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Abstract: 19 

Prediction of antibiotic resistance phenotypes from whole genome sequencing data by 20 

machine learning methods has been proposed as a promising platform for the 21 

development of sequence-based diagnostics. However, there has been no systematic 22 

evaluation of factors that may influence performance of such models, how they might 23 

apply to and vary across clinical populations, and what the implications might be in the 24 

clinical setting. Here, we performed a meta-analysis of seven large Neisseria 25 

gonorrhoeae datasets, as well as Klebsiella pneumoniae and Acinetobacter baumannii 26 

datasets, with whole genome sequence and antibiotic susceptibility phenotypes using set 27 

covering machine classification, random forest classification, and random forest 28 

regression models to predict resistance phenotypes from genotype. We demonstrate how 29 

model performance varies by drug, dataset, resistance metric, accuracy metric, and 30 

species, reflecting the complexities of generating clinically relevant conclusions from 31 

machine learning-derived models. Our findings underscore the importance of 32 

incorporating relevant biological and epidemiological knowledge into model design and 33 

assessment and suggest that doing so can inform tailored modeling for individual drugs, 34 

pathogens, and clinical populations. We further suggest that continued comprehensive 35 

sampling and incorporation of up-to-date whole genome sequence data, resistance 36 

phenotypes, and treatment outcome data into model training will be crucial to the clinical 37 

utility and sustainability of machine learning-based molecular diagnostics.  38 
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Introduction: 39 

At least 700,000 deaths annually can be attributed to antimicrobial resistant (AMR) 40 

infections, and, without intervention, the annual AMR-associated mortality is estimated to 41 

climb to 10 million in the next 35 years1. As most patients are still treated based on 42 

empirical diagnosis rather than confirmation of the causal agent or its drug susceptibility 43 

profile, development of improved, rapid diagnostics enabling tailored therapy represents 44 

a clear actionable intervention1. The Cepheid GeneXpert MTB/RIF assay, for example, 45 

has been widely adopted for rapid point-of-care detection of Mycobacterium tuberculosis 46 

(TB) and rifampicin (RIF) resistance2, and the SpeeDx ResistancePlus GC assay used to 47 

detect both Neisseria gonorrhoeae and ciprofloxacin (CIP) susceptibility was recently 48 

approved for marketing as an in vitro diagnostic in Europe.  49 

 Molecular assays offer improved speed compared to gold-standard phenotypic 50 

tests and are of particular interest because of their promise of high accuracy for the 51 

prediction of AMR phenotype based on genotype2,3. Approaches for predicting resistance 52 

phenotypes from genetic features include direct association (i.e., using the presence or 53 

absence of genetic variants known to be associated with resistance to infer a resistance 54 

phenotype) and the application of predictive models derived from machine learning (ML) 55 

algorithms. Direct association approaches can offer simple, inexpensive, and often highly 56 

accurate resistance assays for some drugs/species2 and may even provide more reliable 57 

predictions of resistance phenotype than phenotypic testing4-6. However, these 58 

approaches are limited by the availability of well-curated and up-to-date panels of 59 

resistance variants, as well as the diversity and complexity of resistance mechanisms. 60 

ML strategies can facilitate modeling of more complex, diverse, and/or under-61 
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characterized resistance mechanisms, thus outperforming direct association for many 62 

drugs/species7-9. With the increasing speed and decreasing cost of sequencing and 63 

computation, ML approaches can be applied to genome-wide feature sets8,10-18, ideally 64 

obviating the need for comprehensive a priori knowledge of resistance loci. 65 

 While prediction of antibiotic resistance phenotypes from ML-derived models 66 

based on genomic features has become increasingly prominent as a promising diagnostic 67 

tool8,11-15,17, there has been no systematic evaluation of factors that may influence 68 

performance of such models and their implications in the clinical setting. The extent to 69 

which ML model accuracy varies by antibiotic is unclear, as is the impact of sampling bias 70 

on model performance. It is further unclear what the most relevant resistance metric (i.e., 71 

minimum inhibitory concentration [MIC] or categorical report of susceptibility) for such a 72 

diagnostic might be, how models derived from different methods should be evaluated, 73 

and how amenable different species might be to genotype-to-phenotype modeling of 74 

antibiotic resistance. 75 

 We used set covering machine (SCM)19 and random forest (RF)20 classification as 76 

well as RF regression algorithms to build and test predictive models with seven 77 

gonococcal datasets for which whole genome sequences (WGS) and ciprofloxacin (CIP) 78 

and azithromycin (AZM) MICs were available. AZM is currently part of the recommended 79 

treatment regimen for gonococcal infections, and with the development of resistance 80 

diagnostics, CIP may represent a viable treatment option21-23. While the majority of CIP 81 

resistance in gonococci can be attributed to gyrA mutations, AZM resistance is associated 82 

with more diverse and complex resistance mechanisms23,24, offering an opportunity to 83 

evaluate ML methods across drugs with distinct pathways to resistance. The range of 84 
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datasets and sampling frames enables assessment of sampling bias on model reliability. 85 

