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Abstract 17 

A detailed understanding of the sources of heritable variation is a central goal of modern 18 

genetics. Genome-wide association studies (GWAS) in humans1 have implicated tens of 19 

thousands of DNA sequence variants in disease risk and quantitative trait variation, but these 20 

variants fail to account for the entire heritability of diseases and traits. GWAS have by design 21 

focused on common DNA sequence variants; however, recent studies underscore the likely 22 

importance of the contribution of rare variants to heritable variation2. Further, finding the genes 23 

that underlie the GWAS signals remains a major challenge. Here, we use a unique model system 24 

to disentangle the contributions of common and rare variants to a large number of quantitative 25 

traits. We generated large crosses among 16 diverse yeast strains and identified thousands of 26 

quantitative trait loci (QTLs) that explain most of the heritable variation in 38 traits. We 27 

combined our results with sequencing data for 1,011 yeast isolates3 to decouple variant effect 28 

size estimation from allele frequency and showed that rare variants make a disproportionate 29 

contribution to trait variation as a consequence of their larger effect sizes. Evolutionary analyses 30 

revealed that this contribution is driven by rare variants that arose recently, that such variants are 31 

more likely to decrease fitness, and that negative selection has shaped the relationship between 32 

variant frequency and effect size. Finally, we leveraged the structure of the crosses to resolve 33 

hundreds of QTLs to single genes. These results refine our understanding of trait variation at the 34 

population level and suggest that studies of rare variants are a fertile ground for discovery of 35 

genetic effects. 36 
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 2 

Introduction 37 

How variants with different population frequencies contribute to trait variation is a central 38 

question in genetics. Theoretical considerations4–8 and previous results in yeast9, humans10–12, 39 

and other species13 suggest that rare variants should have larger effect sizes, or, equivalently, that 40 

variants implicated in trait variation should be shifted to lower frequencies relative to all 41 

variants. Variance partitioning by allele frequency has revealed appreciable contributions of 42 

lower-frequency variants to heritability of  complex traits in humans, such as prostate cancer14 43 

height2,15, and body mass index2. However, a direct comprehensive comparison of the effects of 44 

rare and common variants has been lacking in humans owing to low statistical power to map rare 45 

variants and confounding between effect size and allele frequency. Here we report a 46 

comprehensive study in yeast designed to overcome these limitations. We built a panel of 47 

approximately 14,000 segregants from crosses between 16 diverse yeast strains, mapped 48 

thousands of QTLs that account for most of the heritable variation in 38 quantitative traits, and 49 

measured the QTL effect sizes. We then estimated the allele frequencies of the underlying 50 

variants in a collection of over 1,000 sequenced yeast isolates from around the world3. Analysis 51 

of these large complementary data sets enabled us to examine the relationship between QTL 52 

effect sizes and variant frequency, characterize the genetic architecture of quantitative traits on a 53 

population scale, and improve mapping resolution, in many cases to single genes. 54 

Results 55 

To investigate the genetic basis of quantitative traits in the yeast population, we selected 16 56 

highly diverse S. cerevisiae strains that capture much of the known genetic diversity of this 57 

species. Specifically, they contain both alleles at 82% of biallelic SNPs and small indels 58 

observed at minor allele frequency > 5% in a collection of 1,011 S. cerevisiae strains3. We 59 

sequenced the 16 strains to high coverage in order to obtain a comprehensive set of genetic 60 

variants. We constructed a panel of 13,950 individual recombinant haploid yeast segregants by 61 

crossing each parental strain to two different strains and collecting an average of 872 progeny 62 

per cross (Fig. 1, Supplementary Table 1). We genotyped these segregants by highly multiplexed 63 

whole-genome sequencing, with median 2.3-fold coverage per base per individual. Genotypes 64 

were called at 298,979 genetic variants, with an average of 71,117 genetic variants segregating in 65 

a single cross. We phenotyped each segregant for 38 fitness traits in duplicate by automated 66 

growth assays and quantitative imaging (Methods).  The resulting genotype-by-phenotype matrix 67 

(over half a million phenotypic measurements and 158 billion combinations of genotype and 68 

phenotype) formed the basis for all downstream analyses. 69 

We used a variance components model16–18 to show that, on average, additive genetic effects 70 

accounted for just over half of the total phenotypic variance, while pairwise genetic interactions 71 

accounted for 8%, approximately 1/6 as much as additive effects (Fig. 2 inset, Supplementary 72 

