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ABSTRACT

The biological fitness of non-interacting unicellular organisms in constant environments is given
by their balanced growth rate, i.e., by the rate with which they replicate their biomass composition.
Evolutionary optimization of this growth rate occurred under a set of physicochemical constraints,
including mass conservation, reaction kinetics, and limits on dry mass per volume (cellular capac-
ity). Mathematical models that account explicitly for these constraints are inevitably nonlinear,
and their optimization has been restricted to small, non-realistic cell models. Here, we show that
states of maximal balanced growth are elementary flux modes of a related flux balance problem, i.e.,
deactivating any active reaction makes steady-state growth impossible. For any balanced growth
state that corresponds to an elementary flux mode of an arbitrarily sized model, we provide ex-
plicit expressions for individual protein concentrations, fluxes, and growth rate; all variables are
uniquely determined by the concentrations of metabolites and total protein. We provide explicit
and intuitively interpretable expressions for the marginal fitness costs and benefits of individual
concentrations. At optimal balanced growth, the marginal net benefits of each metabolite concen-
tration and of total protein concentration equal the marginal benefit of the cellular capacity. Based
solely on physicochemical constraints, our work unveils fundamental quantitative principles of bal-
anced cellular growth, quantifies the effect of cellular capacity on fitness, and leads to experimentally
testable predictions.

I. INTRODUCTION

The defining feature of live is self-replication. For
non-interacting unicellular organisms in constant envi-
ronments, the rate of this self-replication is equivalent to
their evolutionary fitness [1]: fast-growing cells outcom-
pete those growing more slowly. Accordingly, natural
selection has optimized the cellular composition of many
microbes for maximal balanced growth rate in specific
environments [2, 3], i.e., for the fastest possible repro-
duction of all cellular components in proportion to their
abundances [4].

The variables of this evolutionary optimization are the
abundances of the cellular metabolites and of the pro-
teins and ribonucleic acids that catalyze their conversion
into biomass. The corresponding boundary conditions
are provided by the environment and by physicochemical
constraints, including mass conservation, the kinetics of
enzymatic and spontaneous reactions, and capacity con-
straints that limit cellular concentrations [3, 5–8].

Molenaar et al. [5] proposed a coarse-grained, math-
ematical model of balanced growth encapsulating the
most important physicochemical constraints and the ac-
tivity of up to seven biochemical reactions. Numerical
optimization resulted in predictions that recovered qual-
itatively the growth-rate dependencies of cellular ribo-
some content, of cell size, and of the emergence of over-
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flow metabolism. Similar to other constraint-based ap-
proaches [9–11], this modelling paradigm does not con-
sider regulatory constraints, but instead assumes that
protein regulation evolved to implement the optimal
state.

Due to the inclusion of non-linear enzyme kinetics,
maximizing the growth rate is inevitably a non-linear
optimization problem; this may explain why no attempts
have been made to extend this approach to more detailed
biochemical whole-cell models. Instead, “toy models”
of 1-3 reactions were solved analytically to gain further
qualitative understanding of systems-level effects, such as
the increased cellular investment into ribosomes at faster
growth [6–8, 12] and optimal gene regulation strategies
[3, 7].

Alternative modeling strategies, such as flux-balance
analysis (FBA) [9, 13], resource balance analysis (RBA)
[10], and ME (metabolism and expression) models [11],
can be viewed as simplifications of the balanced growth
scheme [14]. These models are also based on the idea
of growth rate optimization in a steady-state solution
space defined by physicochemical and environmental con-
straints. However, they consider only linear constraints,
and they ignore the influence of metabolite concentra-
tions on reaction kinetics [9, 13] or approximate their
effects through growth-rate dependent phenomenological
scaling laws [10, 11, 15].

Fig. 1A shows a simple model of balanced cellular
growth, where a transporter protein imports a nutrient
(G), which is converted into precursors for proteins (AA)
through an enzymatic reaction, and where the precursors
are converted by a “ribosome” protein into the three pro-
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teins used as catalysts. Fig. 1B shows a slightly more
involved model with cofactors, while Fig. 1C sketches
an arbitrarily complicated balanced growth model. The
boundary conditions and the requirement of balanced ex-
ponential growth define the system’s solution space; max-
imizing the growth rate results in quantitative prediction
of reaction fluxes and cellular concentrations (biomass
composition). Here, we develop a theoretical framework
for the analysis of such systems.

II. MODELS OF BALANCED EXPONENTIAL
GROWTH

Our model assumes that in balanced growth, the cell
increases exponentially in size, while the concentrations
of all cellular components remain constant. In particular,
we assume that the number of different membrane con-
stituents per cell volume (and thus membrane composi-
tion and surface/volume ratio) remain constant in a given
environment [5]. We do not explicitly model cell division;
thus, our model can also be interpreted as describing the
growth of a population of cells, with the simplifying as-
sumption that individual cells have the same molecular
composition [7]. To satisfy these assumptions, the net
production rate of each molecular constituent must bal-
ance its dilution by growth,

dx

dt
= µx , (1)

where x denotes the concentration of a given component
and µ is the cellular growth rate [7].

The mass conservation in chemical reaction networks
such as in Fig. 1 is commonly described through a stoi-
chiometric matrix N , where rows correspond to metabo-
lites and each column describes the mass balance of one
reaction, with negative entries for consumed and posi-
tive entries for produced metabolites [19]. Here, we will
focus on matrices A that describe a network of active
reactions, i.e., A is a sub-matrix of N that contains all
columns j for reactions with flux vj 6= 0 and all rows for
reactants i involved in these reactions either as substrates
or as products. Note that the activity of each reaction
j in A implies a positive concentration pj > 0 for the
protein catalyzing j; in our notation, catalytic proteins
include not only enzymes, but also transporters and the
ribosome.

For the development below, it will be convenient to ex-
press each concentration in units of mass concentration
(mass per volume), which can be obtained from the corre-
sponding number concentration by multiplying with the
molecular mass. Accordingly, the entries of A are not
stoichiometric coefficients but are mass fractions. We
normalize the columns of A such that the negative en-
tries (the mass concentration fraction consumed) sum to
−1 and the positive entries (the mass concentration frac-
tion produced) sum to +1; transport reactions do not

have to be mass balanced, and thus one of these sums
may have a smaller absolute value [19].