Further, the availability of MICs, as well as distinct EUCAST and CLSI breakpoints, for 86 

these drugs allows for evaluation of predictive models based on different resistance 87 

metrics and of the implications of different model performance metrics in the clinical 88 

setting. Finally, extension of these analyses to Klebsiella pneumoniae and Acinetobacter 89 

baumannii datasets for which WGS and CIP MICs were available allows for assessment 90 

of model performance for the same drug in species with open pangenomes. 91 

 Our results demonstrate that using ML to predict antibiotic resistance phenotypes 92 

from WGS data yields variable results across drugs, datasets, resistance metrics, metrics 93 

of model performance, and species. Ultimately, we suggest that tailored modeling for 94 

individual drugs, species, and clinical populations may be necessary to successfully 95 

leverage these ML-based approaches as diagnostic tools. We further suggest that 96 

continuing surveillance, isolate collection, and reporting of WGS, MIC phenotypes, and 97 

treatment outcomes will be crucial to the sustainability of any such molecular diagnostics. 98 

 99 

 100 

Methods: 101 

Isolate selection and dataset preparation 102 

See Table 1 for details of the datasets assessed. All gonococcal datasets contained a 103 

minimum of 200 isolates with WGS (Illumina MiSeq, HiSeq, or NextSeq) and MICs 104 

available for both CIP and AZM (by agar dilution and/or Etest). Isolates lacking CIP and 105 

AZM MIC data were excluded. MIC testing methods varied within datasets, as reported10-106 

13,17,18,25.  107 
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K. pneumoniae and A. baumannii datasets were selected based on the availability 108 

of isolates collected during a single survey that were tested for CIP susceptibility and 109 

whole genome sequenced using consistent platforms (in both cases, the BD-Phoenix 110 

system and either Illumina MiSeq or NextSeq). 111 

MIC data were obtained from the associated publications, except in the cases of 112 

dataset 1 (NCBI Bioproject PRJEB10016; see Supplementary Table 1) and dataset 9, 113 

which were obtained from the NCBI BioSample database 114 

(https://www.ncbi.nlm.nih.gov/biosample). Raw sequence data were downloaded from 115 

the NCBI Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra). Genomes were 116 

assembled using SPAdes26 with default parameters, and assembly quality was assessed 117 

using QUAST27. Contigs <200 bp in length and/or with <10x coverage were removed. 118 

Isolates with assembly N50s below two standard deviations of the dataset mean were 119 

removed.  120 

 121 

Evaluation of known resistance variants 122 

Previously identified genetic loci associated with reduced susceptibility to CIP or AZM in 123 

gonococci are indicated in Supplementary Tables 2 and 3, respectively. The sequences 124 

of these loci were extracted from the gonococcus genome assemblies using BLAST28 125 

followed by MUSCLE alignment 29 to assess the presence or absence of known 126 

resistance variants. The presence or absence of quinolone resistance determining 127 

mutations in gyrA was similarly assessed in K. pneumoniae and A. baumannii 128 

assemblies. Presence or absence of gonococcal AZM resistance mutations in the multi-129 

copy 23S rRNA gene was assessed using BWA-MEM30 to map raw reads to a single 23S 130 

rRNA allele from the NCCP11945 reference isolate (NGK_rrna23s4), the Picard toolkit 131 
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(http://broadinstitute.github.io/picard) to identify duplicate reads, and Pilon31 to determine 132 

the mapping quality-weighted percentage of each nucleotide at the sites of interest.  133 

 134 

ML-based prediction of resistance phenotypes 135 

Predictive modeling was carried out using SCM and RF algorithms, implemented in the 136 

Kover11,12 and ranger32 packages, respectively. K-mer profiles used for model training 137 

and prediction were generated from the assemblies using the DSK k-mer counting 138 

software33 with k=31, a length commonly used in bacterial genomic analysis11,12,34,35. For 139 

each SCM binary classification analysis (using S/NS phenotypes based on the two 140 

different breakpoints for each drug), the best conjunctive and/or disjunctive model was 141 

selected using five-fold cross-validation, testing the suggested broad range of values for 142 

the trade-off hyperparameter of 0.1, 0.178, 0.316, 0.562, 1.0, 1.778, 3.162, 5.623, 10.0, 143 

and 999999.0 to determine the optimal rule scoring function 144 

(http://aldro61.github.io/kover/doc_learning.html) with default parameters. In order to 145 

assess binary classification across multiple methods, RF was also used to build binary 146 

classifiers (RF-C) using S/NS phenotypes. Further, to compare performance of binary 147 

classifiers to MIC prediction models, RF was used to build multi-class classification (RF-148 

mC) and regression (RF-R) models based on log2(MIC) data. For all RF analyses, forests 149 

were grown to 1000 trees of unlimited depth using node impurity to assess variable 150 

importance using default parameters.  151 

The set of SCM and RF analyses performed are indicated in Supplementary 152 

Tables 4 and 5. For each of the seven individual gonococcal datasets, as well as the 153 

aggregate gonococcal dataset and the K. pneumoniae and A. baumannii datasets, 154 
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training sets consisted of random sub-samples of two-thirds of isolates from the dataset 155 

indicated (maintaining proportions of each resistance phenotype from the original 156 

dataset), while the remaining isolates were used to test performance of the model. Each 157 

set of analyses (for each combination of dataset/drug/resistance metric/ML algorithm) 158 

was performed on 10 replicates, each with a unique randomly partitioned training and 159 

testing set. For all gonococcal datasets, separate models were trained and tested using 160 

the EUCAST36 and CLSI37 breakpoints for non-susceptibility (NS) to CIP. Four of the N. 161 

gonorrhoeae datasets had insufficient (<15) NS isolates by the CLSI breakpoint for AZM 162 

non-susceptibility37 and thus were only assessed at the EUCAST AZM breakpoint. CIP 163 

