
 

 

 

 

 

Random burst sensing of neurotransmitters  

 

P. Read Montague1,2,3, Terry Lohrenz1, Jason White1, Rosalyn J Moran4, Kenneth T. Kishida5,6 

1. Fralin Biomedical Research Institute, Virginia Tech 
2. Dept Physics, Virginia Tech 
3. Wellcome Centre for Human Neuroimaging, University College London 
4. Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College 
London 
5. Department of Physiology and Pharmacology, Wake Forest School of Medicine 
6. Department of Neurosurgery, Wake Forest School of Medicine 
 
Correspondence to: read@vt.edu and kkishida@wakehealth.edu 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 13, 2019. ; https://doi.org/10.1101/607077doi: bioRxiv preprint 

https://doi.org/10.1101/607077


Abstract 

We introduce a random sensing approach to neurotransmitter detection that provides concurrent, co-
localized detection of dopamine, serotonin, norepinephrine and pH. The approach generates high quality 
out-of-sample predictions at 10 milliseconds per estimate. Similar high-quality estimates result when the 
data are down-sampled suggesting that even more dramatic speedups are possible. The method also 
works using electrophysiological probes in routine use in clinical preparations thus transforming these 
and similar electrodes into ultra-fast sources of multi-transmitter information.   
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We introduce a new approach for co-localized, sub-second detection of dopamine, serotonin, and 

norepinephrine. The method derives from a recent innovation called elastic net electrochemistry1,2,3, which has 

been used to make the first sub-second recordings of dopamine and serotonin from human brain1,2. The method 

introduced here, which we term random burst sensing (RBS), relies on the application of a randomized, repeating 

pattern of voltages, and uses the electrode current responses to infer all three neuromodulators concurrently. 

We further demonstrate that the method works well on standard platinum-iridium electrodes in routine use in 

human depth recordings, deep brain stimulators, and other commonly used electrodes4 – thus augmenting the 

functional repertoire of normal electrodes to include fast neuromodulator detection. 

 

In an effort to use voltammetry in conscious human brains, we redefined the approach to voltammetry by building 

a supervised inference approach to estimate neuromodulator concentrations1,2,3.  The goal was to extract a 

model in vitro that could be trained to predict and generalize to novel neurotransmitter measurements and novel 

(but similar) electrodes in vivo.  We called this approach Elastic net electrochemistry and showed that it works 

at sub-second rates, displays robustness against pH changes (see fig. 2 Kishida et al., 2016) and estimates 

serotonin and dopamine concurrently off the same electrode2. The same approach can estimate norepinephrine 

and distinguish it from both dopamine and serotonin3.  In all that work, the voltage forcing function was a standard 

triangular waveform 10 milliseconds in duration either followed by a 90 millisecond ‘wait’ period5 (100 msec duty 

cycle1,2) or repeating contiguously3.  

 

However, two features of elastic net electrochemistry suggested that a useful, but radical departure from this 

approach was possible: (1) significant random down-sampling of the transformed current time series produced 

excellent multi-transmitter prediction models3, and (2) the concentration-dependent encoding responses of the 

electrode were not solely concentrated at the oxidation potential of the neuromodulators but spread 

coherently, but ‘wiggling’ throughout the entire current time series2,3.  These observations suggested the 

presence of redundant, stable concentration information spread throughout the current time series sufficient to 

extract excellent concentration-prediction models for multiple, coactive neuromodulators, and at potentially faster 

timescales.  
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Figure 1a shows the workflow for random burst sensing. Voltages throughout the range containing the oxidation 

potential of dopamine and serotonin were quantized into 40 segments and randomized. This pattern was 

repeatedly delivered every 10.3 milliseconds (red inset shows detailed structure of random burst in this example). 

The workflow bifurcates where the top sequences uses all data in each 10.3 millisecond burst and the bottom 

sequence uses only a random 10% of the data. Otherwise the steps are identical as indicated. The final step for 

both branches is to extract a constrained regression model using either the elastic net6 or LASSO regression7.  

This is all carried out in a flow cell where the concentration of analytes can be controlled and we show results 

for a carbon fiber electrode compared to our usual stainless steel ground electrode as reported previously1,2. 