The mass conservation of each component in an active
reaction network can then be stated in matrix notation
as

Av = µ

[
P
a

]
, (2)

where aα is the mass concentration of reactant α and P
is the total protein mass concentration, summed over all
proteins j,

P =
∑
j

pj . (3)

The rate vj of a biochemical reaction j is the product
of the concentration of its catalyzing protein pj and some
kinetic function kj(a) that depends on the concentrations
aα of active reactants,

vj = pjkj(a) . (4)

We assume that the functional form of kj(a) and the
(constant) kinetic parameters are known. kj has units of
[time]−1, and vj has units of [mass][volume]−1[time]−1.
kj(a) may depend on the mass concentrations of sub-
strates, products, and other molecules aα acting as in-
hibitors or activators. In the simplest case of reaction
j following irreversible Michaelis-Menten kinetics with a
single substrate α,

kj(a) = kcat

(
aα

aα +Km

)
(5)

with constant enzyme activity kcat (in units of
[time]−1) and Michaelis constant Km (in units of
[mass][volume]−1).

The final constraint considered here reflects the cel-
lular requirement for a minimal amount of free water
to facilitate diffusion [20, 21]. E. coli growth decreases
when cellular free water content is reduced below stan-
dard conditions, eventually stopping altogether when free
water disappears [21]. E. coli ’s buoyant density [22] and
cellular water content [21] depend only on external osmo-
larity; at fixed external osmolarity, buoyant density re-
mained constant even when experimenters induced dras-
tic changes in cell mass and macromolecular composition
[23].

Accordingly, we assume here that the cellular dry
weight per volume is limited to ρ, where ρ is determined
by external osmolarity. We express this capacity con-
straint as

ρ ≥ P +
∑
α

aα . (6)

For simplicity of notation, we use the following conven-
tions: {α} is the set of all reactants in the active stoi-
chiometric matrix A, and

∑
α indicates that we sum over
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FIG. 1. Examples of balanced growth models (BGMs) and their mathematical description, derived from the active matrix A and
the kinetic functions k(a): basis matrix B, investment matrix I = B−1, closure matrix C, dependence matrix D = CI, marginal
net benefits η, and capacity factors κ. (A) A model with a simple linear network of irreversible reactions, connecting a single
transporter to the final production of proteins; linear networks never have dependent reactants, as the number of reactions equals
the number of components. Colors indicate the fraction of flux that is eventually diverted into the dilution of each downstream
component. (B) A more elaborate, nonlinear model of irreversible reactions that includes cofactors and a dependent reactant
(ADP). (C) Schematic diagram of an arbitrary model with multiple transporters, the excretion of compounds, and a final
“ribosome” reaction producing proteins. (D) The prediction of the active ribosomal protein fraction in E. coli based on Eq.(27)
(red line, no free parameters) agrees with experimental values across 20 different growth conditions [16, 17], with a Pearson’s
correlation coefficient of R2 = 0.96 (P = 2.4 × 10−14) and geometric mean fold error = 1.09. The dashed grey line is the
prediction using Eq.(S34) without production costs, which becomes a good approximation of Eq.(27) at lower growth rates (see
also Ref. [18]).
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all α ∈ {α}. We use corresponding notations for the sets
of basis reactants {β} and dependent reactants {γ} (see
below). For an overview over the symbols used in this
manuscript, see Suppl. Table S2.

Based on biophysical considerations, we could replace
Eq.(6) with separate capacity constraints on the total vol-
ume concentration inside each cellular compartment [20]
and on the total area occupied by non-lipid membrane
components per membrane area [5, 24]. An even sim-
pler capacity constraint imposed in most previous mod-
els [3, 5–8, 10–12] is to fix total protein concentration P
to a constant value. However, it has been shown that
P decreases with increasing growth rate [23, 25]. Thus,
while a constant P allows to simplify the presentation,
Eq.(6) provides a more meaningful constraint; moreover,
Eq.(6) allows us to determine the costs and benefits of
varying the total protein concentration.

Each cellular state, defined through the (element-wise)
positive concentration vectors p > 0 and a > 0 (and the
corresponding flux vector v uniquely defined by the con-
centrations), is a balanced growth state if and only if it
satisfies Eqs. (2), (4), and (6); the set of all such states
forms the solution space of balanced growth. Mass con-
servation (Eq.(2)) and reaction kinetics (Eq.(4)) relate
reaction fluxes to the concentration vector [P,a]T in two
fundamentally different ways; below, we will exploit this
fact to eliminate the flux variables and to derive explicit
expressions for pj and for µ.

III. CELLULAR STATE DEFINED BY THE
CONCENTRATION VARIABLES

Our first aim is to derive a simple mathematical de-
scription of the solution space of balanced growth, with
an emphasis on optimal states (i.e, states of maximal bal-
anced growth rate µ). Let A be the active stoichiometric
(sub-)matrix, v∗ the flux vector, and x∗ := [P ∗,a∗]T the
concentration vector of such an optimal balanced growth
state. In SI text VIIIA, we use results on constrained
FBA problems [26, 27] to show that v∗ is an elementary
flux mode (EFM) [28] of a related FBA problem defined
by A together with a constant biomass vector x∗.

The derivations below assume that A has full column
rank. This will be the case if A is the active matrix
of an EFM for any constant biomass vector x [29]; in
particular, this is true for the active matrix of optimal
balanced growth states (SI text VIIIA; see also Ref.
[30]).
A may have more rows than columns. It is conve-

nient to decompose the linear system of equations repre-
sented by Eq.(2) into two parts, rearranging the rows of
A into matrices B,C such that #rows(B) = rank(B) =
rank(A),

Bv = µ

[
P
b

]
(7)

Cv = µc , (8)

where b and c are the reactant concentration vectors
corresponding to the rows of B and C, respectively. B
is identical to the reduced stoichiometric matrix in Ref.
[31]. The relationship between A and B,C can be under-
stood in terms of Matroid theory, where the rows of B
form a basis for the matroid spanned by the rows of A,
and the set of rows of C is the closure for the set of rows
of B. If the choice for the partitioning of A into B and
C is not unique, some partitionings may be pathological
and should be avoided (SI text VIIIB).
B is a square matrix of full rank, so there is always

a unique inverse I := B−1. Multiplying both sides of
Eq.(7) by I from the left, we obtain

v = µI

[
P
b

]
. (9)

Iji quantifies the proportion of flux j invested into the
dilution of component i, and we thus name I the invest-
ment (or dilution) matrix (see Fig. 1 for examples). In
contrast to the stoichiometric matrix A, which describes
local mass balances (Eq.(2)), I describes the structural
allocation of reaction fluxes into the production of cel-
lular components diluted by growth, and thus carries
global, systems-level information.

By substituting v in Eq.(8) with Eq.(9), we obtain

c = D

[
P
b

]
, (10)

where we defined the dependence matrix D := CI. D
describes the linear dependence of the dependent concen-
trations c on P and b; it is identical to the link matrix
in Ref. [31].