MICs for the K. pneumoniae isolates were not available in the range of the EUCAST 164 

breakpoint (0.25 µg/mL), and thus only the CLSI breakpoint for NS was assessed. For A. 165 

baumannii, the EUCAST and CLSI breakpoints for ciprofloxacin NS are the same (>1 166 

µg/mL). Due to the very limited range of MICs within the BD-Phoenix testing thresholds 167 

and thus the CIP MICs available for K. pneumoniae and A. baumannii, predictive models 168 

based on MICs were not generated for these species.  169 

Model performance was assessed by sensitivity (1 – very major error [VME] rate), 170 

specificity (1 – major error [ME] rate), and the aggregate balanced accuracy (bACC). For 171 

MIC prediction models, the percentage of isolates with predicted MICs exactly matching 172 

the phenotypic MICs (rounding to the nearest doubling dilution, in the case of regression 173 

models), as well as the percentage of isolates with predicted MICs within one doubling 174 

dilution of phenotypic MICs (1-tier accuracy), were also assessed. Mean and 95% 175 

confidence intervals for all metrics were calculated across the 10 replicates for each 176 

analysis. Differential model performance between datasets or methods was evaluated by 177 
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comparing mean bACC between sets of replicates by two-tailed t-tests (a=0.05). 178 

Relationships between MIC prediction accuracy and bACC and between dataset 179 

imbalance and model performance were assessed by Pearson correlation (a=0.05).  180 

 181 

Results: 182 

Accuracy of ML-based prediction of resistance phenotypes varies by antibiotic. 183 

Given the distinct MIC distributions and distinct pathways to resistance for CIP and AZM 184 

in gonococci, these two drugs enable evaluation of drug-specific performance of ML-185 

based resistance prediction models. CIP MICs in surveys of clinical gonococcal isolates 186 

are bimodally distributed, with the majority of isolates having MICs well above or below 187 

the NS breakpoints, while the majority of reported AZM MICs in gonococci are closer to 188 

the NS breakpoints (https://mic.eucast.org/Eucast2). These trends were recapitulated in 189 

the gonococcal isolates assessed here (Fig. 1a-b). Further, the vast majority of CIP 190 

resistance in gonococci observed to date is explained by mutations in gyrA and parC and 191 

has spread predominantly through clonal expansion, generally resulting in MICs ≥ 1 192 

µg/mL23,38. In contrast, AZM resistance in gonococci has arisen many times de novo 193 

through multiple pathways, many of which remain under-characterized and are 194 

associated with lower-level resistance23,38,39. As expected, the GyrA S91F mutation alone 195 

predicts NS to CIP by both EUCAST and CLSI breakpoints in the aggregate gonococcal 196 

dataset assessed here with ³98% sensitivity and ³99% specificity (Supplementary Table 197 

2). AZM NS showed lower values for these metrics, indicating it was not as well explained 198 

by known resistance variants, with extensive contributions from uncharacterized 199 

mechanisms and/or multifactorial interactions (Supplementary Table 3).  200 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 12, 2019. ; https://doi.org/10.1101/607127doi: bioRxiv preprint 

https://doi.org/10.1101/607127


 10 

We next trained and evaluated ML-based predictive models for CIP and AZM 201 

resistance in gonococci (Supplementary Table 4). By all ML methods and breakpoints, 202 

CIP NS was predicted with significantly higher bACC than AZM NS in the aggregate 203 

gonococcal dataset (P < 0.0001, Fig. 1c-d), as well as in individual gonococcal datasets 204 

(P < 0.0001, Supplementary Tables 6-7). While CIP NS was predicted with mean bACC 205 

³96% across all methods, breakpoints, and datasets, mean bACC for AZM NS 206 

classification ranged from 62% to 92%, varying by method, breakpoint, and dataset. As 207 

variable model performance across different drugs has previously been attributed to 208 

variations in representation of susceptible (S) or NS isolates7,14,15, it is worth nothing that 209 

by the EUCAST breakpoints, the aggregate gonococcal dataset, as well as some of the 210 

individual datasets, had nearly identical proportions of S and NS isolates between CIP 211 

and AZM, demonstrating that variable representation of S or NS isolates alone cannot 212 

explain reduced performance of AZM models compared to CIP.  213 

 214 

Sampling bias in training and testing data skews resistance model performance.   215 

The diversity of resistance mechanisms for AZM in gonococci offers an opportunity to 216 

evaluate the effects of sampling bias on model performance. The sampling frames for the 217 

seven gonococcal datasets ranged geographically from citywide to international and 218 

temporally from a single year to >20 years (Table 1), and several datasets were enriched 219 

for AZM resistance11,25. The distributions of both AZM MICs and known resistance 220 

mechanisms across datasets (Fig. 1b, Supplementary Table 3) and the variable 221 

performance of AZM resistance models across datasets (Supplementary Table 7) 222 

suggest that AZM resistance mechanisms are differentially distributed across the 223 
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sampled clinical populations. To assess the impact of sampling on model reliability, the 224 

performance of RF classifiers in prediction of AZM NS phenotypes were compared across 225 

multiple training and testing sets. These include classifiers trained on subsamples of 226 

isolates from a single dataset, classifiers trained on the aggregate gonococcal dataset, 227 

and classifiers trained on the aggregate gonococcal dataset excluding isolates from the 228 

same dataset as the testing set (Supplementary Table 5). Given the low representation 229 

of AZM NS strains by the CLSI breakpoint in many datasets, these analyses were only 230 

