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 2 

Abstract: 20 

Prediction of antibiotic resistance phenotypes from whole genome sequencing data by 21 

machine learning methods has been proposed as a promising platform for the 22 

development of sequence-based diagnostics. However, there has been no systematic 23 

evaluation of factors that may influence performance of such models, how they might 24 

apply to and vary across clinical populations, and what the implications might be in the 25 

clinical setting. Here, we performed a meta-analysis of seven large Neisseria 26 

gonorrhoeae datasets, as well as Klebsiella pneumoniae and Acinetobacter baumannii 27 

datasets, with whole genome sequence data and antibiotic susceptibility phenotypes 28 

using set covering machine classification, random forest classification, and random forest 29 

regression models to predict resistance phenotypes from genotype. We demonstrate how 30 

model performance varies by drug, dataset, resistance metric, and species, reflecting the 31 

complexities of generating clinically relevant conclusions from machine learning-derived 32 

models. Our findings underscore the importance of incorporating relevant biological and 33 

epidemiological knowledge into model design and assessment and suggest that doing so 34 

can inform tailored modeling for individual drugs, pathogens, and clinical populations. We 35 

further suggest that continued comprehensive sampling and incorporation of up-to-date 36 

whole genome sequence data, resistance phenotypes, and treatment outcome data into 37 

model training will be crucial to the clinical utility and sustainability of machine learning-38 

based molecular diagnostics. 39 

 40 

Author Summary: 41 
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Machine learning-based prediction of antibiotic resistance from bacterial genome 42 

sequences represents a promising tool to rapidly determine the antibiotic susceptibility 43 

profile of clinical isolates and reduce the morbidity and mortality resulting from 44 

inappropriate and ineffective treatment. However, while there has been much focus on 45 

demonstrating the diagnostic potential of these modeling approaches, there has been 46 

little assessment of potential caveats and prerequisites associated with implementing 47 

predictive models of drug resistance in the clinical setting. Our results highlight significant 48 

biological and technical challenges facing the application of machine learning-based 49 

prediction of antibiotic resistance as a diagnostic tool. By outlining specific factors 50 

affecting model performance, our findings provide a framework for future work on 51 

modeling drug resistance and underscore the necessity of continued comprehensive 52 

sampling and reporting of treatment outcome data for building reliable and sustainable 53 

diagnostics. 54 

 55 

 56 

 57 

  58 
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 4 

Introduction: 59 

At least 700,000 deaths annually can be attributed to antimicrobial resistant (AMR) 60 

infections, and, without intervention, the annual AMR-associated mortality is estimated to 61 

climb to 10 million in the next 35 years (1). As most patients are still treated based on 62 

empirical diagnosis rather than confirmation of the causal agent or its drug susceptibility 63 

profile, development of improved, rapid diagnostics enabling tailored therapy represents 64 

a clear actionable intervention (1). The Cepheid GeneXpert MTB/RIF assay, for example, 65 

has been widely adopted for rapid point-of-care detection of Mycobacterium tuberculosis 66 

(TB) and rifampicin (RIF) resistance (2), and the SpeeDx ResistancePlus GC assay used 67 

to detect both Neisseria gonorrhoeae and ciprofloxacin (CIP) susceptibility was recently 68 

approved for marketing as an in vitro diagnostic in Europe.  69 

 Molecular assays offer improved speed compared to gold-standard phenotypic 70 

tests and are of particular interest because of their promise of high accuracy for the 71 

prediction of AMR phenotype based on genotype (2, 3). Approaches for predicting 72 

resistance phenotypes from genetic features include direct association (i.e., using the 73 

presence or absence of genetic variants known to be associated with resistance to infer 74 

a resistance phenotype) and the application of predictive models derived from machine 75 

learning (ML) algorithms. Direct association approaches can offer simple, inexpensive, 76 

and often highly accurate resistance assays for some drugs/species (2) and may even 77 

provide more reliable predictions of resistance phenotype than phenotypic testing (4-6). 78 

However, these approaches are limited by the availability of well-curated and up-to-date 79 

panels of resistance variants, as well as the diversity and complexity of resistance 80 

mechanisms. ML strategies can facilitate modeling of more complex, diverse, and/or 81 
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under-characterized resistance mechanisms, thus outperforming direct association for 82 

many drugs/species (7-9). With the increasing speed and decreasing cost of sequencing 83 

and computation, ML approaches can be applied to genome-wide feature sets (8, 10-18), 84 

ideally obviating the need for comprehensive a priori knowledge of resistance loci. 85 

 While prediction of antibiotic resistance phenotypes from ML-derived models 86 

based on genomic features has become increasingly prominent as a promising diagnostic 87 

tool (8, 11-15, 17), there has been no systematic evaluation of factors that may influence 88 

performance of such models and their implications in the clinical setting. The extent to 89 

which ML model accuracy varies by antibiotic is unclear, as is the impact of sampling bias 90 

on model performance. It is further unclear what the most relevant resistance metric (i.e., 91 

minimum inhibitory concentration [MIC] or categorical report of susceptibility) for such a 92 

diagnostic might be and how amenable different species might be to genotype-to-93 

phenotype modeling of antibiotic resistance. 94 

 We used set covering machine (SCM) (19) and random forest (RF) (20) 95 

classification as well as RF regression algorithms to build and test predictive models with 96 

seven gonococcal datasets for which whole genome sequences (WGS) and ciprofloxacin 97 

(CIP) and azithromycin (AZM) MICs were available. AZM is currently part of the 98 

recommended treatment regimen for gonococcal infections, and with the development of 99 

resistance diagnostics, CIP may represent a viable treatment option (21-23). While the 100 

majority of CIP resistance in gonococci can be attributed to gyrA mutations, AZM 101 

resistance is associated with more diverse and complex resistance mechanisms (23, 24), 102 

offering an opportunity to evaluate ML methods across drugs with distinct pathways to 103 

resistance. The range of datasets and sampling frames enables assessment of sampling 104 
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bias on model reliability. Further, the availability of MICs, as well as distinct European 105 

Committee on Antibiotic Susceptibility Testing (EUCAST) and Clinical and Laboratory 106 

Standards Institute (CLSI) breakpoints, for these drugs allows for evaluation of predictive 107 

models based on different resistance metrics. Finally, extension of these analyses to 108 

Klebsiella pneumoniae and Acinetobacter baumannii datasets for which WGS and CIP 109 

MICs were available allows for assessment of model performance for the same drug in 110 

species with open pangenomes (25, 26), which may be more difficult to model given the 111 

increased genomic diversity and potential resistance mechanism diversity and complexity 112 