When A is not square, B includes a proper subset of
the rows in A, and thus B on its own is not mass bal-
anced. The “missing” mass fluxes are balancing c, and
hence the flux investment into c is already accounted for
by Eq.(9).

We are now in a position to express growth rate as
an explicit function of the concentrations [P,a]T . As
kj(a) 6= 0, we can use the kinetic equations (4) to express
the individual protein concentrations as pj = vj/kj(a).
Inserting vj from the investment equation (9) gives

pj =
vj

kj(a)
= µ

IjPP +
∑
β Ijβbβ

kj(a)
. (11)

Substituting these expressions into the total protein sum,
Eq.(3), we obtain

P = µ
∑
j

IjPP +
∑
β Ijβbβ

kj(a)
. (12)

Below, we simplify the notation by writing kj := kj(a).
Solving for µ results in the growth equation

µ(P,a) =
P∑

j

IjPP+
∑
β Ijβbβ

kj

. (13)
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Thus, if the active matrix A of a balanced growth state
is full rank, there are unique and explicit mathematical
solutions for p, v, and µ. In particular, this is the case
for optimal states, as well as for all other states whose
active matrix is the active matrix of an EFM for any
constant biomass x. If all pj are positive (Eq.(11)), the
corresponding cellular state is a balanced growth state;
otherwise, no balanced growth is possible at these con-
centrations.

IV. MARGINAL FITNESS CONTRIBUTIONS
OF CELLULAR CONCENTRATIONS

In biological systems, costs and benefits should be ex-
pressed in terms of fitness effects. In situations where fit-
ness f is determined exclusively by growth rate, a small
change in growth rate δµ translates into a corresponding
change in relative fitness (SI text VIIIC) of

δf =
δµ

µ
. (14)

Accordingly, we define the direct marginal net benefit
η0i of the concentration xi with i ∈ {P, β} (i.e., xi ∈
{P, bβ}) as the relative change in growth rate due to a
small change in xi [32],

η0i :=
1

µ

∂µ

∂xi
. (15)

While we assume that the original state before the change
in xi respected the capacity constraint Eq.(6), we ig-
nore the capacity constraint for the perturbed state in
these definitions (i.e., we allow capacity to “adjust” to
the change in xi and in any dependent concentrations
cγ).

For i ∈ {P, β}, let us define

qji :=
µIji
Pkj

. (16)

From the growth equation (13), it follows that

η0P =
1

P
−
∑
j

qji (17)

and

η0β =
∑
j

(uji − q
j
i ) (18)

with

ujβ :=
pj
P

1

kj

∂kj
∂bβ

. (19)

The summands in the denominator of the growth equa-
tion (13) can be expressed as pj/µ = vj/(µkj) (Eq.(11)).

Accordingly, qji = 1
P

(
∂pj
∂xi

)
kj=const.

quantifies the pro-

portional increase of pj to help offset the increased dilu-
tion of component i, and we thus call this the marginal
(relative) production cost incurred by the system via pro-

tein pj . If Iji and kj are both positive, then qji is also
positive, i.e., it decreases fitness. The production costs
are global, systems-level effects, quantified through the
investment matrix I.

Conversely, ujβ = − 1
P

(
∂pj
∂bβ

)
vj=const.

quantifies the

proportion of protein pj “saved” due to the change in ki-
netics associated with an increase in bβ [33]. The benefit

ujβ will generally be positive if β is a substrate of reaction

j. We thus call ujβ the marginal (relative) kinetic bene-
fit of reactant β to reaction j. The kinetic benefit is a
purely local effect, as it is non-zero only for reactants that
affect the kinetics of reaction j. Because fluxes are pro-
portional to the concentrations of the proteins catalyzing
the corresponding reactions, the marginal benefit of total
protein in terms of relative fitness is simply P−1.

Combining the two relationships for production cost
and kinetic benefit, we see that the direct net benefit is
the reduction of the protein fraction pj/P at constant µ
facilitated by the increase in x,

η0i = − 1

P

∑
j

(
∂pj
∂xi

)
µ=const.

. (20)

The definition of η0i (i ∈ {P, β}) accounts for the pro-
duction costs of dependent reactants cγ (as these are em-
bedded in I), but ignores their kinetic benefits. In anal-
ogy to Eq.(19), we define these as

ηcγ :=
∑
j

ujγ , (21)

with the marginal (relative) kinetic benefit of reactant γ
to reaction j

ujγ :=
pj
P

1

kj

∂kj
∂cγ

. (22)

We can now use the above relations to define the total
marginal net benefit ηi of concentration i ∈ {P, β} as the
relative change in growth rate due to a small change in
xi and the resulting change in the concentrations of its
dependent reactants cγ ,

ηi :=
1

µ

(
∂µ

∂xi
+
∑
γ

∂µ

∂cγ

∂cγ
∂xi

)
= η0i +

∑
γ

Dγiη
c
γ ,

(23)

where the second equality follows from Eqs.(23), (10),
(13) and definitions (21), (22).

A change δxi of xi (i ∈ {P, β}) causes a correlated
change of each dependent concentration δcγ = Dγiδxi
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(Eq.(10)). Thus, a change by δxi results in a total change
of the utilization of cellular capacity by κiδxi, with the
capacity factor

κi := 1 +
∑
γ

Dγi . (24)

V. OPTIMAL GROWTH AND THE BALANCE
OF MARGINAL NET BENEFITS

At maximal growth rate, the cellular components will
utilize the full cellular capacity ρ to saturate enzymes
with their substrates, and thus the constraint in Eq.(6)
will be active, that is, the inequality will become an
equality.

To derive necessary conditions for any optimal bal-
anced growth state at constant cellular capacity ρ, we use
the method of Lagrange multipliers, which quantify the
importance of the capacity constraint, Eq.(6), and of the
constraints for the dependent reactants, Eq.(10), for the
maximization of the objective function. The Lagrangian
L is a function of P , a, and ρ (SI text VIIID).

Note that instead of using Lagrange multipliers, one
could express the total protein concentration P = ρ −∑
α aα (Eq.(6)) and the dependent reactant concentra-

tions cγ = DγPP +
∑
β Dγβbβ (Eq.(10)) in terms of ρ

and of the independent reactant concentrations b. Sub-
stituting the resulting expressions in the growth equation
(13) would result in an objective function that depends
only on ρ and b, and that is constrained only by the re-
quirement of positive concentrations. While this would
lead to the same balance equations (26) as derived in the
Lagrange multiplier framework, this formulation misses
important insights that can be derived from the Lagrange
multipliers themselves.