performed using the EUCAST breakpoint. 231 

While it may be assumed that increased availability of paired genomic and 232 

phenotypic resistance data from a broader range of clinical populations will facilitate more 233 

accurate and reliable modeling40, our results demonstrate that in predicting AZM 234 

resistance phenotypes for isolates from most datasets (with the exception of datasets 2 235 

and 5), performance of classifiers trained on the aggregate dataset was not significantly 236 

better than performance of classifiers trained only on isolates from the dataset from which 237 

the test isolates were derived (P < 0.0001 and P = 0.002 for datasets 2 and 5, 238 

respectively, P = 0.019 for dataset 3, where the classifiers trains on the aggregate dataset 239 

had lower bACC than classifiers trained only on isolates from dataset 3, and P > 0.25 for 240 

all other datasets, Fig. 2a). Further, there was substantial variation in performance of 241 

models trained on the aggregate dataset across testing sets, with models achieving 242 

significantly higher bACC for strains from datasets 3 and 4 than for strains from datasets 243 

2 and 5 (P < 0.004, Fig. 2a), perhaps reflecting enrichment for AZM NS in these datasets 244 

(Table 1). Additionally, with the exception of dataset 5, performance of AZM resistance 245 

classifiers trained only on isolates from the dataset from which the test isolates were 246 
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derived was significantly higher than performance of classifiers trained on the aggregate 247 

dataset excluding isolates from the test dataset (P = 0.392 for dataset 5, P < 0.01 for all 248 

other datasets, Fig. 2a).  249 

Performance of RF classifiers trained and tested on dataset 2 was limited by low 250 

specificity, which was improved in models trained on the aggregate dataset (Fig. 2b). The 251 

low specificity achieved by RF classifiers trained and tested on this dataset is likely due 252 

to the low representation of S strains, most of which were within one doubling dilution of 253 

the NS breakpoint (Fig. 2c), and thus the more comprehensive representation of negative 254 

(S) data in the aggregate training set was associated with improved specificity. 255 

Conversely, performance of RF classifiers trained and tested on dataset 5 was more 256 

limited by low sensitivity, which was improved in models trained on the aggregate dataset 257 

(Fig. 2b). This dataset had a low representation of strains with high AZM MICs (Fig. 2d), 258 

and thus the more comprehensive representation of positive (NS) data in the aggregate 259 

training set was associated with improved sensitivity in predicting AZM NS for these 260 

strains. Low representation of strains with higher AZM MICs was also observed in other 261 

datasets (i.e., datasets 1, 6, and 7) and was similarly reflected in the sensitivity-limited 262 

performance of RF classifiers trained and tested on these datasets (Supplementary 263 

Table 7). However, AZM NS prediction accuracy for strains from these datasets was not 264 

improved by training classifiers on the aggregate dataset. These results demonstrate that 265 

resistance model performance may be strongly associated with the distributions of both 266 

resistance phenotypes and genetic features and thus can be highly population-specific. 267 

 268 
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ML prediction models of antibiotic susceptibility / non-susceptibility outperform 269 

MIC models 270 

Gonococcal CIP and AZM MICs were dichotomized by both EUCAST and CLSI 271 

breakpoints to assess the impact of variation in MIC breakpoints on model performance. 272 

As the EUCAST and CLSI breakpoints for CIP in gonococci are within a single doubling 273 

dilution and the vast majority of isolates have much lower or higher CIP MICs (Fig. 1a), 274 

>99% of isolates in the aggregate dataset were consistently S or NS by both breakpoints. 275 

Of the 23 isolates with MICs between the two breakpoints, 18 had MICs derived from 276 

Etests of 0.032 µg/mL or 0.047 µg/mL, making their classification relative to the EUCAST 277 

breakpoint of 0.03 µg/mL ambiguous. In contrast, the EUCAST and CLSI breakpoints for 278 

AZM in gonococci are separated by two doubling dilutions, and for many isolates, the 279 

AZM MIC was within this range (Fig. 1b). As such, only 67% of isolates in the aggregate 280 

dataset were consistently S or NS by both breakpoints. CIP NS classifier performance 281 

was either identical or nearly identical for both breakpoints in the aggregate and most 282 

individual gonococcal datasets (Fig. 3a). In contrast, the bACC of AZM NS prediction by 283 

both SCM and RF classifiers based on the CLSI breakpoint was significantly higher than 284 

for those based on the EUCAST breakpoint across all gonococcal datasets assessed by 285 

both breakpoints (P < 0.0001, Fig. 3b). 286 

To assess the performance of MIC prediction models relative to binary S/NS 287 

resistance phenotype classifiers, RF-mC and RF-R models were trained and evaluated 288 

for CIP and AZM MIC prediction in gonococci. Average exact match rates between 289 

predicted and phenotypic MICs ranged from 63-86% and 53-77% by RF-mC and RF-R, 290 

respectively, for CIP, and from 22-58% and 44-64%, respectively, for AZM 291 
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(Supplementary Tables 6-7). Average 1-tier accuracies were substantially higher but 292 

similarly varied widely across datasets and between the two MIC prediction methods. 293 

There was no consistent or significant relationship across the different datasets between 294 

MIC prediction accuracy (exact match or 1-tier accuracy) and bACC for either drug by 295 

either MIC prediction method (Fig. 3c-f). Further, for both drugs by both breakpoints in 296 

the aggregate gonococcal dataset, binary RF-C models had equivalent or significantly 297 

higher bACC than RF-mC and RF-R MIC prediction models (P = 0.513 for CIP NS by the 298 