(47). 113 

 Our results demonstrate that using ML to predict antibiotic resistance phenotypes 114 

from WGS data yields variable results across drugs, datasets, resistance metrics, and 115 

species. While more comprehensive assessment of different methods will be required to 116 

build the most accurate and reliable models, we suggest that tailored modeling for 117 

individual drugs, species, and clinical populations may be necessary to successfully 118 

leverage these ML-based approaches as diagnostic tools. We further suggest that 119 

continuing surveillance, isolate collection, and reporting of WGS, MIC phenotypes, and 120 

treatment outcomes will be crucial to the sustainability of any such molecular diagnostics. 121 

 122 

Results: 123 

Accuracy of ML-based prediction of resistance phenotypes varies by antibiotic. 124 

Given the distinct MIC distributions and distinct pathways to resistance for CIP and AZM 125 

in gonococci, these two drugs enable evaluation of drug-specific performance of ML-126 

based resistance prediction models. CIP MICs in surveys of clinical gonococcal isolates 127 
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are bimodally distributed, with the majority of isolates having MICs well above or below 128 

the non-susceptibility (NS) breakpoints, while the majority of reported AZM MICs in 129 

gonococci are closer to the NS breakpoints (https://mic.eucast.org/Eucast2). These 130 

trends were recapitulated in the gonococcal isolates assessed here (Fig 1a-b). Further, 131 

the vast majority of CIP resistance in gonococci observed to date is explained by 132 

mutations in gyrA and parC and has spread predominantly through clonal expansion, 133 

generally resulting in MICs ≥ 1 µg/mL (23, 27). In contrast, AZM resistance in gonococci 134 

has arisen many times de novo through multiple pathways, many of which remain under-135 

characterized and are associated with lower-level resistance (23, 27, 28). As expected, 136 

the GyrA S91F mutation alone predicts NS to CIP by both EUCAST and CLSI breakpoints 137 

in the aggregate gonococcal dataset assessed here with ³98% sensitivity and ³99% 138 

specificity (Table S1). AZM NS showed lower values for these metrics, indicating it was 139 

not as well explained by known resistance variants, with extensive contributions from 140 

uncharacterized mechanisms and/or multifactorial interactions (Table S2).  141 

We next trained and evaluated ML-based predictive models for CIP and AZM 142 

resistance in gonococci (Table S3). By all ML methods and breakpoints, CIP NS was 143 

predicted with significantly higher balanced accuracy (bACC) than AZM NS in the 144 

aggregate gonococcal dataset (P < 0.0001, Fig 1c-d, Tables S4-S5): CIP NS was 145 

predicted with mean bACC ³93% across all methods, breakpoints, and datasets, whereas 146 

mean bACC for AZM NS classification ranged from 57% to 94% (Tables S4-S5). 147 

Variation in model performance across antibiotics has been attributed to different 148 

proportions of susceptible (S) and NS isolates (7, 14, 15); however, by the EUCAST 149 

breakpoints, the aggregate gonococcal dataset as well as some of the individual datasets 150 
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had nearly identical proportions of CIP and AZM susceptible and non-susceptible isolates, 151 

demonstrating that variable representation of S and NS isolates alone cannot explain 152 

reduced performance of AZM models compared to CIP.  153 

We tested whether the poorer performance for AZM may be attributable to the 154 

large fraction of isolates with MICs around the breakpoint. Removing strains with AZM 155 

MICs that were £2 doubling dilutions of the NS breakpoints from the aggregate 156 

gonococcal dataset (Table S6) yielded AZM MIC distributions similar to those of CIP (Fig 157 

S1a-b). Analysis of this restricted dataset resulted in higher performance of SCM and RF 158 

AZM NS classifiers compared to those trained and tested on the full aggregate 159 

gonococcal dataset (Fig S1c). However, bACC of AZM classifiers trained and tested on 160 

the restricted datasets was still significantly lower than bACC of the CIP NS classifiers (P 161 

< 0.0001 and P < 0.003 for classifiers based on the EUCAST and CLSI breakpoints, 162 

respectively), suggesting that both MIC distribution and additional drug-specific factors 163 

can influence performance of resistance classifiers.   164 

 165 

Sampling bias in training and testing data skews resistance model performance.   166 

The diversity of resistance mechanisms for AZM in gonococci offers an opportunity to 167 

evaluate the effects of sampling bias on model performance. The sampling frames for the 168 

seven gonococcal datasets ranged geographically from citywide to international and 169 

temporally from a single year to >20 years, and several datasets were enriched for AZM 170 

resistance (11, 29) (Table 1). The distributions of both AZM MICs and known resistance 171 

mechanisms across datasets (Fig 1b, Table S2) and the variable performance of AZM 172 

resistance models across datasets (Table S5) suggest that AZM resistance mechanisms 173 
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are differentially distributed across the sampled clinical populations. Further, the higher 174 

performance of many SCM and RF-based AZM classifiers on training data compared to 175 

test sets (Table S5) suggests that potentially due to a lack of signal, AZM models are 176 

incorporating substantial noise or confounding factors, which may be population-specific. 177 

To assess the impact of sampling on model reliability, the performance of RF classifiers 178 

in prediction of AZM NS phenotypes were compared across multiple training and testing 179 

sets. These include classifiers trained on subsamples of isolates from a single dataset, 180 

classifiers trained on the aggregate gonococcal dataset, and classifiers trained on the 181 

aggregate gonococcal dataset excluding isolates from the same dataset as the testing 182 

set (Table S6). Given the low representation of AZM NS strains by the CLSI breakpoint 183 

in many datasets, these analyses were only performed using the EUCAST breakpoint. 184 

While it may be assumed that increased availability of paired genomic and 185 

phenotypic resistance data from a broader range of clinical populations will facilitate more 186 

accurate and reliable modeling (30), our results demonstrate that in predicting AZM 187 

resistance phenotypes for isolates from most datasets (with the exception of datasets 2 188 

and 5), performance of classifiers trained on the aggregate dataset was not significantly 189 

better than performance of classifiers trained only on isolates from the dataset from which 190 

the test isolates were derived (P < 0.0001 and P = 0.002 for datasets 2 and 5, 191 

respectively, P = 0.008 for dataset 3, where the classifiers trained on the aggregate 192 

dataset had lower bACC than classifiers trained only on isolates from dataset 3, and P > 193 

0.234 for all other datasets, Fig 2a). Further, there was substantial variation in 194 

performance of models trained on the aggregate dataset across testing sets, with models 195 

achieving significantly higher bACC for strains from datasets 3 and 4 than for strains from 196 
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dataset 2 (P < 0.0009, Fig 2a), perhaps reflecting enrichment for AZM NS in these former 197 

datasets (Table 1). Additionally, with the exception of dataset 5, performance of AZM 198 

resistance classifiers trained only on isolates from the dataset from which the test isolates 199 

were derived was significantly higher than performance of classifiers trained on the 200 

aggregate dataset excluding isolates from the test dataset (P = 0.537 for dataset 5, P < 201 