The maximal balanced growth rate µ∗ will be a func-
tion of the cellular capacity ρ. In analogy to the
marginal net benefits of cellular components, we define
the marginal benefit of the cellular capacity as the fitness
increase facilitated by a small increase in ρ,

ηρ :=
1

µ∗
dµ∗

dρ
=

1

µ

∂L
∂ρ

∣∣∣∣
µ=µ∗

= −λρ
µ∗

, (25)

where the second equality follows from the envelope the-
orem [34].

A necessary condition for optimal balanced growth is
that all partial derivatives of L with respect to the con-
centrations (P, bβ , cγ) and to the Lagrange multipliers
(λρ, λγ) are zero. As detailed in SI text VIIID, this
leads to the balance equations

∀i∈{P,β} ηi = κiηρ . (26)

The optimal state is perfectly balanced: the marginal
net benefit of each independent cellular concentration
xi equals the marginal benefit of the cellular capacity,
scaled by κi to account for its total utilization of cellu-
lar capacity. If i does not have any dependent reactants

(∀γ Dγi = 0) or if A = B, then the balance equation
simplifies to η0i = ηρ.

Eq.(26) states that if the dry weight density ρ would
be allowed to increase by a small amount, such as 1µg/l,
then the marginal fitness gain that could be achieved by
increasing protein concentration (plus dependent concen-
trations) by this amount is identical to that achieved by
increasing the concentration of any reactant β (plus its
dependent concentrations) by the same amount. In hind-
sight, this should not be surprising: if the marginal net
benefit of concentration xi (scaled by κi) was lower than
that of xi′ , growth rate could be increased by increasing
xi′ at the expense of xi.

Eq.(26) together with Eq.(6) describes a system of
m + 2 equations for m + 2 unknowns (with m the num-
ber of basis reactants β; SI text VIIID). Any state of
optimal growth must satisfy these equations. In realistic
cellular systems, this set of equations has a finite num-
ber of discrete solutions. Thus, solving the non-linear
optimization problem described by Eq.(2) and the corre-
sponding constraints may potentially be accelerated by
instead searching for the solution of the balance equa-
tions. If the optimization problem is convex, the condi-
tions given by Eq.(26) are necessary and sufficient, and
the solution is unique.

VI. QUANTITATIVE PREDICTIONS

A fully parameterized genome-scale balanced growth
model could be used to predict all cellular concentra-
tions at maximal growth rate. However, kinetic constants
are currently lacking for many reactions even in the best
studied model organisms [35]. We can still make quanti-
tative predictions for the ribosome if we consider simpli-
fied models where the ribosome produces proteins from a
single substrate, a generic ternary complex AA not con-
sumed by other reactions (such as used in Ref. [36] and
shown in Fig. 1A). In the balance equation η0AA = η0P ,
the costs on both sides largely cancel each other, as all
reactions that contribute directly or indirectly to AA pro-
duction contribute proportionally to protein production.
The only cost not cancelled is qRP = µ/(PkR) (see, e.g.,
the balance equation for reactant “AA” in Fig.1A). Thus,
only the kinetics of the ribosome kR remain relevant,
which we obtain from Ref. [36]. Using the mass balance
of proteins, vR = µP , we thus predict the optimal protein
fraction of actively translating ribosomes, φR = pR/P , at
each growth rate (SI text VIII E),

φR(µ) =
µrP
kcat

[
1 +

Km

2P

(√
1 +

4P

Km

(
kcat
µ
− 1

)
− 1

)]
,

(27)
where rP is the mass fraction of the ribosome made up of
protein, and kcat,Km are the kinetic parameters [36, 37].

Despite the simplicity of this model, the predicted φR
is in good agreement with experimental values [16, 17]
(Fig. 1D, solid red line). An approximation that ignores
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the dilution of intermediates (production costs) and bases
its predictions only on the capacity ρ (Fig. 1D, grey
dashed line) results in less accurate predictions. However,
this last approximation becomes better at lower growth
rates, where the dilution of intermediates µaα becomes
less and less important, and the optimal concentrations
are increasingly determined by the capacity constraint.
This finding explains why the assumption of a minimal
utilization of cellular capacity by individual catalysts and
their substrates provides a good approximation for the
relationship between their concentrations [18].

To get a rough quantitative estimate of the marginal
net benefits η, let us consider the simplest model of a
complete cell, consisting of only a transport protein and
the ribosome [3, 6] (Suppl. Fig. VIII F). Based on the ex-
perimentally observed protein fraction of total dry weight
P/ρ = 0.54 in E. coli [21], we estimate ρ ηρ = 0.69 (SI
text VIII F). ρ ηρ quantifies the relative change in the
maximal growth rate µ∗ resulting from a small, relative
change in ρ. Thus, we estimate that a decrease in cellular
dry weight density ρ of 1% would lead to a 0.69% decrease
in growth rate, indicating that the capacity constraint is
indeed highly biologically significant.
ρ changes when external osmolarity is modified [21].

ρ ηρ = ρ
µ
dµ
dρ = d lnµ

d ln ρ is the slope of the log-scale plot of

µ vs. ρ at different external osmolarities. Increases in
cellular dry weight density may have strong effects on
diffusion and may hence change the kinetic constants. In
contrast, reductions in ρ due to decreased external osmo-
larity are within the scope of our model, which assumes
constant parameters for k(a). The very limited available
experimental data (three data points from Ref. [38], Fig.
VIII F) suggests ρ ηρ ≈ 0.66, close to our rough estimate
from the minimal cell model.

VII. CONCLUSIONS

Our derivations are based on the insight that for any
balanced growth state that corresponds to an EFM of
the related FBA problem, the inverse I of the active sto-
ichiometric matrix (or a basis thereof) contains global,
systems-level information on the contribution of individ-
ual fluxes to the production of cellular constituents di-
luted by growth. Purely through structural constraints,
this leads to an explicit dependence of reaction fluxes
on the concentrations of the cellular constituents, scaled
linearly by the growth rate (Eq.(9)). We combine this
description with the complementary kinetic dependence
of fluxes on concentrations. This allows us to provide
explicit expressions for the individual protein concentra-
tions p and fluxes v and for the growth rate µ as func-
tions of arbitrary (positive) concentrations [P, b]T , and
it provides the framework from which we derive the bal-
ance equations for the marginal net benefits of cellular
concentrations at optimal growth.

Previous work has emphasized the central role of pro-
teins in the cellular economy [3, 5–8, 10–12]. Whereas

total protein mass concentration in real biological sys-
tems is indeed much higher than the mass concentration
of any other cellular constituent aα, the balance equa-
tions show that at optimal growth, their marginal net
benefits are in fact equal, emphasizing the importance of
explicitly accounting for all cellular constituents.