CLSI breakpoint by RF-C compared to RF-R, P = 0.201 for AZM NS by the CLSI 299 

breakpoint by RF-C compared to RF-R, P < 0.0006 for all others, Supplementary Tables 300 

6-7).  301 

 302 

Model performance varies substantially across performance metrics 303 

Success in the predictive accuracy of ML models varies not only by antibiotic, dataset, 304 

and ML method, but also by metrics used to assess model performance7-12,14,15,17,25,41. To 305 

assess the advantages and limitations of model performance metrics and their 306 

implications for diagnostics, we examined the performance of predictive models for AZM 307 

resistance in gonococci across multiple metrics. Specifically, we evaluated accuracy (1 - 308 

error rate) compared to the bACC across all models for AZM S/NS based on the EUCAST 309 

breakpoint, and bACC was further compared to individual metrics of sensitivity (1 – VME 310 

rate) and specificity (1 – ME rate). Given the low representation of AZM NS strains by the 311 

CLSI breakpoint in most datasets, comparison of performance metrics was limited to 312 

models based on the EUCAST breakpoint.  313 
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Model accuracy was significantly higher than bACC for SCM and RF-C AZM 314 

resistance models in all gonococcal datasets (P < 0.0001), except the aggregate dataset 315 

and dataset 6 (P > 0.40), with a particularly marked discordance in datasets with 316 

unbalanced representation of S and NS phenotypes (Fig 4a-c). For example, in dataset 317 

2, there were almost 5x as many AZM NS strains as S strains by the EUCAST breakpoint 318 

(Fig. 4a, Supplementary Table 7). While the mean error rate across the SCM replicates 319 

for this dataset based on this breakpoint was 15% (accuracy = 85%), this obscures the 320 

low specificity, which is better reflected in the mean bACC of 62%. However, even 321 

normalized aggregate metrics, such as bACC, can fail to reflect differences in sensitivity 322 

vs. specificity across models (Fig. 4d-e). For example, models trained and tested on 323 

dataset 1 had significantly higher bACC across both ML methods than models from 324 

dataset 2 (P < 0.0001), while the models from the dataset 2 had 38-47% higher sensitivity. 325 

For both SCM and RF-C AZM resistance models, there was a significant positive 326 

correlation between the ratio of model sensitivity to model specificity and the ratio of NS 327 

to S strains in the dataset (Pearson r > 0.98, P < 0.0001 for both SCM and RF-C, Fig. 328 

4f). 329 

 330 

Species with large accessory genomes pose challenges to ML-based antibiotic 331 

resistance prediction 332 

Increasing pangenome size, or increasing ratio of genomic features to observations, may 333 

present an additional challenge for ML-based prediction of antibiotic resistance12. To 334 

investigate the impact of pangenome size on ML-based antibiotic resistance prediction, 335 

SCM and RF-C were used to model CIP NS in K. pneumoniae and A. baumannii, two 336 
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species with pangenomes several times that of gonococci (Fig. 5a-b). SCM classifiers 337 

trained on and used to predict CIP NS for K. pneumoniae and A. baumannii achieved 338 

significantly lower or roughly equivalent accuracy, respectively, as the gonococcal 339 

datasets (P < 0.0001 and P > 0.06 for K. pneumoniae and A. baumannii, respectively, 340 

Fig. 5c), and the performance of RF-C models was significantly lower for both K. 341 

pneumoniae and A. baumannii (P < 0.0001, Fig. 5d). Direct association based on GyrA 342 

codon 83 mutations (equivalent to codon 91 in gonococci) alone predicted CIP NS in K. 343 

pneumoniae with 86% sensitivity and 99% specificity, and thus had a marginally higher 344 

bACC (92.5%) than for the SCM classifiers and a substantially higher bACC than the RF 345 

classifiers. Similarly, for A. baumannii, GyrA codon 81 mutations (equivalent to codon 91 346 

in gonococci) alone predicted CIP NS in with 97% sensitivity and 98% specificity, and 347 

thus with a roughly equivalent bACC (97.5%) to the SCM classifiers and a substantially 348 

higher bACC than the RF classifiers.  349 

 350 

 351 

Discussion 352 

ML offers an opportunity to leverage WGS data to aid in development of rapid molecular 353 

diagnostics, but multiple factors affect model performance, reliability, and interpretability. 354 

Our results affirmed that drugs associated with complex and/or diverse resistance 355 

mechanisms present challenges to ML-based prediction of resistance phenotypes, and 356 

sampling frame can substantially affect performance of such predictive models. We 357 

demonstrated significant variability in performance and potential clinical utility of 358 

predictive models based on different resistance metrics, as well as in the information 359 
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provided by, and thus the clinical applicability of, commonly used metrics of model 360 

performance. We further showed that the capacity to model antibiotic resistance may be 361 

highly variable across different species. 362 

 363 

Variable performance of ML-based resistance prediction models by antibiotic 364 

Genotype-based resistance diagnostics have largely focused more on evaluating 365 

the presence of resistance determinants and less on predicting the susceptibility profile 366 

of a given isolate8. However, in clinical settings where the empirical presumption is of 367 

resistance, prediction that an isolate is susceptible to an antibiotic may be more important 368 

in guiding treatment decisions. As such, the clinical utility of a genotype-based resistance 369 

diagnostic may be determined by its capacity to accurately predict susceptibility 370 

phenotype for multiple drugs.  371 

While variable performance of ML-based predictive models has been observed 372 

across different drugs7,8,10,11,14,15, it has often been attributed to dataset size and/or 373 