Figure 1b,c shows specifically the out-of-sample predictions for the cross-validated models so extracted for 

dopamine and serotonin.  The performance of each class of model (i.e. using 100% or 10% of the data) is shown 

in two ways: (1) a plot summarizing average out-of-sample predictions across a range, and (2) a plot showing 

the model output to step changes in either dopamine or serotonin. 

 

We then sought to determine whether the random burst method could disambiguate four critical neuromodulatory 

chemicals – using concentration mixtures comprising one of the 4 analytes. Figure 2a shows the results of a 

random burst-derived model in the presence of 4 analytes – dopamine, serotonin, norepinephrine, and 5-

hydroxyindoleacetic-acid (5HIAA).  The separation of dopamine and norepinephrine by voltammetric methods 

was previously not thought possible, but we suspect that belief may have emerged from a focus solely on the 

oxidation potential for these two neurotransmitters, which share nearly identical waveforms near those potentials.  

The top panel shows the 10.3 millisecond predictions for each transmitter as a colored dot, the horizontal black 

lines show actual level, and the bottom panel shows the average predictions for each 15 second bin.  To ensure 

that temporally co-localized fluctuations in neuromodulatory concentrations could be disentangled we tested the 

model using mixtures of 5HT and 5-HIAA (Fig 2b). Here again we showed that despite very large potential 

contamination from 5-HIAA, the underlying, true levels of serotonin could be selectively identified.   
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Finally, we sought to determine whether the method could be applied to electrodes used in routine clinical 

practice. We trained and tested the random burst-derived model using flow-cell current recordings on a platinum 

iridium electrode. We show excellent out-of-sample predictions for dopamine on this depth electrode (fig. 2c). 

Random burst sensing was also successfully applied to 4 analytes as in figure 2a (not shown). This proof-of-

principle demonstration on a commercially available electrode in common use suggests a potentially 

transformative use of this new approach.  
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Figures and Figure Legends 

 

 

Figure 1. a) Workflow for extracting neuromodulator prediction models from randomized voltage waveform (red 

trace, inset).  Workflow bifurcates for using 100% of the measured data versus a dramatically downsampled 

10%.  Note that after downsampling the finite difference trace is still computed before entering the data into either 

elastic net or LASSO regression.  b) Dopamine predictions using random burst sensing.  Average out-of-sample 

predictions shown next to model predictions to stepwise changes in dopamine.  c) Serotonin predictions using 

random burst sensing.  100% and 10% conditions labeled.  Note that 10% of measured data represents only 1 

millisecond of data.  Although not shown, even less data than 1 millisecond can be used to produce excellent 

out-of-sample models. 
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Figure 2. a) Multi-transmitter model using 10.3 msec  estimates. Top panel: Predictions for 4 analytes at 10.3 

msec per estimate.  Black lines are actual level. Bottom panel: Averages for each 15 second window. Black 

lines are actual level. b) 4 serotonin levels versus ranges of 5-hydroxyindoleacetic acid and pH. Each prediction 

is for a 10.3 msec model. c) Random burst electrochemistry on commercial electrode made of platinum iridium 

using 10.3 msec random burst activation.  Here we show proof-of-principle result for step changes in dopamine 

levels (out-of-sample).  Similarly good models were extracted for the other 3 analytes in fig 2a (not shown). 
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Methods 

Equipment 
We perform random burst sensing (RBS) of neurotransmitters in vitro using both commercially-available 

platinum-iridium macro-micro depth electrodes (MM16A-SP05X-000; AdTech) and extended carbon-fiber 

microsensors constructed in-house using the same materials and procedures as those we use in vivo	1,2. When 

collecting data in vitro from the commercial electrode, we select one microwire contact (Pt/Ir, 0.051 mm diameter) 

as the working electrode, and a separate microwire contact ~5 mm away as the reference. By contrast, the 

carbon-fiber microsensor utilizes a stainless-steel reference located ~10 mm from the working electrode. The 

non-working end of the probe is held in place by a guide tube and the working end protrudes into a small flow 

cell. For the larger commercial probe, we use the tip of a plastic transfer pipette (13-711-9AM; Fischer Scientific) 

for both the guide tube and the flow cell. For the carbon-fiber probe, we use a microelectrode insertion tube 

(FC1036; FHC) as the guide tube and a glass capillary tube (PG52165-4; World Precision Instruments) as the 

flow cell. The commercial probe utilizes a pigtail adaptor (macro: L-SRL-6DIN, micro: L-SRL-10DIN; AdTech) to 

connect the various macro- and micro-contacts. The carbon-fiber probe is constructed with standard gold-plated 

pin connectors for working and reference electrodes. 