To make the presentation concise, our equations as-
sume (i) that all proteins contribute to growth by act-
ing as catalysts or transporters; (ii) that there is a 1-to-1
correspondence between proteins and reactions; (iii) that
proteins are not used as reactants; and (iv) that all cata-
lysts are proteins. It is straight-forward to remove these
simplifications. E.g., assumption (i) can be removed by
adding a sector of non-growth related proteins [15, 39]
with concentration Q to the r.h.s. of Eq.(3); to remove
assumption (iv), we can add different RNA species as cel-
lular components and introduce reactions that combine
proteins and RNA into molecular machines such as the
ribosome.

An equation analogous to Eq.(9) can be formulated for
non-growing cells (or cellular subsystems) that are in-
stead optimized for the production of specific molecules,
as is the case for many cell types in multicellular organ-
isms. Instead of multiplying a dilution term, the produc-
tion matrix I would then multiply a weighted production
vector representing the desired output. The same strat-
egy might be used to accelerate FBA solutions in a given
EFM: FBA studies cellular growth, but assumes a fixed
biomass composition [P,a]T .

In principle, exploitation of the balance equations
(Eq.(26)) may allow the numerical optimization even for
cellular systems of realistic size, encompassing hundreds
of protein and reactant species. One remaining obstacle
to the accurate formulation of such models, though, is the
current incompleteness of the kinetic constants needed to
parametrize the functions k(a) [35]. The need for the de-
velopment of high-throughput methods to systematically
ascertain these parameters has been recognized [35]; in
the meantime, methods from artificial intelligence may
provide reasonable approximations [40].

As an alternative to genome-scale models, the balanced
growth theory developed here could be applied to coarse-
grained cellular models of increasing complexity, param-
eterized from experimental data. One would start from
minimal models with two reactions [3, 6], proceeding to
models comprising the six previously described sectors of
the cellular economy [39] and beyond [41].

Our work extends the ad-hoc optimizations of toy mod-
els [3, 5–8] into a full-fledged theory of balanced growth.
We show that the balanced growth framework allows gen-
eral, quantitative insights into cellular resource allocation
and physiology, as exemplified by the growth and balance
equations. Application and further development of this
theory may foster an enhanced theoretical understanding
of how physicochemical constraints determine the fitness
costs and benefits of cellular organization. Moreover, the
explicit expressions for the (marginal) costs and benefits
of cellular concentrations in terms of fitness provide a rig-
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orous framework for analyzing the cellular economy. We
anticipate that this approach will prove fruitful in the in-
terpretation of natural and laboratory evolution, and in
optimizing the design of synthetic biological systems.
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VIII. SUPPLEMENTARY MATERIAL

A. The active sub-network at maximal growth rate
forms an elementary flux mode

Let N be a stoichiometric matrix of a general balanced
growth model. Let A be a sub-matrix of N that con-
tains only the columns for reactions that are active in a
solution that maximizes the growth rate µ of the gen-
eral problem, with corresponding active (nonzero) con-
centrations x = [P,a]T . Let x∗ be the concentrations,
v∗ the fluxes, k∗ = k(x∗) the values of the kinetic func-
tions, and µ∗ the growth rate of the optimal solution.
Then these values characterize also the optimal solution
to the reduced balanced growth optimization problem,
constrained by Eqs. (2), (3), (4), and (6) and summa-
rized here:

max µ

subject to:

Av = µx

P =
∑
j

pj

∀j vj = pjkj(x)

ρ ≥ P +
∑
α

aα .

(S1)

We now wish to relate the solution of this problem to
elementary flux modes (EFMs) [28], which are defined
for the types of steady state models used in flux balance
analysis (FBA) [9, 13]. We thus convert Eq.(S1) into a
corresponding constrained FBA problem by treating the
“biomass” vector x∗ of the optimal solution as a constant
and by relaxing the equality constraint on the individ-
ual protein concentrations into an inequality constraint,
P ∗ ≥

∑
j pj . With constant biomass x∗, Eq.(2) is equiv-

alent to the standard steady state constraint of flux bal-
ance analysis problems, formulated with an explicit bal-
ance equation for each biomass component rather than
with a separate biomass reaction in A (see, for example,
Eq.(2) in Ref.[42]). With constant concentrations, to-
tal protein P ∗ and the kinetic functions k∗ also become
constant; the constraint relating to the cellular capacity
(Eq.(6)) is trivially respected and can be ignored. Thus,
the constrained FBA problem for the active stoichiomet-
ric matrix becomes:

max λ

subject to:

Av = λx∗

P ∗ ≥
∑
j

pj

∀j vj = pjk
∗
j ,

(S2)

with biomass production rate λ and constant k∗, P ∗, and
biomass x∗. This is precisely the type of constrained

flux balance problem analyzed in Refs. [26, 27], which
prove that the solutions vopt to the optimization problem
defined by Eq.(S2) are elementary flux modes (EFMs).

In the optimal solution to the problem defined by
Eq.(S2), the protein concentration constraint will be ac-
tive, that is, P ∗ =

∑
j pj ; if not, the biomass production

rate λ could be increased by multiplying the vector of
protein concentrations p with a constant > 1 (as vj =
pjk
∗
j for all j). Thus, the optimization problem described

by Eq.(S2) is the same as that described by Eq.(S1), ex-
cept for a reduction in the dimension of the search space
due to the fixed concentrations x∗. Accordingly, the flux
distribution v∗ that maximizes the balanced growth rate
µ in Eq.(S1) also maximizes the biomass production rate
λ of the FBA problem in Eq.(S2); it is hence an EFM
of the active stoichiometric matrix A with biomass x∗

[26, 27].
Furthermore, it has been shown that the active stoi-

chiometric matrix A of an EFM has full column rank (if
A is formulated without an explicit “biomass” reaction)
[29]. We conclude that the active stoichiometric matrix
A of a balanced growth model at maximal growth rate
has full column rank. Consequently, the corresponding
basis matrix B is always invertible.

We emphasize that v∗ is an EFM of the constrained
FBA problem in Eq.(S2), not of the balanced growth
problem in Eq.(S1) from which it is derived. EFMs
are defined as equivalence classes of minimal admissible
steady-state flux distributions, whose members can be
converted into each other by multiplication with a pos-
itive scalar [28]. This definition can not be generalized
to balanced growth models, as multiples of an admissi-
ble flux vector generally do not satisfy Eq.(2). For this
reason, de Groot et al. have generalized the concept of
EFMs to equivalence classes of minimal sets of active
reactions in balanced growth states, termed elementary
growth modes (EGMs) [30]. In parallel work to that pre-
sented here, these authors have shown that optimal solu-
tions to balanced growth problems are EGMs, and that
the active stoichiometric matrix of an EGM has full rank
[30].