imbalance7,14,15. Further, while it is more difficult to predict resistance phenotypes from 374 

genotypes for drugs that are associated with unknown, multifactorial, and/or diverse 375 

resistance mechanisms than for drugs for which resistance can largely be attributed to a 376 

single variant14,25, this caveat has been presented specifically as a limitation of models 377 

based on known resistance loci in comparison to unbiased machine learning-based MIC 378 

prediction using genome-wide feature sets14. However, by comparing performance of 379 

predictive models based on genome-wide feature sets between CIP and AZM across 380 

multiple gonococcal datasets, we showed that even with relatively large and 381 

phenotypically balanced datasets, ML algorithms cannot necessarily be expected to 382 
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successfully model complex and/or diverse resistance mechanisms, particularly given 383 

that the representation of these resistance mechanisms in training datasets is a priori 384 

unknown. 385 

 386 

Impact of demographic, geographic, and timeframe sampling bias on ML model 387 

predictions of antibiotic resistance 388 

Sampling bias presents a substantial challenge in any predictive modeling, and 389 

sampling from limited patient demographics or during limited time periods may have 390 

considerable effects on the distributions of resistance phenotypes and resistance 391 

mechanisms42,43. For example, in TB, the RpoB I491F mutation that has been associated 392 

with failure of commercial RIF resistance diagnostic assays, including the GeneXpert 393 

MTB/RIF assay, reportedly accounted for <5% of TB RIF resistance in most countries, 394 

but, in Swaziland was found to be present in up to 30% of MDR-TB44. Further, as the 395 

focus with statistical classifiers is building models from feature sets that can accurately 396 

predict an outcome, rather than understanding the association between each of the 397 

features and the outcome, potential confounding effects from factors such as population 398 

structure35,45,46 or correlations among resistance profiles of different drugs13 are rarely 399 

considered.  400 

By comparing performance of AZM NS classifiers across multiple training and 401 

testing sets, we showed significant variation in performance of classifiers trained on a 402 

large and diverse global collection across testing sets from different sampling frames. In 403 

some cases of imbalanced datasets, models trained on datasets with a more 404 

comprehensive representation of resistance phenotypes improve prediction accuracy. 405 
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However, our results suggest that heavier sampling across more geographic regions 406 

cannot necessarily be expected to significantly improve model performance. This, 407 

together with decreased performance when excluding isolates from the dataset from 408 

which the isolates being tested were derived, suggests that factors such as population-409 

specific resistance mechanisms, genetic divergence at resistance loci, and/or 410 

confounding effects may constrain model reliability across populations. 411 

 412 

ML resistance prediction model performance varies by NS breakpoints and by 413 

categorical vs MIC-based resistance metrics 414 

While measurement of MICs is vital for surveillance and investigation of resistance 415 

mechanisms, resistance breakpoints that relate in vitro MIC measurements to expected 416 

treatment outcomes inform clinical decision-making. However, standard breakpoints for 417 

NS to a given drug in a given species are often informed less by treatment outcome data, 418 

but rather factors such as pharmacokinetics and MIC distributions that can fail to account 419 

for a variety of intra-host conditions that could influence drug efficacy47-50. Recent studies 420 

have shown that isolates that are classified as susceptible by standard breakpoints but 421 

have higher MICs are associated with a greater risk of treatment failure than isolates with 422 

lower MICs51. Further, resistance breakpoints and testing protocols can vary across 423 

different organizations, and thus incongruence across phenotypic information included in 424 

the training data may introduce additional sources of error in predictive modeling. By 425 

comparing performance of predictive models of CIP and AZM non-susceptibility based on 426 

EUCAST and CLSI breakpoints, we demonstrated breakpoint-specific performance of 427 

models. For CIP, such breakpoint-specific performance is likely largely attributable to 428 
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variations in MIC testing protocols and thus ambiguous classification of some strains by 429 

the EUCAST breakpoint. On the other hand, the substantially lower performance of all 430 

AZM models based on the EUCAST breakpoint compared to those based on the CLSI 431 

breakpoint suggests that many isolates with AZM MICs between the two breakpoints lack 432 

genetic signatures that contribute to high model performance. While the clinical relevance 433 

of AZM MICs between these two breakpoints in gonococci is unclear, these isolates may 434 

be more likely to be associated with AZM treatment failure than isolates with lower MICs, 435 

and thus evaluation of classifiers using only higher breakpoints may misrepresent their 436 

diagnostic value, particularly in the absence of sufficient treatment outcome data. 437 

Models that predict MICs provide more refined output than a binary classifier but 438 

generally achieve low rates of exact matches between phenotypic and predicted MICs 439 

and even fairly variable 1-tier accuracies14,15,25. Given the noise in phenotypic MIC 440 

testing52 and the potential lack of discriminating genetic features between isolates with 441 