0.0005 for all other datasets, Fig 2a).  202 

Performance of RF classifiers trained and tested on dataset 2 was limited by low 203 

specificity, which was improved in models trained on the aggregate dataset (Fig 2b). The 204 

low specificity achieved by RF classifiers trained and tested on this dataset is likely due 205 

to the low representation of S strains, most of which were within one doubling dilution of 206 

the NS breakpoint (Fig 2c), and thus the more comprehensive representation of negative 207 

(S) data in the aggregate training set was associated with improved specificity. 208 

Conversely, performance of RF classifiers trained and tested on dataset 5 was more 209 

limited by low sensitivity, which was improved in models trained on the aggregate dataset 210 

(Fig 2b). This dataset had a low representation of strains with high AZM MICs (Fig 2d), 211 

and thus the more comprehensive representation of positive (NS) data in the aggregate 212 

training set was associated with improved sensitivity in predicting AZM NS for these 213 

strains. For both SCM and RF-C AZM resistance models across all datasets, there was 214 

a significant positive correlation between the ratio of model sensitivity to model specificity 215 

and the ratio of NS to S strains in the dataset (Pearson r > 0.98, P < 0.0001 [Pearson 216 

correlation] for both SCM and RF-C, Fig S2a). 217 

On the other hand, while representation of strains with higher AZM MICs was also 218 

observed in other datasets (i.e., datasets 1, 6, and 7) and was similarly reflected in the 219 
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sensitivity-limited performance of RF classifiers trained and tested on these datasets 220 

(Table S5), AZM NS prediction accuracy for strains from these datasets was not improved 221 

by training classifiers on the aggregate dataset. Further, even after down-sampling two 222 

of the datasets with the most disparate MIC distributions, sample sizes, and model 223 

performance (datasets 2 and 4) such that the number of strains and AZM MIC 224 

distributions were identical between the two datasets (Fig S2b), there was still a 225 

significant difference in AZM NS prediction accuracy of models trained and tested on 226 

these different datasets (Fig S2c, P < 0.004). Together, these results demonstrate that 227 

resistance model performance may be strongly associated with the distributions of both 228 

resistance phenotypes and genetic features and thus can be highly population-specific. 229 

 230 

ML prediction models of antibiotic susceptibility / non-susceptibility outperform 231 

MIC models 232 

Gonococcal CIP and AZM MICs were dichotomized by both EUCAST and CLSI 233 

breakpoints to assess the impact of variation in MIC breakpoints on model performance. 234 

As the EUCAST and CLSI breakpoints for CIP in gonococci are within a single doubling 235 

dilution and the vast majority of isolates have much lower or higher CIP MICs (Fig 1a), 236 

>99% of isolates in the aggregate dataset were consistently S or NS by both breakpoints. 237 

Of the 23 isolates with MICs between the two breakpoints, 18 had MICs derived from 238 

Etests of 0.032 µg/mL or 0.047 µg/mL, making their classification relative to the EUCAST 239 

breakpoint of 0.03 µg/mL ambiguous. In contrast, the EUCAST and CLSI breakpoints for 240 

AZM in gonococci are separated by two doubling dilutions, and for many isolates, the 241 

AZM MIC was within this range (Fig 1b). As such, only 67% of isolates in the aggregate 242 
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dataset were consistently S or NS by both breakpoints. CIP NS classifier performance 243 

was either identical or nearly identical for both breakpoints in the aggregate and most 244 

individual gonococcal datasets (Fig 3a). In contrast, the bACC of AZM NS prediction by 245 

both SCM and RF classifiers based on the CLSI breakpoint was significantly higher than 246 

for those based on the EUCAST breakpoint across all gonococcal datasets assessed by 247 

both breakpoints (P < 0.0001, Fig 3b). 248 

To assess the performance of MIC prediction models relative to binary S/NS 249 

resistance phenotype classifiers, RF-mC and RF-R models were trained and evaluated 250 

for CIP and AZM MIC prediction in gonococci. Average exact match rates between 251 

predicted and phenotypic MICs ranged from 64-86% and 54-78% by RF-mC and RF-R, 252 

respectively, for CIP, and from 24-60% and 45-65%, respectively, for AZM (Tables S4-253 

S5). Average 1-tier accuracies (the percentage of isolates with predicted MICs within one 254 

doubling dilution of phenotypic MICs) were substantially higher but also varied widely 255 

across datasets and between the two MIC prediction methods (ranging from 82%-96% 256 

and 76-87% by RF-mC and RF-R, respectively, for CIP, and from 73-94% and 73-83%, 257 

respectively, for AZM; Tables S4-S5). There was no consistent or significant relationship 258 

across the different datasets between MIC prediction accuracy (exact match or 1-tier 259 

accuracy) and bACC for either drug by either MIC prediction method (Fig 3c-f). Further, 260 

for both drugs by both breakpoints in the aggregate gonococcal dataset, binary RF-C 261 

models had equivalent or significantly higher bACC than RF-mC and RF-R MIC prediction 262 

models (P > 0.175 for AZM NS by the CLSI breakpoint by RF-C compared to RF-mC or 263 

RF-R, P < 0.017 for all others, Tables S4-S5).  264 

 265 
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Species with high genomic diversity pose challenges to ML-based antibiotic 266 

resistance prediction 267 

Increasing genomic diversity, or an increasing ratio of genomic features (e.g., k-mers) to 268 

observations (e.g., genomes), may present an additional challenge for ML-based 269 

prediction of antibiotic resistance (12). To investigate ML-based antibiotic resistance 270 

prediction across species with different levels of genomic diversity, SCM and RF-C were 271 

used to model CIP NS in K. pneumoniae and A. baumannii, two species with genomic 272 

diversity (i.e., ratio of unique 31-mers to number of genomes) several times that of 273 

gonococci (Fig 4a-b). SCM classifiers trained on and used to predict CIP NS for K. 274 

pneumoniae achieved significantly lower accuracy than all of the gonococcal datasets (P 275 

< 0.0001, Fig 4c), while SCM classifiers trained on and used to predict CIP NS for A. 276 

baumannii achieved significantly lower accuracy than gonococcal datasets 3-5 and 7 (P 277 

< 0.033) and roughly equivalent accuracy to gonococcal datasets 1-2 and 6, as well as 278 

the aggregate gonococcal dataset (P > 0.059, Fig 4c). The performance of RF-C models 279 

was significantly lower for both K. pneumoniae and A. baumannii compared to all 280 

gonococcal datasets (P < 0.0001, Fig 4d).  281 

While the SCM classifiers for CIP NS in K. pneumoniae performed significantly 282 

better on the training sets than the testing sets (Table S4, P < 0.0001), indicating that 283 

these models may be overfitted, there was no significant difference between RF-C model 284 

performance on training and testing sets for either K. pneumoniae or A. baumannii (P > 285 