If instead of a single constraint on cellular capacity,
multiple capacity constraints are imposed simultaneously
(e.g., to describe separate constraints on cytosolic and
membrane capacities), then the solutions may instead
correspond to convex combinations of EFMs of the re-
lated FBA problem [30, 43]; this appears to be the case
in overflow metabolism in E. coli [44]. In such cases, it
is not guaranteed that A has full column rank, and gen-
eralizations of our theory may not be straightforward.

B. Choice of basis and relationship between
capacity and dependence constraints

Not every reactant can be considered dependent: a
reactant such that the corresponding row in the active
matrix A is linearly independent of all other rows will
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always be in the basis (equivalently, a reactant that has
zero entries in all vectors in a basis for the left null space
of A cannot be a dependent reactant).

It is possible for some models that there is one or more
choices of basis such that its corresponding dependence
matrix has for some i ∈ {P, β}∑

γ

Dγi = −1 . (S3)

In these cases, any marginal change in the mass con-
centration of component i will cause the exact opposite
change in the total mass concentration of its dependent
reactants γ. When this is combined with the capacity
constraint as defined in Eq.(6), these changes in concen-
trations result in a perfect cancellation in the capacity
utilized by i and its dependent reactants, and thus a zero
net change in capacity for any change in the concentra-
tion i (i.e., κi = 0 from Eq.(24)). For this reason, the
marginal net benefit of i is simply ηi = 0 (Eq.(26)).

Such a perfect cancellation is highly unlikely if we use
a more realistic description of the capacity constraint,
where different cellular components i have different spe-
cific capacity utilizations σi; e.g., if we assume that the
capacity constraint limits the total volume occupied by
cellular components, then σi gives the volume per mass of
component i. In this case, the capacity constraint Eq.(6)
is replaced by a constraint on the volume of cellular dry
mass per volume of cell water, ν:

ν = σPP +
∑
α

σαaα , (S4)

where σP is the specific capacity of proteins (almost con-
stant for different proteins [45]) and σα is the specific
capacity of reactant α, which depends on its chemical
properties such as hydrophobicity and charge [46].

C. Definition of relative fitness

In a situation where competition among cells is solely
through differential intrinsic growth rates, absolute fit-
ness is equal to growth rate: In a population of cells
growing exponentially with growth rate µ, the selection
coefficient for a variant with growth rate µ+δµ is simply
δµ [1]. Population genetics models almost always employ
relative fitness [47], which we here define as a relative
growth rate:

f :=
µ+ δµ

µ
= 1 +

δµ

µ
. (S5)

Thus, to quantify the effect of a small change δx to some
parameter x on relative fitness, we use

δf

δx
=

1

µ

δµ

δx
. (S6)

Note that population genetics models are frequently
defined in terms of discrete generations. With generation

time T = ln 2/µ, the selection coefficient of the variant
per generation is then [48]

sT = (f − 1) ln 2 =
δµ

µ
ln 2 . (S7)

D. Solution for the optimization problem using
Lagrange multipliers

Our objective function is given by Eq.(13), which ex-
presses µ as an explicit function of the concentrations
[P,a]T . The capacity constraint will be active at max-
imal growth rate, i.e., Eq.(6) becomes an equality. The
capacity constraint can then be expressed as a function
gρ that also only depends on the concentrations,

gρ(P,a) = P +
∑
α

aα − ρ = 0 . (S8)

Finally, the constraints on each dependent reactant γ also
only depend on P,a, with the entries DγP determining
the composition of each γ in terms of P , and Dγβ deter-
mining the composition of γ in terms of b,

gγ(P,a) = DγPP +
∑
β

Dγβbβ − cγ = 0 . (S9)

We are now able to define a Lagrange function as the
sum of the objective function µ and the constraints g
scaled by Lagrange multipliers,

L = µ+ λρgρ +
∑
γ

λγgγ . (S10)

The first order necessary conditions for a constrained
local maximum are that all partial derivatives of L with
respect to the variables P, bβ , cγ and to the Lagrange mul-
tipliers λρ, λγ are zero,

∀i∈{P,β,γ} 0 =
∂L
∂xi

,

∀γ 0 =
∂L
∂λγ

,

0 =
∂L
∂λρ

.

(S11)

For the partial derivative with respect to an indepen-
dent concentration xi (i ∈ {P, β}), we have

∂L
∂xi

=
∂µ

∂xi
+ λρ +

∑
γ

λγDγi = 0 . (S12)

With Eq.(23), this results in

µ η0i + λρ +
∑
γ

λγDγi = 0 . (S13)
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For the partial derivative relative to a dependent reac-
tant γ′, we have

∂L
∂cγ′

=
∂µ

∂cγ′
+ λρ − λγ′ = 0 . (S14)

With Eq.(21), we obtain

λγ′ = µ η0γ′ + λρ . (S15)

Substituting λγ′ from Eq.(S15) into Eq.(S13) gives (for
i ∈ {P, β})

µ η0i + λρ +
∑
γ

(
µηcγ + λρ

)
Dγi = 0 . (S16)

Rearranging results in

0 = µ η0i + λρ

(
1 +

∑
γ

Dγi

)
+ µ

∑
γ

Dγiη
c
γ

= µ ηi + λρκi

= µ ηi − µ ηρκi ,

(S17)

where we used ηρ = −λρ/µ (Eq.(25)). We thus obtain
the balance equation

ηi = κiηρ (S18)

for i ∈ {P, β}.
If neither P nor β have dependent concentrations

(∀γ DγP = 0 = Dγβ), Eq.(S18) results in the equality

1

P
−
∑
j

qjP = η0P = η0β =
∑
j

(
ujβ − q

j
β

)
. (S19)

In a regime where all reaction kinetics are much faster
than the growth rate, kj � µ, the production costs qji
are close to zero, and Eq.(S19) can be approximated by

1

P
≈
∑
j

ujβ =
∑
j

pj
P

1

kj

∂kj
∂bβ

⇔ 1 ≈
∑
j

pj
kj

∂kj
∂bβ

.

(S20)

Thus, in this regime, the marginal net benefits of reac-
tants are determined only by their influence on kinetics,
and dilution can be neglected.

