve 100% 314

testing accuracy at the task of predicting from which of the 14 locations a sound 315

originated, using 6,788 of 897,871 available features, including TDOA’s obtained from 316

GCC-PHAT as well as normalized cross-correlations from all pairs of sensors. We then 317

showed that linear discriminant analysis and a quadratic SVM can achieve the same 318

classification accuracy on the reduced, 6,788-feature set. If the linear model in 319

particular were to remain accurate when trained on a finer grid of training/testing 320

points (finer by about two fold, which would reduce the distance between grid points to 321

approximately the length of a mature bottlenose dolphin), it would constitute a simple 322

and computationally efficient method of locating the origin of tonal sounds in a 323

reverberant environment. 324
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Although it remains unclear to what extent sounds originating off-grid are classified 325

to the most logical (i.e., nearest) grid points, we note that our classifiers’ success was 326

achieved despite the ˜1/3 m drift of the speaker during play-time; this together with the 327

success of regression may indicate a degree of smoothness in the classifiers’ 328

decision-making. Also, that a linear classifier, which by definition cannot support 329

nonlinear decision making, suffices for this task on features that are generally expected 330

to vary continuously in value across space (TDOA’s, cross-correlations) is reassuring. 331

Nevertheless, this question does warrant further investigation, perhaps using 332

faster-moving sound sources – an investigation of this nature should also be performed 333

to better evaluate the method’s ability to localize sounds produced by dolphins. 334

We more suitably addressed the question of off-grid prediction using Gaussian 335

process regression to predict the coordinates of the test sounds. This method was also 336

quite successful when trained on the full training data set, achieving test MAD of 0.6557 337

m (IQR = 0.3395 - 1.5694) – less than the expected length of an adult common 338

bottlenose dolphin [54]. In order to better assess the regression models’ capacity for 339

interpolation, we evaluated the regression models’ performance on test sounds for which 340

no training sounds from the same grid points were used for model generation. While the 341

regressors’ overall performance on novel points was not satisfactory, admitting error 342

larger than average dolphin length (MAD of 3.3691 m, IQR = 2.8497 - 3.7480), when we 343

decomposed the error along three Cartesian axes (“EP Front” MAD of 0.5617 m with 344

IQR = 0.2583 - 1.0282, “EP Side” MAD of 0.5024 m with IQR = 0.1658 - 1.6241, and 345

“EP Wall” MAD of 2.7324 m with IQR = 2.1410 - 3.3854), we found that the overall 346

prediction error was significantly dominated (referring to Fig 5) by localization error in 347

the direction of pool depth. This is significant because sounds from only two distinct 348

pool depths were obtained, which is intuitively unsuitable for interpolation. We think it 349

is reasonable to suggest interpolation in this direction would improve with finer 350

sampling. Moreover, we note that MAD for interpolation in the other two directions 351

was less than average adult dolphin body length. 352

For comparison, we localized the test sounds using a standard SRP approach that 353

has met success elsewhere, particularly in Thomas et al. [36]. Referring to Fig 5, 354

Gaussian regression significantly outperformed SRP when all training data was used. 355

When the regression models were deprived of training data from grid points of evaluated 356

test sounds, SRP performed better overall and along the “EP Wall” (i.e., depth) axis; 357

there was no significant performance difference along the other two component axes. 358

While this suggests that with the current training data Gaussian regression does not 359

outperform SRP in three dimensions when prompted to interpolate at longer distances, 360

it also suggests the interpolation models are capable of comparable accuracy in the 361

lateral directions; the same might be expected in the vertical direction were more than 362

two depth points available for interpolation. Moreover, the results suggest that 363

Gaussian regression can perform just as well as SRP for localizing sounds across the 364

pool surface (i.e., disregarding depth), which is often sufficient for distinguishing among 365

potential sound sources based on overhead imaging (as in Thomas et al.), even at the 366

disadvantage of needing to interpolate over distances of several meters. 367

Nevertheless, it remains unclear to what extent naturally produced dolphin whistles 368

can be localized. Such whistles are produced by sources that are faster-moving and 369

possessive of different anisotropic properties than our speaker. Evaluation would require 370

a large set of dolphin whistles generated at known locations in the pool, which we do 371

not possess at present, and cannot obtain due to removal of our equipment. However, 372

even were an evaluation of real dolphin whistles to fail due to the models’ inability to 373

generalize in “whistle space,” we note that in general captive dolphins’ whistle 374

repertoires tend to be limited – groups seem to possess less than 100 unique types [21] – 375

and that it would be realistic to train classification/regression models with whistles 376
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closely resembling group members’ sounds, avoiding the need for the model to generalize 377

over all whistle space. 378

Lastly, we showed that an extremely sparse, 22-item feature set that lends itself to 379

relatively strong classification accuracy includes time-of-flight comparisons from all four 380

pairs of arrays. As sound amplitude information was removed in the process of feature 381

creation, this suggests that the classification and regression methods discussed here 382

implicitly use time-of-arrival information for classification from four maximally spaced 383

sensors, consistent with a naive analytic-geometric approach to sound source 384

localization. However, the inner logic of the models ultimately remains unknown. 385

Overall, we feel this study offers a strong argument that machine learning methods 386

are suitable to solving the problem of bottlenose whistle localization in highly 387

reverberant aquaria, where tag-based solutions to whistle attribution are not feasible. 388

We offer evidence to suggest that these methods might be capable of greater accuracy 389

than SRP methods given adequate training data, coming at smaller computational 390

expense – requiring evaluation of approximately 6,788 features per sound versus 391

performing multiple signal cross-correlations per sound. While we caution that these 392

methods still must be evaluated for real dolphin whistles (representing sources that are 393

faster-moving and possessing different anisotropy than our speaker), we opine that our 394

results are encouraging and warrant further research. 395
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47. Belgiu M, Drăguţ L. Random forest in remote sensing: A review of applications
and future directions. ISPRS Journal of Photogrammetry and Remote Sensing.
2016;114:24–31. doi:10.1016/j.isprsjprs.2016.01.011.

48. Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and Regression
Trees. Monterey, CA: Wadsworth & Brooks/Cole Advanced Books & Software;
1984.

49. Cortes C, Vapnik V. Support-vector networks. Machine Learning.
1995;20:273–297. doi:10.1007/bf00994018.

50. Fisher RA. The use of Multiple Measurements in Taxonomic Problems. Annals of
Eugenics. 1936;7:179–188. doi:10.1111/j.1469-1809.1936.tb02137.x.

51. Wahba G. Spline Models for Observational Data; 1990.

52. Williams CKI. Prediction with Gaussian Processes: From Linear Regression to
Linear Prediction and Beyond. In: Jordan MI, editor. Learning in Graphical
Models. NATO ASI Series (Series D: Behavioural and Social Sciences). vol. 89.
Springer, Dordrecht; 1998.

53. Del Grosso VA. New equation for the speed of sound in natural waters (with
comparisons to other equations). The Journal of the Acoustical Society of
America. 1974;56(4):1084–1091.

54. Fernandez S, Hohn AA. Age, growth, and calving season of bottlenose dolphins,
Tursiops truncatus, off coastal Texas. Fishery Bulletin - National Oceanic and
Atmospheric Administration. 1998;(96):357–365.

December 1, 2019 16/16

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 2, 2019. ; https://doi.org/10.1101/606673doi: bioRxiv preprint 

https://doi.org/10.1101/606673
http://creativecommons.org/licenses/by/4.0/