0.194), suggesting that overfitting alone cannot explain the variable classifier 286 

performance across different species. Down-sampling K. pneumoniae and A. baumannii 287 

to match the CIP MIC distributions of the gonococcal datasets was infeasible due to the 288 
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narrow range of MICs tested for the former two species (Table S7). However, even after 289 

down-sampling to equalize the number of S and NS strains within each dataset (Table 290 

S6, Fig. S3a-b), performance of K. pneumoniae and A. baumannii CIP NS classifiers was 291 

still significantly lower than that of gonococcal CIP NS classifiers, with the exception of 292 

SCM classifiers based on the down-sampled K. pneumoniae dataset, which performed 293 

roughly equivalently to SCM classifiers based on gonococcal datasets 2 and 6  (P > 0.07 294 

for the SCM classifiers based on the down-sampled K. pneumoniae dataset compared to 295 

SCM classifiers based on gonococcal datasets 2 and 6; P < 0.0004 for all other 296 

comparisons, Figure S3c).  297 

Direct association based on GyrA codon 83 mutations (equivalent to codon 91 in 298 

gonococci) alone predicted CIP NS in K. pneumoniae with 86% sensitivity and 99% 299 

specificity, and thus had a marginally higher bACC (92.5%) than for the SCM classifiers 300 

and a substantially higher bACC than the RF classifiers. Similarly, for A. baumannii, GyrA 301 

codon 81 mutations (equivalent to codon 91 in gonococci) alone predicted CIP NS in with 302 

97% sensitivity and 98% specificity, and thus with a roughly equivalent bACC (97.5%) to 303 

the SCM classifiers and a substantially higher bACC than the RF classifiers.  304 

 305 

 306 

Discussion 307 

ML offers an opportunity to leverage WGS data to aid in development of rapid molecular 308 

diagnostics. While more comprehensive sampling of methods and parameters will be 309 

necessary to optimize model performance, we demonstrate that multiple factors beyond 310 

ML methods and parameters can affect model performance, reliability, and 311 
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interpretability. Our results affirmed that drugs associated with complex and/or diverse 312 

resistance mechanisms present challenges to ML-based prediction of resistance 313 

phenotypes and that sampling frame (i.e., temporal range, geographic range, and/or 314 

sampling approach) can substantially affect performance of such predictive models. We 315 

demonstrated significant variability in performance and potential clinical utility of 316 

predictive models based on different resistance metrics and further showed that the 317 

capacity to model antibiotic resistance may be highly variable across different species. 318 

 319 

Variable performance of ML-based resistance prediction models by antibiotic 320 

Genotype-based resistance diagnostics have largely focused more on evaluating 321 

the presence of resistance determinants and less on predicting the susceptibility profile 322 

of a given isolate (8). However, in clinical settings where the empirical presumption is of 323 

resistance, prediction that an isolate is susceptible to an antibiotic may be more important 324 

in guiding treatment decisions. As such, the clinical utility of a genotype-based resistance 325 

diagnostic may be determined by its capacity to accurately predict susceptibility 326 

phenotype for multiple drugs.  327 

While variable performance of ML-based predictive models has been observed 328 

across different drugs (7, 8, 10, 11, 14, 15), it has often been attributed to dataset size 329 

and/or imbalance (7, 14, 15). Further, while it is more difficult to predict resistance 330 

phenotypes from genotypes for drugs that are associated with unknown, multifactorial, 331 

and/or diverse resistance mechanisms than for drugs for which resistance can largely be 332 

attributed to a single variant (14, 29), this caveat has been presented specifically as a 333 

limitation of models based on known resistance loci in comparison to unbiased machine 334 
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learning-based MIC prediction using genome-wide feature sets (14). However, by 335 

comparing performance of predictive models based on genome-wide feature sets 336 

between CIP and AZM across multiple gonococcal datasets, we showed that even with 337 

relatively large and phenotypically balanced datasets, ML algorithms cannot necessarily 338 

be expected to successfully model complex and/or diverse resistance mechanisms, 339 

particularly given that the representation of these resistance mechanisms in training 340 

datasets is a priori unknown.  341 

As a high proportion of reported AZM MICs in gonococci are within 1-2 doubling 342 

dilutions of the NS breakpoints, it is possible that the inferior performance of AZM 343 

classifiers is partly attributable to errors and/or variations in MIC testing. However, given 344 

the noise of phenotypic MIC testing even with standardized protocols (32), this may be 345 

an inherent limitation of NS classifiers when low-level resistance is common. Further, 346 

while we show that removing strains with MICs £2 doubling dilutions from the breakpoints 347 

improved AZM classifier performance compared to AZM models trained and tested on 348 

the full dataset, performance of AZM classifiers trained and tested on this restricted 349 

dataset was still significantly lower than that of CIP classifiers, suggesting that additional 350 

drug-specific factors, such resistance mechanism diversity and/or complexity, can 351 

constrain classifier performance. 352 

 353 

Impact of demographic, geographic, and timeframe sampling bias on ML model 354 

predictions of antibiotic resistance 355 

Sampling bias presents a substantial challenge in any predictive modeling, and 356 

sampling from limited patient demographics or during limited time periods may have 357 
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considerable effects on the distributions of resistance phenotypes and resistance 358 

mechanisms (33, 34). For example, in TB, the RpoB I491F mutation that has been 359 

associated with failure of commercial RIF resistance diagnostic assays, including the 360 

GeneXpert MTB/RIF assay, reportedly accounted for <5% of TB RIF resistance in most 361 

countries, but, in Swaziland was found to be present in up to 30% of MDR-TB (35). 362 

Further, as the focus with statistical classifiers is building models from feature sets that 363 

can accurately predict an outcome, rather than understanding the association between 364 

each of the features and the outcome, potential confounding effects from factors such as 365 

population structure (36-38) or correlations among resistance profiles of different drugs 366 

(13) are rarely considered.  367 

By comparing performance of AZM NS classifiers across multiple training and 368 

testing sets, we showed significant variation in performance of classifiers trained on a 369 

large and diverse global collection across testing sets from different sampling frames. In 370 

some cases of imbalanced datasets, models trained on datasets with a more 371 

comprehensive representation of resistance phenotypes improve prediction accuracy. 372 

Our results further demonstrate that the direction of dataset imbalance (i.e., the ratio of 373 