Fig. 1, Supplementary Table 2). We carried out QTL mapping to find the specific loci 73 

contributing additively to trait variation. We used a joint mapping approach that leverages 74 
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information across the entire panel of 13,950 segregants (Methods). We mapped 4,552 QTLs at a 75 

false discovery rate (FDR) of 5%, with an average of 120 (range 52-195) QTLs per trait 76 

(Supplementary Fig. 2, Supplementary Table 3). The detected QTLs explain a median of 73% of 77 

the additive heritability per trait and cross, showing that we can account for most of the genetic 78 

contribution to trait variation with specific loci (Fig. 2, Supplementary Table 2). We 79 

complemented the joint analysis with QTL mapping within each cross and found a median of 12 80 

QTLs per trait at the same FDR of 5%. The detected loci explained a median of 68% of the 81 

additive heritability (Supplementary Table 2). The joint analysis was more powerful, explaining 82 

an additional 5% of trait variance and uncovering 458 QTLs not detected within individual 83 

crosses. Consistent with the higher statistical power of the joint analysis, these additional QTLs 84 

had smaller effect sizes (median of 0.071 SD units vs 0.083 SD units; Wilcoxon rank sum test 85 

W=1e6, p=9e-5).  86 

To investigate the relationship between variant frequency and QTL effects, we focused on 87 

biallelic variants observed in our panel whose frequency could be measured in a large collection 88 

of 1,011 sequenced yeast strains. Based on their minor allele frequency (MAF) in this collection, 89 

we designated variants as rare (MAF < 0.01) or common (MAF > 0.01). By this definition, 90 

27.8% of biallelic variants in our study were rare. For each trait, we computed the relative 91 

fraction of variation explained by these two categories of variants in the segregant panel 92 

(Methods)15. Across all traits, the median contribution of rare variants was 51.7%, despite the 93 

fact that they constituted only 27.8% of all variants, and that a rare variant is expected to explain 94 

less variance than a common one with the same allelic effect size. These results are consistent 95 

with rare variants having larger effect sizes and making a disproportionate contribution to trait 96 

variation. Comparing different traits, we saw a wide range of the relative contribution of rare 97 

variants, from almost none for growth in the presence of copper sulfate and lithium chloride to 98 

over 75% for growth in the presence of cadmium chloride, in low pH, at high temperature, and 99 

on minimal medium (Fig. 3a, Supplementary Fig. 3, Supplementary Table 4). The results for 100 

copper sulfate and lithium chloride are consistent with GWAS for these traits in the 1,011 101 

sequenced yeast strains—these two traits had the most phenotypic variance explained by 102 

detected GWAS loci, which inherently correspond to common variants, with large contributions 103 

coming from known common copy-number variation at the CUP and ENA loci, respectively3. 104 

In a complementary analysis, we investigated the relationship between the allele frequency of the 105 

lead variant at each QTL and the corresponding QTL effect size. Although the lead variant is not 106 

necessarily causal, in our study it is likely to be of similar frequency as the causal variant, and a 107 

simulation analysis showed that this approach largely preserves the relationship between 108 

frequency and effect size (Supplementary Fig. 4). Most QTLs had small effects (64% of QTLs 109 

had effects less than 0.1 SD units) and most lead variants were common (78%), consistent with 110 

previous linkage and association studies. We observed that QTLs with large effects were highly 111 

enriched for rare variants, and conversely, that rare variants were highly enriched for large effect 112 

sizes (Fig. 3b, Supplementary Fig. 5).  For instance, among QTLs with an absolute effect of at 113 
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least 0.3 SD units, 145 of the corresponding lead variants were rare and only 90 were common. 114 

Rare variants were 6.7 times more likely to have an effect greater than 0.3 SD (Supplementary 115 

Table 3, Fisher’s exact test, p<2e-16). Theoretical population genetics models show that for traits 116 

under negative selection, variant effect size is expected to be a decreasing function of minor 117 

allele frequency4,5. We empirically observe this relationship in our data for most of the traits 118 

examined, providing evidence that they have evolved under negative selection in the yeast 119 

population (Supplementary Fig. 6).  120 

The existence of a close sister species of S. cerevisiae—S. paradoxus—allowed us to distinguish 121 

rare variants by their ancestral state. Variants that share the major allele with S. paradoxus are 122 

more likely to have arisen in the S. cerevisiae population recently than those that share the minor 123 

allele with S. paradoxus. We classified low-frequency variants as recent or ancient according to 124 