 

Due to differences in impedance and electrode composition, we do not mix data acquired from the commercial 

probes with those acquired from the carbon-fiber probes; rather, we build separate models for each probe type 

(see Fig. 2 main text). Unless otherwise stated, the following details are identical regardless of probe selection. 

The working and reference electrodes connect to an electrochemistry-capable headstage (CV-7B/EC; Axon 

Instruments) modified by the manufacturer to accommodate current responses of ±2 µA when operating in 

voltage clamp mode. The connection is made using a commercial three-conductor shielded microelectrode 

cable, the same model used to connect monitoring and electrochemical electrodes during DBS implantation 

surgery (FC1020; FHC). Working and reference leads are connected to the probe, and shield ground is 

connected to the guide cannula with an alligator clip. We built an adaptor that connects the headstage working 

and reference ports to a female receptacle compatible with the cable (5-pin DIN, 240º). We connect the shielding 

ground the ground connection on the rear of the amplifier. 

 

The headstage connects to a signal amplifier / headstage controller (Multiclamp 700B; Axon Instruments) which 

connects to a digital acquisition (DAQ) system (Digidata 1550B; Axon Instruments). Both the amplifier and the 

DAQ connect to the recording computer (MacBook Pro; Apple) via USB and are controlled by software: the 

amplifier by Axon MultiClamp 700B Commander version 2.2.2.2 (Axon Instruments), and the DAQ by Axon 

Clampex version 10.7.0.3 (Axon Instruments). The recording computer uses the Windows 10 Enterprise 

operating system (Microsoft). 
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Random Burst Forcing Function and Acquisition Protocol 
To build the RBS forcing function, we started by discretizing the 1000-sample triangle portion of the FSCV 

waveform we use in vivo	1 into 40 constant-voltage steps ranging from -0.6 V to 1.4 V, each 25 samples in length. 

We shuffled the order of the voltage steps and wrote them to a tab-delimited file format (.ATF) which can be 

interpreted by the Clampex software. 

 

We loaded the file into Clampex and configured it to use a sampling rate of 100,000 Hz, yielding a random burst 

“command” waveform with 1000 samples of 10-ms duration consisting of 250-µs constant-voltage steps. When 

configured to repeat the command waveform at the maximum-allowed frequency, Clampex enforces a minimum 

hold time before and after each repetition. In our case, this equals a total of 32 extra samples (320 extra 

microseconds) which yields a repetition rate of approximately 96.90 Hz. Clampex will record a maximum of 

10,000 repetitions in a single file, or approximately 103.2 seconds per recording (i.e. per concentration – see 

below). The acquisition protocol was saved to disk for future use. 

 

 Using the Multiclamp Commander software, we configured the headstage to operate in voltage-clamp 

mode, which holds the potential difference between the reference and working ports at the command voltage 

and sends the resulting current response back to the DAQ from which it can be recorded by Clampex. We set 

the headstage parameters to allow a command signal of ±2 V and a current response of ±2 µA. To match our 

in-vivo setup, we configured the hardware filter on the current response channel to an 8-pole Bessel low-pass 

filter with a cut-off frequency of 4 kHz. The headstage configuration was saved to disk for future use. 

Solution Preparation 
We prepare solutions of dopamine, serotonin, norepinephrine, and 5-hydroxyindoleacetic acid in phosphate-

buffered saline (PBS) by first dissolving powdered reagents into 0.1N hydrochloric acid to form 10 mM stock 

solutions, aliquots of which are frozen for later use. We then prepare a 50 µM starting solution by a series of 

dilutions in 1× PBS at pH 6.8 from the aliquots. The solutions used are created by diluting one or more starting 

solutions with 1× PBS until the desired concentrations are reached. For our initial analyte analysis (dopamine 

and serotonin) we use concentrations from 0 – 3 µM (Fig. 1). For our mutli-analyte analysis we use 

concentrations from 0 – 8 µM (Fig. 2). The pH of the solutions is achieved by using NaOH or HCl to adjust the 

pH of the 1× PBS used in the final dilution. During recording, each solution is introduced by syringe through a 

small filling tube into the glass capillary flow cell containing the microsensor probe. The volume of the flow cell 

and filling tube is sufficiently small that the solution can be fully replaced with injections of less than 1 mL. 