NS to S strains) is significantly correlated with the direction of model performance (i.e., 374 

the ratio of sensitivity to specificity), suggesting that, for example, optimizing sensitivity of 375 

predictive models for drugs with low prevalence of NS strains may require substantial 376 

enrichment of NS strains and/or down-sampling of S strains. However, while differential 377 

classifier performance among different datasets may be partially attributable to differential 378 

MIC distributions, our results also show variable classifier performance between datasets 379 

even in the case of identical MIC distributions (and sample size) and further suggest that 380 
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heavier sampling across more geographic regions cannot necessarily be expected to 381 

significantly improve model performance, as models trained on the aggregate global 382 

gonococcal dataset did not improve prediction accuracy for most datasets.  383 

 This, together with decreased performance when excluding isolates from the 384 

dataset from which the isolates being tested were derived, suggests that factors such as 385 

population-specific resistance mechanisms, genetic divergence at resistance loci, and/or 386 

confounding effects may constrain model reliability across populations, particularly in the 387 

case of drugs like AZM with complex and/or diverse resistance mechanisms, where a 388 

substantial portion of the model may be overfit, or based on confounding factors or noise, 389 

rather than biologically-meaningful resistance variants. Further, it should be noted that 390 

MIC testing methods varied between some datasets (and between strains within dataset 391 

5), and such variations may represent an additional confounding factor influencing 392 

classifier performance. Thus, both incorporation of methods to correct for potentially 393 

confounding factors, such as population structure, as have been introduced for genome-394 

wide associate studies [15-17], and increased availability of paired WGS and antibiotic 395 

susceptibility data produced by consistent standardized protocols may improve reliability 396 

of machine learning-based prediction of antibiotic resistance across different populations.  397 

 398 

ML resistance prediction model performance varies by NS breakpoints and by 399 

categorical vs MIC-based resistance metrics 400 

While measurement of MICs is vital for surveillance and investigation of resistance 401 

mechanisms, resistance breakpoints that relate in vitro MIC measurements to expected 402 

treatment outcomes inform clinical decision-making. However, standard breakpoints for 403 
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NS to a given drug in a given species are often informed less by treatment outcome data, 404 

but rather factors such as pharmacokinetics and MIC distributions that can fail to account 405 

for a variety of intra-host conditions that could influence drug efficacy (39-42). Recent 406 

studies have shown that isolates that are classified as susceptible by standard 407 

breakpoints but have higher MICs are associated with a greater risk of treatment failure 408 

than isolates with lower MICs (43). Further, resistance breakpoints and testing protocols 409 

can vary across different organizations, and thus incongruence across phenotypic 410 

information included in the training data may introduce additional sources of error in 411 

predictive modeling. By comparing performance of predictive models of CIP and AZM NS 412 

based on EUCAST and CLSI breakpoints, we demonstrated breakpoint-specific 413 

performance of models. For CIP, such breakpoint-specific performance is likely largely 414 

attributable to variations in MIC testing protocols and thus ambiguous classification of 415 

some strains by the EUCAST breakpoint. On the other hand, the substantially lower 416 

performance of all AZM models based on the EUCAST breakpoint compared to those 417 

based on the CLSI breakpoint suggests that many isolates with AZM MICs between the 418 

two breakpoints lack genetic signatures that contribute to high model performance. While 419 

the clinical relevance of AZM MICs between these two breakpoints in gonococci is 420 

unclear, these isolates may be more likely to be associated with AZM treatment failure 421 

than isolates with lower MICs, and thus evaluation of classifiers using only higher 422 

breakpoints may misrepresent their diagnostic value, particularly in the absence of 423 

sufficient treatment outcome data. 424 

Models that predict MICs provide more refined output than a binary classifier but 425 

generally achieve low rates of exact matches between phenotypic and predicted MICs 426 
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and even fairly variable 1-tier accuracies (14, 15, 29). Given the noise in phenotypic MIC 427 

testing (32) and the potential lack of discriminating genetic features between isolates with 428 

MICs separated by 1-2 doubling dilutions (14), MIC prediction models may be unlikely to 429 

provide much better resolution than binary S/NS classifiers. Even if MIC predictions could 430 

provide additional resolution, the most important criterion of such a diagnostic would likely 431 

still be its ability to correctly predict resistance phenotypes relative to a clinically relevant 432 

breakpoint. Thus, performance of MIC prediction models with respect to breakpoints may 433 

be the biggest determinant of their diagnostic utility. By building MIC prediction models 434 

for CIP and AZM in gonococci, we observed low rates of exact matches between 435 

phenotypic and predicted MICs and variable 1-tier accuracies, with no relationship 436 

between 1-tier accuracy and categorical agreement (i.e., prediction accuracy relative to 437 

NS breakpoints). Further, binary classifiers performed equivalently or better than MIC 438 

prediction models. 439 

 440 

ML antibiotic resistance prediction model success varies across species 441 

Bacterial species with high genomic diversity (e.g., open pangenomes) present 442 

additional challenges to ML-based prediction of antibiotic resistance. Increased 443 

resistance mechanism complexity and greater inter-isolate variation in resistance 444 

mechanisms require more intensive sampling to capture a significant portion of the 445 

resistome (47). On the technical side, even for heavily sampled species, when using 446 

whole genome feature sets, the number of genetic features (e.g., k-mers or SNPs) will 447 

always be much larger than the number of observations (isolates), increasing the risk of 448 

overfitting (a situation that arises with so-called ‘fat data’; (12)). This raises concern in 449 
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species with open pangenomes, as the ratio of genetic features to the number of genomes 450 

is larger and the number of unique genetic features per number of genomes does not 451 

plateau. By comparing classifier performance in predicting CIP NS across gonococci, K. 452 

pneumoniae, and A. baumannii, we show that classifiers generally did not perform as well 453 

for species with open genomes (K. pneumoniae or A. baumannii) as for gonococci. 454 

Further, while a single GyrA mutation could explain the majority of CIP NS across all 455 

species evaluated here, unlike in gonococci and A. baumannii where this mutation 456 

explained ≥97% of CIP NS, 14% of CIP NS in K. pneumoniae could not be explained by 457 

this mutation, suggesting increased CIP resistance mechanism diversity and/or 458 

complexity in this species. Increased sampling, different methods, and/or finer tuning of 459 

hyperparameters may yield increased prediction accuracy for drug resistance in species 460 

with open genomes. For example, Nguyen et al., 2018 reported a mean bACC of 98.5% 461 

(average VME and ME rates of 0.5% and 2.5%, respectively) using a decision tree-based 462 

extreme gradient boosting regression model to predict CIP MICs for the K. pneumoniae 463 

strains assessed here (14), and adjusting for confounding factors such as population 464 

structure or variation in MIC testing method may yield more consistent prediction 465 

accuracies across species.  However, our results demonstrate clear variation in potential 466 

limitations of genotype-to-resistance-phenotype models across different species. 467 