whether their major or minor allele was shared with S. paradoxus, respectively. Recently arising 125 

deleterious alleles have had less time to be purged by negative selection, and therefore recent 126 

variants are expected to have stronger effects on gene function, and hence manifest as QTLs with 127 

larger effects. Consistent with the expectation above, we observed that recent variants were 1.8 128 

times more likely than ancient variants to have an effect size greater than 0.1 SD units (Fisher’s 129 

exact test p=9e-5) (Fig. 3c). We further examined the direction of QTL effects and found that 130 

recent variants were 1.5 times more likely to decrease fitness (Fisher’s exact test p=8e-3). 131 

Strikingly, no ancient variant decreased fitness by more than 0.5 SD units, whereas 41 recent 132 

variants did (Fisher’s exact test p=7e-3).  133 

An understanding of trait variation at the level of molecular mechanisms requires narrowing 134 

QTLs to the underlying causal genes. Such fine-mapping is a challenge because genetic linkage 135 

causes variants across an extended region to show mapping signals of similar strength. Statistical 136 

fine-mapping aims to address this challenge by estimating the probability that each variant 137 

within a QTL region is causal based on the precise pattern of genotype-phenotype correlations19–138 
21. Our crossing design enables us to obtain higher resolution for QTLs observed in two crosses 139 

that share a parent strain by looking for consistent inheritance patterns in both. Specifically, we 140 

focused on QTLs with effects greater than 0.14 SD units and used a Bayesian framework20 to 141 

compute the posterior probability that each variant is causal (Fig. 4a). We then aggregated these 142 

probabilities to obtain causality scores for each gene in a QTL. With this approach, we resolved 143 

427 QTLs to single causal genes at an FDR of 20%. Because some QTLs have pleiotropic effects 144 

on multiple traits, this gene set contains 195 unique genes, greatly expanding the repertoire of 145 

causal genes in yeast. We searched the literature and found that 26 of the 195 genes identified 146 

here are supported by previous experimental evidence as causal for yeast trait variation21–25 (Fig. 147 

4b, Supplementary Table 5). At a more stringent FDR of 5%, we found 105 unique causal genes, 148 

which included 24 of the 26 genes with experimental evidence. 149 

Causal genes were highly enriched for GO terms related to the plasma membrane (45 of 522, 150 

16.5 expected, q=1.8e-7), metal ion transport (13 of 83, 2.6 expected, q=0.0009), and positive 151 

regulation of nitrogen compound biosynthesis (28 of 393, 12.5 expected, q=0.0076) 152 
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(Supplementary Table 5). Strikingly, 5 of the 6 genes involved in cAMP biosynthesis were 153 

identified as causal (IRA1, IRA2, BCY1, CYR1, and RAS1; 0.19 expected, q=0.0002). Additional 154 

genes in the RAS/cAMP signaling pathway were also identified as causal, including GPR1, 155 

which is involved in glucose sensing, SRV2, which binds adenylate cyclase, and RHO3, which 156 

encodes a RAS-like GTPase. In yeast, the RAS/cAMP pathway regulates cell cycle progression, 157 

metabolism, and stress resistance26. Variation in many of these genes influenced growth on 158 

alternative carbon sources. We hypothesize that the yeast population contains abundant 159 

functional variation in genes that regulate the switch from glucose to alternative carbon sources 160 

through the RAS/cAMP pathway. 161 

Discussion 162 

We previously used a cross between lab (BY) and vineyard strains (RM) of yeast to show that 163 

the majority of heritable phenotypic differences arise from additive genetic effects, and we were 164 

able to detect, at genome-wide significance, specific loci that together account for the majority of 165 

quantitative trait variation18,27. It has been argued that the BY lab reference strain S288c used in 166 

those and many other yeast studies is genetically and phenotypically atypical compared to other 167 

yeast isolates28. Our results here, obtained from crosses among 16 diverse strains, generalize 168 

these findings to the S. cerevisiae population and show that S288c is not exceptional from the 169 

standpoint of genetic variation and quantitative traits. We discovered over 4,500 quantitative trait 170 

loci (QTLs) that influence yeast growth in a wide variety of conditions. These loci likely capture 171 

the majority of common variants that segregate in S. cerevisiae and have appreciable phenotypic 172 

effects on growth. We were able to localize approximately 8% of the QTLs to single genes based 173 

on genetic mapping information alone. Interestingly, these genes cluster in specific functional 174 

categories and pathways, suggesting that different strains of S. cerevisiae may have evolved 175 

different strategies for nutrient sensing and response as a function of specializing in particular 176 

environmental niches29. In addition to the findings described here, we anticipate that our data set 177 

will be a useful resource for further dissecting the genetic basis of trait variation at the gene and 178 

variant level, and for evaluating statistical methods aimed at inferring causal genes and variants. 179 