Recording Procedure 
Before data acquisition, we soak the probe in a 70% isopropanol bath for ~5 minutes to enhance wetting of the 

electrode surfaces. We then place the probe through the guide cannula into the flow cell and inject ~5 mL of 

ultra-pure water followed by ~5 mL of 1× PBS (pH 7.4) and verify there are no air bubbles on the probe. We 
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verify the probe is connected and working properly by running a standard triangle FSCV protocol (not recorded) 

and observing a typical current response. 

 

We begin an RBS recording by first evacuating the flow cell and filling tube using suction. We then in inject ~1 

mL of 1× PBS (pH 7.4), evacuate again, and inject the test solution containing a specified concentration of one 

or more neurotransmitters at a specified pH. We then initiate the recording process in Clampex. We configured 

the process to begin with a 25.8-second pre-cycle (10-ms triangle waveform, 400 V/s at 96.9 Hz) immediately 

followed by the full 103.2-second RBS recording. We repeat this procedure for each test solution. The digital 

data files are stored in the proprietary Axon Binary Format (.ABF) in a directory on the recording computer. 

Data Conditioning 
In order to evaluate the performance of the RBS method, we use Matlab 2018 (MathWorks) to process each 

recording session, i.e. a contiguously-acquired group of recordings taken from one probe exposed to varying 

concentrations of neurotransmitters and pH levels. We first convert the .ABF recording files into Matlab-

compatible files (.MAT) using the abfload utility.	8 Each file contains 10,000 current response vectors for the 

mixture of neurotransmitter concentrations and pH for that recording, and we label each current response vector 

with the vector of concentrations and pH. To avoid false noise sources such as fluid motion or external 

interference, we extract a 15-second “stable” window from the recording by finding the minimum total RMS 

difference between each current response in the window and the median current response for the window. From 

that portion, we exclude any outlying current responses using Matlab’s isoutlier function and split the data into 

disjoint training and testing sets by randomly selecting 125 current responses for training and keeping the 

remainder for out-of-sample testing. We combine the training and testing sets of each recording into training and 

testing data matrices 𝑋$%&'( and 𝑋$)*$, and training and testing label matrices 𝑌$%&'( and 𝑌$)*$.   

Sub-sampling 
To evaluate the possibility of reducing acquisition time by taking advantage of the temporal coherence of the 

current responses, we take a random sub-sample of each current response 𝑥' in the data matrices 𝑋$%&'( and 

𝑋$)*$ (Fig. 1, b and c, right panels). In our case, each 𝑥' is a time series with index 𝑡 ∈ {𝑡0 … 𝑡0222} where 𝑥'(𝑡5) 

is the current value at time 𝑡5 relative to the beginning of the current response. We create a global sub-sampling 

index 𝑠 ⊂ 𝑡 by taking a random sample of 𝑡 without replacement and sorting the result to enforce monotonicity. 

We then use 𝑠 as the time index to extract the subsampled data matrices 𝑋 = ⋃ 𝑥'(𝑠);
'<0 . For a given sub-

sampling percentage, the sub-sample index 𝑠 is identical for all datasets. We skip this step in the full-sample 

case, for which 𝑠 = 𝑡. 