 468 

Given the biological and epidemiological disparities associated with resistance to 469 

different drugs in different clinical populations and bacterial species, and their evident 470 

impact on performance of predictive models, successful implementation of genotype-471 

based resistance diagnostics will likely require sustained comprehensive sampling to 472 
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ensure representation of complex, diverse, and/or novel resistance mechanisms, 473 

customized modeling, and incorporation of feedback mechanisms based on treatment 474 

outcome data. Further evaluation of additional ML methods and datasets may reveal 475 

more quantitative requirements and limitations associated with the application of 476 

genotype-to-resistance-phenotype predictive modeling in the clinical setting. 477 

 478 

Materials and Methods: 479 

Isolate selection and dataset preparation 480 

See Table 1 for details of the datasets assessed and Table S7 for per-strain information. 481 

All gonococcal datasets contained a minimum of 200 isolates with WGS (Illumina MiSeq, 482 

HiSeq, or NextSeq) and MICs available for both CIP and AZM (by agar dilution and/or 483 

Etest). Isolates lacking CIP and AZM MIC data were excluded. MIC testing methods 484 

varied within datasets, as reported (10-13, 17, 18, 29).  485 

K. pneumoniae and A. baumannii datasets were selected based on the availability 486 

of isolates collected during a single survey that were tested for CIP susceptibility and 487 

whole genome sequenced using consistent platforms (in both cases, the BD-Phoenix 488 

system and either Illumina MiSeq or NextSeq). 489 

MIC data were obtained from the associated publications, except in the cases of 490 

dataset 1 (NCBI Bioproject PRJEB10016; see Table S7) and dataset 9, which were 491 

obtained from the NCBI BioSample database (https://www.ncbi.nlm.nih.gov/biosample). 492 

Raw sequence data were downloaded from the NCBI Sequence Read Archive 493 

(https://www.ncbi.nlm.nih.gov/sra). Genomes were assembled using SPAdes (48) with 494 

default parameters, and assembly quality was assessed using QUAST (49). Contigs <200 495 
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bp in length and/or with <10x coverage were removed. Isolates with assembly N50s below 496 

two standard deviations of the dataset mean were removed.  497 

 498 

Evaluation of known resistance variants 499 

Previously identified genetic loci associated with reduced susceptibility to CIP or AZM in 500 

gonococci are indicated in Tables S1-S2, respectively. The sequences of these loci were 501 

extracted from the gonococcus genome assemblies using BLAST (50) followed by 502 

MUSCLE alignment (51) to assess the presence or absence of known resistance variants. 503 

The presence or absence of quinolone resistance determining mutations in gyrA was 504 

similarly assessed in K. pneumoniae and A. baumannii assemblies. Presence or absence 505 

of gonococcal AZM resistance mutations in the multi-copy 23S rRNA gene was assessed 506 

using BWA-MEM(52) to map raw reads to a single 23S rRNA allele from the NCCP11945 507 

reference isolate (NGK_rrna23s4), the Picard toolkit 508 

(http://broadinstitute.github.io/picard) to identify duplicate reads, and Pilon (53) to 509 

determine the mapping quality-weighted percentage of each nucleotide at the sites of 510 

interest.  511 

 512 

ML-based prediction of resistance phenotypes 513 

Predictive modeling was carried out using SCM and RF algorithms, implemented in the 514 

Kover (11, 12) and ranger (54) packages, respectively. K-mer profiles (abundance profiles 515 

of all unique words of length k in each genome) were generated from the assembled 516 

contigs using the DSK k-mer counting software (55) with k=31, a length commonly used 517 

in bacterial genomic analysis (11, 12, 36, 56). For each dataset, 31-mer profiles for all 518 

strains were combined using the combinekmers tool implemented in SEER (36), 519 
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removing 31-mers that were not present in more than one genome in the dataset. Final 520 

matrices used for model training and prediction were generated by converting the 521 

combined 31-mer counts for each dataset into presence/absence matrices. For each 522 

SCM binary classification analysis (using S/NS phenotypes based on the two different 523 

breakpoints for each drug), the best conjunctive and/or disjunctive model using a 524 

maximum of five rules was selected using five-fold cross-validation, testing the suggested 525 

broad range of values for the trade-off hyperparameter of 0.1, 0.178, 0.316, 0.562, 1.0, 526 

1.778, 3.162, 5.623, 10.0, and 999999.0 to determine the optimal rule scoring function 527 

(http://aldro61.github.io/kover/doc_learning.html). In order to assess binary classification 528 

across multiple methods, RF was also used to build binary classifiers (RF-C) using S/NS 529 

phenotypes. Further, to compare performance of binary classifiers to MIC prediction 530 

models, RF was used to build multi-class classification (RF-mC) and regression (RF-R) 531 

models based on log2(MIC) data. For all RF analyses, forests were grown to 1000 trees 532 

using node impurity to assess variable importance and five-fold cross-validation to 533 

determine the most appropriate hyperparameters (yielding the highest bACC or 1-tier 534 

accuracy for NS- or MIC-based models, respectively), testing maximum tree depths of 5, 535 

10, 100, and unlimited and mtry (number of features to split at each node) values of 1000, 536 

10000, and either Öp or p/3, for classification and regression models, respectively, where 537 

p is the total number of features (31-mers) in the dataset. While a grid search would 538 

enable assessment of more combinations of different hyperparameter values and thus 539 

finer tuning of hyperparameters, such an approach is computationally prohibitive on 540 

datasets of this size. To standardize reported MIC ranges across datasets, CIP MICs 541 

£0.008 µg/mL or ³32 µg/mL were coded as 0.008 µg/mL or 32 µg/mL, respectively, and 542 
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AZM MICs £0.008 µg/mL or ³32 µg/mL were coded as 0.03 µg/mL or 32 µg/mL, 543 

respectively. 544 

The set of SCM and RF analyses performed are indicated in Tables S3 and S6. 545 

For each of the seven individual gonococcal datasets, as well as the aggregate 546 

gonococcal dataset (all gonococcal datasets combined, removing duplicate strains) and 547 

the K. pneumoniae and A. baumannii datasets, training sets consisted of random sub-548 

samples of two-thirds of isolates from the dataset indicated (maintaining proportions of 549 

each resistance phenotype from the original dataset), while the remaining isolates were 550 

used to test performance of the model. Each set of analyses (for each combination of 551 

dataset/drug/resistance metric/ML algorithm) was performed on 10 replicates, each with 552 

a unique randomly partitioned training and testing set. For all gonococcal datasets, 553 

separate models were trained and tested using the EUCAST (57) and CLSI (58) 554 

breakpoints for NS to CIP. Four of the N. gonorrhoeae datasets had insufficient (<15) NS 555 

isolates by the CLSI breakpoint for AZM non-susceptibility and thus were only assessed 556 

at the EUCAST AZM breakpoint. CIP MICs for the K. pneumoniae isolates were not 557 

available in the range of the EUCAST breakpoint (0.25 µg/mL), and thus only the CLSI 558 

breakpoint for NS (>1 µg/mL) was assessed. For A. baumannii, the EUCAST and CLSI 559 

breakpoints for ciprofloxacin NS are the same (>1 µg/mL). Due to the very limited range 560 

of MICs within the BD-Phoenix testing thresholds and thus the CIP MICs available for K. 561 

pneumoniae and A. baumannii, predictive models based on MICs were not generated for 562 

these species. For analyses in Table S6 where datasets were down-sampled to equalize 563 