In particular, the set of loci and genes identified here provides an ideal starting point for 180 

massively parallel editing experiments that directly test the phenotypic consequences of 181 

sequence variants30. 182 

 183 

By combining our results with deep population sequencing in yeast3 we were able to examine the 184 

contributions of variants in different frequency classes to trait variation. We observed a broad 185 

range of genetic architectures across the traits studied here, with variation in some traits 186 

dominated by common variants, while variation in others is mostly explained by rare variants. 187 

Overall, rare variants made a disproportionate contribution to trait variation as a consequence of 188 

their larger effect sizes. A complementary mapping approach in an overlapping set of yeast 189 

isolates also revealed enrichment of rare variants with larger effect sizes (Fournier and 190 

Schacherer, personal communication). These results are consistent with the finding from GWAS 191 
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that common variants have small effects, as well as with linkage studies that find rare variants 192 

with large effect sizes. Our study design also revealed a substantial component of genetic 193 

variation—variants with low allele frequency and small effect size—that has been refractory to 194 

discovery in humans because both GWAS and linkage studies lack statistical power to detect this 195 

class of variants. Recent work in humans has suggested that rare variants account for a 196 

substantial fraction of heritability of complex traits and diseases2. Our study presents a more 197 

direct and fine-grained view of this component of trait variation and implies that larger sample 198 

sizes and more complete genotype information will be needed for more comprehensive studies in 199 

other systems. 200 

  201 
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Main Figures 202 

 203 

 204 

Figure 1. Multiparental cross design with 16 diverse progenitor yeast strains  205 

16 parental strains were chosen to represent the diversity of the S. cerevisiae population, as 206 

illustrated by their positions on a neighbor-joining tree based on 1,011 sequenced isolates3. 207 

These strains were crossed in a single round-robin design, with each strain crossed to two other 208 

strains, as depicted by lines connecting the colored circles. Colors indicate the ecological origins 209 

of the parental strains.  210 

 211 

 212 
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 213 

 214 

Figure 2. Most heritable variation is explained by detected QTL 215 

Whole-genome estimates of additive genetic variance (X-axis) are plotted against cross-validated 216 

estimates of trait variance explained by detected QTLs (Y-axis) for each trait-cross combination. 217 

Red points show values for the BYxRM cross. The diagonal line corresponds to 100% of trait 218 

variance explained by detected QTL and is shown as a visual guide. (Inset) A histogram of the 219 

ratio of non-additive to additive genetic variance for each trait-cross combination estimated by a 220 

variance component model.  221 
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 222 

 223 

Figure 3. Effect size and contribution to trait variation of rare and common variants 224 

(A) Stacked bar plots of additive genetic variance explained by rare (blue) and common (grey) 225 

variants. Error bars show +/- s.e. (B) Minor allele frequency (X-axis) of the lead variant at each 226 

QTL3 is plotted against QTL effect size (Y-axis). Red points show mean QTL effect size for 227 

groups of approximately 100 variants binned by allele frequency. Error bars show +/- s.e.m. (C) 228 

Frequency of the derived allele of each QTL lead variant (X-axis), based on comparison with S. 229 

paradoxus, is plotted against QTL effect size (Y-axis). 230 
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 231 

 232 

Figure 4. QTL fine-mapping at gene-level resolution 233 

(A) Statistical fine-mapping of a QTL for growth in the presence of caffeine. Genetic mapping 234 

signal, shown as the coefficient of determination between genotype and phenotype (Y-axis, left), 235 

is plotted against genome position (X-axis) for crosses between 273614N and YJM981 (black) 236 

and YJM981 and CBS2888 (blue).  The posterior probability of causality (PPC), plotted in red 237 

(Y-axis, right), localizes the QTL to a portion of the gene TOR1. (B) PPC is shown as black dots 238 

for 195 genes identified as causal at an FDR of 20%, sorted by PPC. Genes containing natural 239 

variants that have been experimentally validated as causal for trait variation in prior studies21–25 240 

are shown in red and labelled with gene names. 241 
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