MICs separated by 1-2 doubling dilutions14, MIC prediction models may be unlikely to 442 

provide much better resolution than binary S/NS classifiers. Further, even if MIC 443 

predictions could provide additional resolution, the most important criterion of such a 444 

diagnostic would likely still be its ability to correctly predict resistance phenotypes relative 445 

to a clinically relevant breakpoint. Thus, performance of MIC prediction models with 446 

respect to breakpoints may be the biggest determinant of their diagnostic utility. By 447 

building MIC prediction models for CIP and AZM in gonococci, we observed low rates of 448 

exact matches between phenotypic and predicted MICs and variable 1-tier accuracies, 449 

with no relationship between 1-tier accuracy and categorical agreement (i.e., prediction 450 
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accuracy relative to NS breakpoints). Further, binary classifiers performed equivalently or 451 

better than MIC prediction models. 452 

 453 

The choice of model performance metrics can obscure shortcomings of 454 

resistance prediction models 455 

While performance can vary substantially across resistance prediction models built 456 

by different ML methods7,12,53, criteria for selecting a model with the greatest potential 457 

diagnostic value are seldom addressed. Performance assessments for resistance 458 

prediction models are frequently presented in terms of aggregate metrics, including 459 

accuracy (or error rate), area-under-the-ROC-curve (AUC), and 1-tier accuracy, and/or in 460 

terms of individual VME and ME rates (or the sensitivity and specificity, respectively)7-461 

12,14,15,17,25,41. Aggregate metrics can be useful in providing a single intuitive measure of 462 

model performance. However, as previously noted, metrics such as 1-tier accuracy may 463 

not reflect model performance relative to utility as a diagnostic (i.e., what proportion of 464 

discrepancies between phenotypic and predicted MICs result in a VME or ME). Further, 465 

some of these metrics, such as accuracy (or error rate) and AUC, may provide skewed 466 

representations of model performance in the case of imbalanced datasets54. 467 

Comparisons of AZM NS classifier accuracy to bACC across each of the gonococcal 468 

datasets demonstrated that accuracy obscures performance deficiencies. However, even 469 

normalized aggregate metrics such as bACC can fail to capture potentially important 470 

differences in sensitivity vs. specificity (or VME vs. ME rates). Individual metrics of 471 

sensitivity and specificity provide more detailed information about the likelihood of 472 

different kinds of prediction failures, the differential importance of which is reflected in the 473 
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FDA guidelines for AMR diagnostics55. However, our results also illustrate that model 474 

sensitivity and specificity can be strongly influenced by dataset imbalance, ultimately 475 

suggesting that multiple metrics may be necessary to evaluate a model’s clinical utility 476 

and that both comprehensive sampling and dataset pruning may be necessary to optimize 477 

model performance. 478 

 479 

ML antibiotic resistance prediction model success varies by bacterial pangenome 480 

size 481 

Bacterial species with open pangenomes present further challenges to ML-based 482 

prediction of antibiotic resistance. Increased resistance mechanism complexity and 483 

greater inter-isolate variation in resistance mechanisms require more intensive sampling 484 

to capture a significant portion of the resistome56. On the technical side, even for heavily 485 

sampled species, when using whole genome feature sets, the number of genetic features 486 

(e.g., k-mers or SNPs) will always be much larger than the number of observations 487 

(isolates), increasing the risk of overfitting12. This can be particularly problematic in 488 

species with open pangenomes, as the ratio of genetic features to the number of genomes 489 

is larger and the number of unique genetic features per number of genomes does not 490 

plateau, even with heavy sampling. By comparing classifier performance in predicting CIP 491 

NS across gonococci, K. pneumoniae, and A. baumannii, we show that classifiers 492 

generally did not perform as well for species with open genomes (K. pneumoniae or A. 493 

baumannii) as for gonococci. Further, while a single GyrA mutation could explain the 494 

majority of CIP NS across all species evaluated here, unlike in gonococci and A. 495 

baumannii where this mutation explained ≥97% of CIP NS, 14% of CIP NS in K. 496 
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pneumoniae could not be explained by this mutation, suggesting increased CIP 497 

resistance mechanism diversity and/or complexity in this species. While increased 498 

sampling, different methods, and/or finer tuning of hyperparameters may yield increased 499 

prediction accuracy for drug resistance in species with open genomes (e.g., Nguyen et 500 

al., 2018 reported a mean bACC of 98.5% using a decision tree-based extreme gradient 501 

boosting regression model to predict CIP MICs for the K. pneumoniae strains assessed 502 

here14), our results demonstrate clear variation in potential limitations of genotype-to-503 

resistance-phenotype models across different species. 504 

 505 

Given the biological and epidemiological disparities associated with resistance to 506 

different drugs in different clinical populations and bacterial species, and their evident 507 

impact on performance of predictive models, successful implementation of genotype-508 

based resistance diagnostics will likely require sustained comprehensive sampling, 509 

customized modeling, and incorporation of feedback mechanisms based on treatment 510 

outcome data. Further evaluation of additional ML methods and datasets may reveal 511 

more quantitative requirements and limitations associated with the application of 512 

genotype-to-resistance-phenotype predictive modeling in the clinical setting. 513 
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 703 

 704 
Tables and Figures:  705 
 706 
Table 1. Summary of datasets. 707 
Species Dataset SRA Study 

ID/Reference Nsamples 
Temporal 
range 

Geographic 
range Sampling approach 

N. 
gonorrhoeae 

1 ERP011192 886 2011-
2015 

New York, 
NY (US) 

Survey from citywide 
clinics 

2 

ERP008891, 
ERP001405, 
ERP000144  
23 

1102 2000-
2013 National (US) 

Survey from 
nationwide clinics; 
male patients only; 
enriched for CFX 
resistance 

3 

SRP065041, 
ERP008891, 
SRP072971  
25 

671 2004-
2014 

International 
(UK, 
Canada, US) 

Surveys from 
Brighton, UK 57 and 
nationwide sites in 
Canada 40,58 and the 
US 23; Canadian 
samples enriched for 
CRO and AZM 
resistance; US 
samples enriched for 
CFX resistance; US 
samples from male 
patients only 