MIC distributions between datasets or the number of S and NS strains within datasets, 564 
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the required number of strains from the over-represented class(es) were selected at 565 

random for removal. 566 

Model performance was assessed by sensitivity (1 – VME rate), specificity (1 – ME 567 

rate), and aggregate bACC (the average of the sensitivity and specificity (59)). bACC was 568 

used as an aggregate measure of model performance as, unlike metrics such as raw 569 

accuracy, error rate, and F1 score, it provides a balanced representation of false positive 570 

and false negative rates, even in the case of dataset imbalance. For MIC prediction 571 

models, the percentage of isolates with predicted MICs exactly matching the phenotypic 572 

MICs (rounding to the nearest doubling dilution, in the case of regression models), as well 573 

as the percentage of isolates with predicted MICs within one doubling dilution of 574 

phenotypic MICs (1-tier accuracy), were also assessed. In order to account for variations 575 

in MIC testing methods and thus in the dilutions assessed, criteria for exact match rates 576 

and 1-tier accuracies were relaxed to include predictions within 0.5 doubling dilutions or 577 

1.5 doubling dilutions, respectively, of the phenotypic MIC. Mean and 95% confidence 578 

intervals for all metrics were calculated across the 10 replicates for each analysis. 579 

Differential model performance between datasets or methods was evaluated by 580 

comparing mean bACC between sets of replicates by two-tailed unpaired t-tests with 581 

Welch’s correction for unequal variance (a=0.05). Unless otherwise noted, all P-values 582 

are derived from these unpaired t-tests. Relationships between MIC prediction accuracy 583 

and bACC and between dataset imbalance and model performance were assessed by 584 

Pearson correlation (a=0.05).  585 

 586 

 587 
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 784 

Table and figure legends:  785 

 786 
Table 1. Summary of datasets. 787 
Species Dataset SRA Study 

ID/Reference Nsamples 
Temporal 
range 

Geographic 
range Sampling approach 

N. 
gonorrhoeae 

1 ERP011192 886 2011-
2015 

New York, 
NY (US) 

Survey from citywide 
clinics 

2 

ERP008891, 
ERP001405, 
ERP000144  
(23) 

1102 2000-
2013 National (US) 

Survey from 
nationwide clinics; 
male patients only; 
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enriched for CFX 
resistance 

3 

SRP065041, 
ERP000144, 
ERP001405, 
ERP008891, 
SRP072971  
(29) 

671 2004-
2014 

International 
(UK, 
Canada, US) 

Surveys from 
Brighton, UK (60) and 
nationwide sites in 
Canada (30, 61) and 
the US (23, 62); 
Canadian samples 
enriched for CRO and 
AZM resistance; US 
samples enriched for 
CFX resistance; US 
samples from male 
patients only 

4 
SRP050190,  
SRP065041  
(30, 61) 

383 1989-
2014 

National 
(Canada) 

Surveys from 
nationwide sites in 
Canada; enriched for 
CRO and AZM 
resistance 

5 ERP010312  
(27) 714 2013 International 

(Europe) 

Survey from clinics 
and hospitals across 
21 European countries 

6 DRP004052  
(28) 204 2015 National 

(Japan) 

Survey from clinics in 
Kyoto and Osaka; 
male patients only 

7 SRP111927  
(63) 398 2014-

2015 

National 
(New 
Zealand) 

Survey from 
nationwide diagnostic 
labs 

K. 
pneumoniae 8 SRP102664  

(14) 1560 2011-
2017 

Houston, TX 
(US) 

Survey from citywide 
hospital system; 
enriched for β-lactam 
resistance 

A. 
baumannii 9  SRP065910  

(64) 702 2000-
2012 National (US) 

Survey from clinics 
and hospitals within 
the US military 
healthcare system 

CFX, cefixime; CRO, ceftriaxone; AZM, azithromycin 788 
  789 
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 790 

Figure 1. Differential performance of machine learning-based prediction models for 791 

ciprofloxacin and azithromycin resistance in gonococci. Histograms showing the 792 

distributions of (a) ciprofloxacin (CIP) and (b) azithromycin (AZM) minimum inhibitory 793 

concentrations (MICs) in the gonococcal isolates assessed here. Bar color indicates the 794 

study or studies associated with the isolates. Dashed lines indicate the (a) EUCAST and 795 

CLSI breakpoints for non-susceptibility (NS, >0.03 µg/mL and >0.06 µg/mL, respectively) 796 
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for CIP and the (b) EUCAST and CLSI breakpoints for non-susceptibility (>0.25 µg/mL 797 

and >1 µg/mL, respectively) for AZM. Note that there was some overlap in strains from 798 

the US between datasets 2 and 3 and in strains from Canada between datasets 3 and 4; 799 

such strains are indicated in (a) and (b) as belonging to datasets 2 and 3 and 3 and 4, 800 

respectively. Mean balanced accuracy (bACC) with 95% confidence intervals of predictive 801 

models for (c) CIP NS and (d) AZM NS trained and tested on the aggregate gonococcal 802 

dataset. Symbol colors in (a-b) indicate the datasets from which the training and testing 803 

sets were derived. Symbol shapes in (c-d) indicate the NS breakpoint. SCM, set covering 804 

machine; RF-C, random forest classification; RF-mC, random forest multi-class 805 

classification; RF-R, random forest regression. 806 
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 808 

Figure 2. Differential performance of random forest classifiers across different 809 

datasets. (a) Mean balanced accuracy (bACC) with 95% confidence intervals of RF-C 810 

predictive models for gonococci (GC) azithromycin (AZM) non-susceptibility based on the 811 

EUCAST breakpoint. (b) Mean sensitivity and specificity with 95% confidence intervals of 812 

RF-C predictive models for GC AZM non-susceptibility in datasets 2 and 5. Histograms 813 

showing the distributions of AZM minimum inhibitory concentrations (MICs) in (c) dataset 814 