The second and third equation in Eq.(S11) simply en-
force the constraints for the dependent reactants, Eq.(8),
and for the cellular capacity, Eq.(6). Thus, the to-
tal number of equations is 1 (for ρ) + 1 (for P ) +
#(independent reactants β) + #(dependent reactants γ)
= m′ + 2, where m′ is the total number of reactants α.
The number of unknowns is also m′ + 2 (m′ + 1 concen-
trations + ηρ). To find the state of maximal balanced
growth for a given system, it is more convenient to first
consider only the m independent reactants β, and deter-
mine the dependent reactants γ later from Eq.(8). In
this case, Eq.(S18) and the constraint on cellular capac-
ity Eq.(6) provide m + 2 equations for m + 2 unknowns
(m+ 1 concentrations in [P, bβ ]T and ηρ).

E. Optimal ribosome protein fraction

Here we assume a very simple model for translation
[Klumpp 2013]. It accounts only for the elongation
phase, where one catalyst (the ribosome plus bound
mRNA, with concentration R) converts one substrate
(the ternary complex, with concentration T ) into protein,
following irreversible Michaelis-Menten kinetics (Eq.(5)).
As further simplifications, we assume that the model has
no dependent reactants (A = B) and that the ternary
complex is not used in any other reaction. In this case,
the same canceling of production costs as in the model de-
picted in Fig.1A happens, and the balance of net benefits
of ternary complex and total protein, ηT = ηP (Eq.(26)),
simplifies to

PuRT = 1− µ

kR
. (S21)

Substituting the partial derivative of irreversible
Michaelis-Menten kinetics (Eq.(5)), we obtain

R

aT (1 + aT /Km)
= 1− µ

kR
, (S22)

where Km is the Michaelis constant of the ribosome
for the ternary complex. Rearranging Eq.(5), we also
see that the kinetics determine the concentration aT
uniquely in terms of vR, R, Km, and the ribosome’s
turnover number kcat,

aT =
Km

kcatR
vr
− 1

. (S23)

Substituting this into Eq.(S22) gives

R =

(
1− µ

kR

)[
Km

kcatR
vr
− 1

(
1 +

1
kcatR
vr
− 1

)]

=

(
1− µ

kR

)
Km

 kcatR
vr(

kcatR
vr
− 1
)2
 .

(S24)

From the ribosome kinetics and mass conservation of pro-
teins, we have

R kR = vR = µP . (S25)

Thus, substituting µ/kR = R/P and vR = µP in
Eq.(S24), we obtain

R

P
=

(
1− R

P

)
Km

P

 kcatR
µP(

kcatR
µP − 1

)2
 . (S26)

Solving for R/P gives(
R

P

)2

+
µ

kcat

(
Km

P
− 2

)(
R

P

)
+

(
µ

kcat

)2(
1− kcatKm

µP

)
= 0 ,

(S27)
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i.e., a quadratic equation in R/P . Its two solutions are

R

P
=

µ

kcat

[
1 +

Km

2P

(
±

√
1 +

4P

Km

(
kcat
µ
− 1

)
− 1

)]
.

(S28)
To see which of the two solutions is relevant, we rewrite
this as

kcatR = µP

[
1 +

Km

2P

(
±

√
1 +

4P

Km

(
kcat
µ
− 1

)
− 1

)]
.

(S29)
Because kcatR > R kR = vR = µP , the term in square
brackets ([·]) in Eq.(S29) must be > 1. Only the positive
root is compatible with this condition. Thus, the ratio
R/P is uniquely determined by

R

P
=

µ

kcat

[
1 +

Km

2P

(√
1 +

4P

Km

(
kcat
µ
− 1

)
− 1

)]
.

(S30)
To estimate the actual ribosome protein fraction of total
protein φR, we need to scale the previous expression by
the fraction rP of ribosome which is protein, resulting in
Eq.(27).

The same procedure can be used to find an equation
for φR that ignores the production costs. Starting from
Eq.(S24) without the production cost term µ/kR, we ob-
tain

R

P
≈ Km

P

 kcatR
µP(

kcatR
µP − 1

)2
 , (S31)

which results in a quadratic equation similar to Eq.(S27),(
R

P

)2

− 2
µ

kcat

R

P

+

(
µ

kcat

)2(
1− kcatKm

µP

)
≈ 0 .

(S32)

Solving for R/P gives

R

P
≈ µ

kcat

(
1±

√
kcatKm

µP

)
. (S33)

Again because Rkcat > µP , the term in parentheses (·) in
Eq.(S33) must be > 1, and again only the positive root is
compatible with this condition. Thus, the ribosome pro-
tein fractionis uniquely determined in this approximation
by

φR ≈
µrP
kcat

(
1 +

√
kcatKm

µP

)
. (S34)

We compared the predictions of the ribosome fraction
of total protein, φR = R/P , to quantitative proteomics

data obtained by Schmidt et al. [16]. To obtain molar
ribosome concentration, we calculated the median over
all reported concentrations of ribosomal proteins. The
concentration of ternary complexes was assumed to be
identical to the concentration of their protein component,
the elongation factor Tu. Molar concentrations of the
ribosome and (total) ternary complexes were converted
to mass concentrations by multiplying with molar masses
derived from the amino acid sequences (for the protein
parts) and nucleotide sequences (for the RNA parts). For
this, we assumed that each ribosome contained one copy
of each of its constituents, with the exception of four
copies of RplL [49]. To calculate the mass fraction of total
protein occupied by ribosomes, we multiplied ribosome
mass concentrations with the mass fraction of ribosomes
that is protein (rP = 0.58 [16]), and divided the result
by the total protein mass concentration P = 127.4 g/l in
E. coli, assumed to be constant across growth conditions
[16].

The concentration of actively translating ribosomes
was determined based on total ribosome concentration
and the fraction of active ribosome at different growth
rates. The latter was estimated by fitting a smooth sat-
uration function s(µ) = µ/(µ + z) over the fractions of
active ribosomes estimated in Ref. [17], with the best-
fitting parameter z = 0.124/h.

We set the Michaelis constant of the ribosome to
Km = 3 × 10−6 mol/l, based on the diffusion limit for
ternary complexes calculated in Ref. [36]. We set the ri-
bosome’s turnover number to kcat = 22 AA/s, the high-
est elongation rate observed experimentally in Ref. [37].
As we do not distinguish between different ternary com-
plexes and the ribosome only accepts one of the 40 dif-
ferent ternary complex types at any given time, Km was
multiplied by 40 [36]. For consistency of the units with
the mass concentration units used throughout our pa-
per, the kinetic parameters had to be converted from
molar to mass concentrations. The mean weight (± SD)
of amino acids across all conditions assayed in Ref. [16]
was 132.60 ± 0.09 Da; the ribosome molecular weight is
2, 306, 967 Da; and the mean weight of ternary complexes
is 69, 167 ± 1, 351 g/mol. With these numbers, we ob-
tain kcat = 22 AA/s × (132.60 Da/AA)/(2,306,967 Da)
×3, 600s/1h = 4.55/h, and Km = 40 × 3 × 10−6mol/l
×69, 167 g/mol = 8.30 g/l.