4 
SRP050190,  
SRP065041  
40,58 

383 1989-
2014 

National 
(Canada) 

Surveys from 
nationwide sites in 
Canada; enriched for 
CRO and AZM 
resistance 

5 ERP010312  
38 714 2013 International 

(Europe) 

Survey from clinics 
and hospitals across 
21 European countries 

6 DRP004052  
39 204 2015 National 

(Japan) 

Survey from clinics in 
Kyoto and Osaka; 
male patients only 
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7 SRP111927  
59 398 2014-

2015 

National 
(New 
Zealand) 

Survey from 
nationwide diagnostic 
labs 

K. 
pneumoniae 8 

SRP102664, 
SRP110988, 
SRP116139  
14 

1560 2011-
2017 

Houston, TX 
(US) 

Survey from citywide 
hospital system; 
enriched for β-lactam 
resistance 

A. 
baumannii 9  SRP065910  

60 702 2000-
2012 National (US) 

Survey from clinics 
and hospitals within 
the US military 
healthcare system 

CFX, cefixime; CRO, ceftriaxone; AZM, azithromycin 708 
  709 
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 710 

 711 
Figure 1. Differential performance of machine learning-based prediction models for 712 

ciprofloxacin and azithromycin resistance in gonococci. Histograms showing the 713 

distributions of (a) ciprofloxacin (CIP) and (b) azithromycin (AZM) MICs in the gonococcal 714 

isolates assessed here. Bar color indicates the study or studies associated with the 715 

isolates. Dashed lines indicate the (a) EUCAST and CLSI breakpoints for non-716 

susceptibility (NS, >0.03 µg/mL and >0.06 µg/mL, respectively) for CIP and the (b) 717 
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EUCAST and CLSI breakpoints for non-susceptibility (>0.25 µg/mL and >1 µg/mL, 718 

respectively) for AZM. Mean balanced accuracy (bACC) with 95% confidence intervals of 719 

predictive models for (c) CIP NS and (d) AZM NS trained and tested on the aggregate 720 

gonococcal dataset. SCM, set covering machine; RF-C, random forest classification; RF-721 

mC, random forest multi-class classification; RF-R, random forest regression.  722 
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 723 
Figure 2. Differential performance of random forest classifiers trained on different 724 

datasets. (a) Mean balanced accuracy (bACC) with 95% confidence intervals of 725 

predictive models for gonococci (GC) azithromycin (AZM) non-susceptibility based on the 726 

EUCAST breakpoint. (b) Mean sensitivity and specificity with 95% confidence intervals of 727 

predictive models for GC AZM non-susceptibility in datasets 2 and 5. Histograms showing 728 

the distributions of AZM MICs in (c) dataset 2 and (d) dataset 5. Symbol colors in (a) and 729 

(b) indicate the dataset from which the testing set was derived, while symbol shape in (a) 730 

and (b) indicates the dataset from which the training set was derived. Hatching in (c) and 731 

(d) indicates MICs within one doubling dilution of the EUCAST breakpoint (designated by 732 

dashed lines). 733 
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 735 
Figure 3. Differential performance of machine learning-based prediction models 736 

based on different resistance metrics in gonococci. Mean balanced accuracy (bACC) 737 

with 95% confidence intervals of predictive models for (a) ciprofloxacin non-susceptibility 738 

(CIP NS) across all datasets and (b) azithromycin (AZM) NS for all datasets for which 739 

both NS breakpoints were evaluated. Scatter plots comparing the mean 1-tier accuracy 740 
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to the mean bACC for each gonococcal dataset derived from (c-d) CIP and (e-f) AZM 741 

MIC prediction models by (c,e) random forest multi-class classification and d,f random 742 

forest regression. Symbol colors in (a-b) indicate the datasets from which the training and 743 

testing sets were derived. Symbol shapes in (a-f) indicate the NS breakpoint. The line of 744 

best fit for each of the breakpoints is indicated in (c-f). SCM, set covering machine; RF-745 

C, random forest binary classification; RF-mC, random forest multi-class classification; 746 

RF-R, random forest regression.  747 
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 748 
Figure 4. Differential performance of predictive models of resistance across 749 

different performance metrics. (a) Distribution of azithromycin (AZM) susceptible (S) 750 

and non-susceptible (NS) strains by the EUCAST breakpoint in each gonococcal dataset. 751 

Mean accuracy and balanced accuracy (bACC) with 95% confidence intervals achieved 752 

by (b) set covering machine (SCM) and (c) random forest classification (RF-C) models 753 

for AZM NS by the EUCAST breakpoint across gonococcal datasets. Mean bACC, 754 

sensitivity, and specificity with 95% confidence intervals achieved by (d) SCM and (e) RF-755 
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C models for AZM NS by the EUCAST breakpoint across gonococcal datasets. (f) Scatter 756 

plot showing the relationship between the ratio of NS strains to S strains in each dataset 757 

and the ratio of sensitivity to specificity achieved by SCM and RF-C methods. 758 

  759 
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 760 
Figure 5. K. pneumoniae and A. baumannii datasets are associated with higher 761 

genetic diversity and lower performance of resistance prediction models. Number 762 

of a) strains and b) unique 31-mers in each dataset. Mean balanced accuracy (bACC) 763 

with 95% confidence intervals achieved by c) set covering machine and d) random forest 764 

classification models for ciprofloxacin (CIP) NS by the CLSI breakpoints across 765 

gonococci, K. pneumoniae, and A. baumannii datasets. 766 
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