2 and (d) dataset 5. Symbol colors in (a) and (b) indicate the dataset from which the 815 

testing set was derived, while symbol shape in (a) and (b) indicates the dataset from 816 

which the training set was derived. Hatching in (c) and (d) indicates MICs within one 817 

doubling dilution of the EUCAST breakpoint (designated by dashed lines). 818 

  819 

0
10
50

60

70

80

90

100
bA

C
C

(A
ZM

, E
U

C
AS

T)

<=
0.0

3

0.0
32

-0.
06

0.0
64

-0.
12

0.1
25

-0.
190.2

5
0.3

8 0.5
0.6

4-11.5
-2 4 8

12
-16>=

32
0

100

200

300

400

500

AZM MIC

N
st

ra
in

s

<=
0.0

3

0.0
32

-0.
06

0.0
64

-0.
12

0.1
25

-0.
190.2

5
0.3

8 0.5
0.6

4-11.5
-2 4 8

12
-16>=

32
0

50

100

150

200

AZM MIC

N
st

ra
in

s

se
ns

itiv
ity

sp
ec

ific
ity

se
ns

itiv
ity

sp
ec

ific
ity

se
ns

itiv
ity

sp
ec

ific
ity

se
ns

itiv
ity

sp
ec

ific
ity

0

20

40

60

80

100

Se
ns

iti
vi

ty
/S

pe
ci

fic
ity

(A
ZM

, E
U

C
AS

T)

Dataset of test strains only 
Aggregate GC dataset
Aggregate GC dataset excluding strains from dataset 
of test strains 

Training set (symbol shape; subsample from):

Testing set (symbol color; subsample from dataset):

2
1

3
4

6
7

5

a

b dc

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 7, 2019. ; https://doi.org/10.1101/607127doi: bioRxiv preprint 

https://doi.org/10.1101/607127


 40 

 820 

Figure 3. Differential performance of machine learning-based prediction models 821 

based on different resistance metrics in gonococci. Mean balanced accuracy (bACC) 822 

with 95% confidence intervals of predictive models for (a) ciprofloxacin non-susceptibility 823 
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(CIP NS) across all datasets and (b) azithromycin (AZM) NS for all datasets for which 824 

both NS breakpoints were evaluated. Scatter plots comparing the mean 1-tier accuracy 825 

to the mean bACC for each gonococcal dataset derived from (c-d) CIP and (e-f) AZM 826 

minimum inhibitory concentration (MIC) prediction models by (c,e) random forest multi-827 

class classification and d,f random forest regression. Symbol colors in (a-f) indicate the 828 

datasets from which the training and testing sets were derived. Symbol shapes in (a-f) 829 

indicate the NS breakpoint. The line of best fit for each of the breakpoints is indicated in 830 

(c-f). SCM, set covering machine; RF-C, random forest binary classification; RF-mC, 831 

random forest multi-class classification; RF-R, random forest regression. 832 
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 834 

Figure 4. K. pneumoniae and A. baumannii datasets are associated with higher 835 

genetic diversity and lower performance of resistance prediction models. Number 836 

of (a) strains and (b) unique 31-mers present in the genomes of at least two strains in 837 

each dataset. Mean balanced accuracy (bACC) with 95% confidence intervals achieved 838 

by c) set covering machine and d) random forest classification models for ciprofloxacin 839 

(CIP) NS by the CLSI breakpoints across gonococcal, K. pneumoniae, and A. baumannii 840 

datasets. 841 
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Supplementary Tables and Figures 843 

Table S1. Genetic variants previously associated with ciprofloxacin resistance in N. 844 

gonorrhoeae. 845 

Table S2. Genetic variants previously associated with azithromycin resistance in N. 846 

gonorrhoeae. 847 

Table S3. Summary of approach in the primary set covering machine and random forest 848 

analyses.  849 

Table S4. Performance (mean with 95% confidence intervals) of predictive models for 850 

ciprofloxacin resistance from the primary set covering machine and random forest 851 

analyses.  852 

Table S5. Performance (mean with 95% confidence intervals) of predictive models for 853 

azithromycin resistance from the primary set covering machine and random forest 854 

analyses. 855 

Table S6. Summary of approach in the additional random forest analyses for assessment 856 

of sampling bias. 857 

Table S7. Study ID, machine learning dataset(s), antibiotic susceptibility testing (AST) 858 

methods, azithromycin (AZM) and ciprofloxacin (CIP) minimum inhibitory concentrations 859 

(MICs) for all strains assessed. 860 

Figure S1. MIC distribution influences classifier results but cannot explain all drug-861 

specific classifier performance. Histograms showing azithromycin (AZM) minimum 862 

inhibitory concentration (MIC) distributions for the aggregate gonococcal dataset after 863 

down-sampling to remove all strains with MICs £2 doubling dilutions of the (a) EUCAST 864 

or (b) CLSI breakpoint. (c) Mean balanced accuracy (bACC) with 95% confidence 865 
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intervals of SCM RF-C predictive models trained and tested on down-sampled aggregate 866 

gonococcal datasets. 867 

Figure S2. Dataset imbalance influences classifier results but cannot explain all 868 

dataset-specific classifier performance. (a) Scatter plot showing the relationship 869 

between the ratio of azithromycin (AZM) non-susceptible (NS) strains to susceptible (S) 870 

strains (by the EUCAST breakpoint) in each dataset and the ratio of sensitivity to 871 

specificity achieved by set covering machine (SCM) and random forest binary 872 

classification (RF-C) methods. (b) Histogram showing the AZM minimum inhibitory 873 

concentration (MIC) distribution for both datasets 2 and 4 after down-sampling to equalize 874 

number of strains and MIC distributions between datasets. (c) Mean balanced accuracy 875 

(bACC) with 95% confidence intervals of RF-C predictive AZM NS models trained and 876 

tested on down-sampled datasets 2 and 4. Symbol colors in (a) indicated the machine 877 

learning (ML) method. Symbol colors (b) indicate the down-sampled dataset from which 878 

the training and testing sets were derived. 879 

Figure S3. Down-sampling to balance resistance phenotypes does ameliorate 880 

cross-species variation in classifier performance. Number of (a) strains and (b) 881 

unique 31-mers present in the genomes of at least two strains in each dataset, after down-882 

sampling the K. pneumoniae and A. baumannii datasets to equalize the number of S and 883 

NS strains within each dataset. Mean balanced accuracy (bACC) with 95% confidence 884 

intervals achieved by c) set covering machine and d) random forest classification models 885 

for ciprofloxacin (CIP) NS by the CLSI breakpoints across gonococcal, down-sampled K. 886 

pneumoniae, and down-sampled A. baumannii datasets.  887 
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