Fitting Elastic Net Regressions 
To generate a model that will predict neurotransmitter concentrations 𝑌= from current responses	𝑋$)*$, we first 

condition the data by computing the finite time difference of the training current responses 𝑋$%&'(? = diff(𝑋$%&'(), 
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as we find that the regressions fit to 𝑋$%&'(?  have superior performance to those fit to the undifferentiated data 

𝑋$%&'(. Note that by taking the finite difference we decrease by one the number of samples per observation to 

999. We then use the glmnet toolkit for Matlab	9 to fit a 10-fold cross-validated multinomial linear regression with 

LASSO regularization: 

CVerr = cvglmnet(𝑋$%&'(? , 𝑌$%&'(, "mgaussian", alpha = 1.0, …) 

Our invocation of glmnet creates a cross-validated elastic-net regression CVerr having the “multi-response 

gaussian” objective function	10,11: 

min
(CD,C)∈ℝ(GHI)×J

1
2𝑁

N‖𝑦' − 𝛽2 − 𝛽S𝑥'‖TU + 𝜆

⎣
⎢
⎢
⎢
⎡

(1 − 𝛼)
‖𝛽‖TU

2

\]̂
"ℓa" penalty

+ 𝛼Nb𝛽cbU

d

c<0

\ee]eê
"ℓI" penalty

⎦
⎥
⎥
⎥
⎤;

'<0

 

In our case, 𝑁 is the number of observations (125 × number of recordings), 𝑝 is the number of samples per 

observation (999), and 𝐾 is the number of analytes (neurotransmitters and pH) per label. Each observation 𝑥' ∈

𝑋$%&'(?  has dimensions 1 × 𝑝, and each label 𝑦' ∈ 𝑌$%&'( has dimensions 1 × 𝐾. Here ‖𝑀‖TU  denotes the squared 

Frobenius norm of an 𝑈 × 𝑉	matrix 𝑀 = n𝑚',cp ∶ 	||𝑀||TU = ∑ |𝑚|',cU
t,u
',c<0 .	12 Also, the intercept 𝛽2 is a 1 × 𝐾 matrix, 

the coefficient matrix 𝛽 has dimensions 𝑝 × 𝐾, and 𝛽c is a 1 × 𝐾 row in 𝛽. 

 

The elastic net mixing parameter 𝛼 ∈ [0, 1] controls the relative impacts of the “ℓ0” and “ℓU” penalties on 𝛽 

indicated above. Selecting 𝛼 = 0 yields a ridge regression in which the 𝛽 coeffects are constrained by their 

Euclidean magnitude (ℓU) yielding fewer large and more small coefficients. By specifying 𝛼 = 1, we choose a 

LASSO regression in which the 𝛽 coefficients are constrained by the number of non-zero elements (ℓ0) yielding 

fewer non-zero coefficients. 

 

Glmnet finds the coefficient matrix 𝛽 that satisfies the objective for a range of values for the complexity variable 

𝜆. To generate predictions for our analyses, we use the “lambda_min” parameter to select the 𝛽 matrix that gives 

the minimum mean of the squared cross-validated residuals. 

The folds used for cross validation are determined randomly by default, though we calculate our own random 

fold selection in advance. This allows for reproducible comparisons between methods, and a more stable way 

perform a grid search for the best 𝛼 value should we so desire. Structured approaches to building the folds may 

yield regressions optimized for different goals, such as concentration interpolation or generalization across 

probes. 

Prediction Generation and Data Analysis 
For the test set, we generate the matrix of predicted concentration and pH values 𝑌=  from a cross-validated model 

using the CVerr object and the finite time difference of the testing current responses 𝑋$)*$? = diff(𝑋$)*$) using 

another glmnet call: 

𝑌= = cvglmnetPredict(CVerr, "lambda_min", 𝑋$)*$? ) 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 13, 2019. ; https://doi.org/10.1101/607077doi: bioRxiv preprint 

https://doi.org/10.1101/607077


Where 𝑌= is an 𝑁 × 𝐾 matrix containing one vector of concentration and/or pH predictions per current response 

in 𝑋′$)*$. We assess the performance of the regression by inspecting various qualities of the predictions such as: 

RMSE =	|}𝑌$)*$ − 𝑌=~
U	 

SNRdB = 10 log02 �
∑𝑌=U

∑}𝑌$)*$ − 𝑌=~
U	� 

Additionally, we perform a multiple linear fit using the fitlm function in Matlab to evaluate the linearity of the 

predictions and check for any interactions among the neurotransmitter and/or pH predictions. We use these 

quality measures to compare RBS detection performance over different probes, different probe types, and 

different forcing functions. 

Resources 
Source code (Matlab) and example in vitro datasets available upon request. 
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