F. Minimal whole-cell model and the dependence
of maximal growth rate on cellular water content

Cayley et al. [21, 38] showed that the internal water
content of E. coli cells increases when these are grown in
environments with reduced osmolarity. This effect corre-
sponds to a decrease of cellular dry weight per volume,
ρ, by δρ. ηρ quantifies the associated reduction in rela-
tive fitness, δf = δµ∗/µ∗ = ηρδρ, with µ∗ the maximal
growth rate (Eq.(25)). The relative change in the maxi-
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mal growth rate as per relative change in ρ is then

ρ

µ∗
dµ∗

dρ
=
d lnµ∗

d ln ρ
= ρ ηρ (S35)

From Eq.(26), we know that κP ηρ = ηP ; if there are
no dependent reactants for P (i.e., ∀γ DγP = 0), this
simplifies to

ηρ = η0P =
1

P
−
∑
j

qjP , (S36)

and thus

ρ

µ∗
dµ∗

dρ
= ρ ηρ = ρ

(
1

P
−
∑
j

qjP

)
. (S37)

The mass fraction of total protein in cell dry weight
P/ρ has been shown to be approximately constant and
equal to 0.54 across growth conditions that result in inter-
mediate or high growth rates [21]. To estimate the total

protein production cost
∑
j q

j
P , we consider the simplest

possible whole-cell model, comprising only a transport
reaction and the ribosome reaction (Fig.S1).

FIG. S1. Minimal whole-cell model, comprising a transport
reaction (with rate vt) and the ribosome reaction (with rate
vR).

The active stoichiometric matrix A of this model and
its inverse I = A−1 are

A =
t R

a
P

[
1 −1
0 1

]
, I =

a P
t
R

[
1 1
0 1

]
. (S38)

The capacity is determined only by its two components,

ρ = P + a , (S39)

where

P = pt + pR . (S40)

From the inverse I and Eq.(9), we obtain

vt = µ(P + a) = µρ (S41)

vR = µP . (S42)

From the inverse I and Eq.(4), we get∑
j

qjP =
1

P

(
µ

kt
+

µ

kR

)
=

1

P

(
µpt
vt

+
µpR
vR

)
(S43)

Combining this with Eq.(S41) and (S42) and with φR =
pR/P and φt = pt/P = 1− φR results in∑

j

qjP =
1

P

(
µpt
µρ

+
µpR
µP

)
=

(1− φR)

ρ
+
φR
P

.

(S44)

Combining this equation with Eq.(S37), we obtain

ρ ηρ = ρ

(
1

P
− (1− φR)

ρ
− φR

P

)
=

ρ

P
− 1 + φR −

ρ

P
φR

=
( ρ
P
− 1
)

(1− φR) .

(S45)

From Eq.(27), we estimate the mass fraction of ribo-
somal proteins in total protein φR at µ = 1.0/h (growth
rate in the reference growth condition of osmolarity Osm
= 0.28 in Cayley et al. [38]) to be φR = 0.19. Substitut-
ing this value into Eq.(S45) together with P/ρ = 0.54,
we estimate the relative change in the maximal growth
rate per relative change in ρ as

ρ ηρ = 0.69 . (S46)

Cayley et al. [38] report cell growth at reduced os-
molarities, summarized in Table S1. The cell free water
content V free in Table S1 is calculated from the total

cell water V cell minus the observed constant bound water
V b = 0.40 ± 0.04 ml/gCDW [21]. Errors are estimated
standard deviations based on error propagation among
normally distributed random variables.

Figure S2 plots the natural logarithms of µ and ρ. We
estimate the slope of 0.66 at µ = 1.00/h with a linear
regression over these points. This experimental value is
close to our estimate of ρ ηρ = 0.69.

Growth
Osmolarity

(Osm)

V free
(ml/gCDW)

ρ
(gCDW/ml)

µ (1/h)

0.03 2.56± 0.10 0.39± 0.02 0.84± 0.07
0.10 2.12± 0.08 0.47± 0.02 0.91± 0.04
0.28 2.05± 0.11 0.49± 0.03 1.00± 0.10

TABLE S1. Experimental data from Cayley et al. [38], in-
cluding cell water content V cell and growth rate µ across dif-
ferent external osmolarities, together with the respective cel-
lular dry weight per cellular free water volume, calculated as
ρ = 1/V cell.
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FIG. S2. Dependence of the growth rate (lnµ) on dry weight
per free water volume (ln ρ) in E. coli grown at different ex-
ternal osmolarities [38]. The square (�) indicates the usual
environmental conditions, which correspond to the maximal
growth rate; dots (•) indicate growth at lower osmolarities.
The dotted line indicates the linear regression with slope =
0.66. The red line indicates the predicted slope = 0.69, drawn
through the center of gravity of the 3 data points. Error bars
are based on the reported experimental standard deviations.

Symbol Definition (units)
A Active matrix [mass fraction]
B Basis matrix [mass fraction]
C Closure matrix [mass fraction]
D Dependence matrix
I Investment matrix
v Reaction rate [mass][volume]−1[time]−1

µ Growth rate [time]−1

P Total protein concentration [mass][volume]−1

a Reactant concentration [mass][volume]−1

b Basis reactant concentration [mass][volume]−1

c Dependent reactant concentration [mass][volume]−1

α Reactant index
β Basis reactant index
γ Dependent reactant index
j Reaction index
i Protein and active reactant index ({P, β})
k Kinetic function (in units of kcat)
kcat Turnover number [time]−1

Km Michaelis constant [mass][volume]−1

ρ Cellular dry weight per volume [mass][volume]−1

f Fitness
η0i Direct marginal net benefit of i [volume][mass]−1

ηi Marginal net benefit of i [volume][mass]−1

ηρ Marginal benefit of of the cellular capacity [volume][mass]−1

ηcγ Marginal net benefit of γ [volume][mass]−1

qji Marginal production cost of i relative to j [volume][mass]−1

ujβ Marginal kinetic benefit of β relative to j [volume][mass]−1

ujγ Marginal kinetic benefit of γ relative to j [volume][mass]−1

κ Capacity factor
L Lagrangian
λρ Lagrange multiplier of the capacity constraint

TABLE S2. Symbols and definitions. We note that for sim-
plicity we also use P as an index for total protein, and ρ as
an index for cellular dry weight per volume.
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