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Abstract 7 

How are visual inputs transformed into conceptual representations by the human visual system? The contents of 8 

human perception, such as objects presented on a visual display, can reliably be decoded from voxel activation 9 

patterns in fMRI, and in evoked sensor activations in MEG and EEG. A prevailing question is the extent to which 10 

brain activation associated with object categories is due to statistical regularities of visual features within object 11 

categories. Here, we assessed the contribution of mid-level features to conceptual category decoding using EEG 12 

and a novel fast periodic decoding paradigm. Our study used a stimulus set consisting of intact objects from the 13 

animate (e.g., fish) and inanimate categories (e.g., chair) and scrambled versions of the same objects that were 14 

unrecognizable and preserved their visual features (Long, Yu, & Konkle, 2018). By presenting the images at 15 

different periodic rates, we biased processing to different levels of the visual hierarchy. We found that scrambled 16 

objects and their intact counterparts elicited similar patterns of activation, which could be used to decode the 17 

conceptual category (animate or inanimate), even for the unrecognizable scrambled objects. Animacy decoding 18 

for the scrambled objects, however, was only possible at the slowest periodic presentation rate. Animacy decoding 19 

for intact objects was faster, more robust, and could be achieved at faster presentation rates. Our results confirm 20 

that the mid-level visual features preserved in the scrambled objects contribute to animacy decoding, but also 21 

demonstrate that the dynamics vary markedly for intact versus scrambled objects. Our findings suggest a complex 22 

interplay between visual feature coding and categorical representations that is mediated by the visual system’s 23 

capacity to use image features to resolve a recognisable object. 24 
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Introduction 25 

How does the brain transform perceptual information into meaningful concepts and categories? One key 26 

organisational principle of object representations in the human ventral temporal cortex is animacy (Caramazza & 27 

Mahon, 2003; Caramazza & Shelton, 1998; Kiani, Esteky, Mirpour, & Tanaka, 2007; Kriegeskorte et al., 2008; 28 

Mahon & Caramazza, 2011; Spelke, Phillips, & Woodward, 1995). Operationalised as objects that can move on 29 

their own volition, animate objects evoke different activation patterns than inanimate objects in human brain 30 

activity patterns in fMRI (Cichy, Pantazis, & Oliva, 2014; Connolly et al., 2012; Downing, Jiang, Shuman, & 31 

Kanwisher, 2001; Grootswagers, Cichy, & Carlson, 2018; Konkle & Caramazza, 2013; Kriegeskorte et al., 2008) 32 

and in MEG/EEG (Carlson, Tovar, Alink, & Kriegeskorte, 2013; Contini, Wardle, & Carlson, 2017; 33 

Grootswagers, Ritchie, Wardle, Heathcote, & Carlson, 2017; Grootswagers, Robinson, & Carlson, 2019; 34 

Kaneshiro, Guimaraes, Kim, Norcia, & Suppes, 2015; Ritchie, Tovar, & Carlson, 2015). A current theoretical 35 

debate concerns the degree to which categorical object representations in ventral temporal cortex are due to 36 

systematic featural differences within categories (Long et al., 2018; op de Beeck, Haushofer, & Kanwisher, 2008; 37 

Proklova, Kaiser, & Peelen, 2016). 38 

Recent work has focused on understanding the contribution of visual features to the brain’s representation of 39 

categories, such as animacy. This work has shown that a substantial proportion of animacy (de)coding in ventral 40 

temporal cortex can be explained by low and mid-level visual features (e.g., texture and curvature) that are 41 

inherently associated with animate versus inanimate objects (Andrews, Watson, Rice, & Hartley, 2015; Bracci & 42 

Op de Beeck, 2016; Bracci, Ritchie, & de Beeck, 2017; Bracci, Ritchie, Kalfas, & Op de Beeck, 2019; Coggan, Liu, 43 

Baker, & Andrews, 2016; Kaiser, Azzalini, & Peelen, 2016; Long et al., 2018; Proklova et al., 2016; Rice, Watson, 44 

Hartley, & Andrews, 2014; Ritchie, Bracci, & op de Beeck, in press; Watson, Young, & Andrews, 2016). Long et 45 

al. (2018) recently investigated how mid-level features contribute to categorical representations using images of 46 

intact objects and scrambled “texform” versions of the same objects. Crucially, the texform versions of the objects 47 

were unrecognisable (at the individual image identity level) but preserved mid-level features such as texture. Using 48 

fMRI, they found the categories of animacy and size were similarly coded in the brain for intact and texform 49 

versions of objects, thus demonstrating that such patterns can arise without the explicit recognition of an object 50 

(Long et al., 2018). In MEG and EEG, one study showed that animate and inanimate objects cannot be 51 
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differentiated when they are closely matched for shape (Proklova, Kaiser, & Peelen, 2019). Other studies, however, 52 

have found that object animacy decoding generalises to unseen exemplars with different shapes (cf. Contini et al., 53 

2017), suggesting animacy decoding, in part, might be based on general conceptual representations. Taken 54 

together, these results suggest that either there is some abstract conceptual representation of animacy, or that 55 

objects within the animate and inanimate categories share sufficient visual regularities to drive the categorical 56 

organisation of object representations in the brain. 57 

In the current study, we tested the contribution of visual features to the dynamics of emerging conceptual 58 

representations. We used a previously published stimulus set (Figure 1) that was designed to test the contribution 59 

of mid-level features to conceptual categories (animacy and size) in the visual system (Long et al., 2018), which 60 

consisted of luminance-matched real objects, and scrambled, “texform” versions of the same objects that retain 61 

mid-level texture and form information (Long, Störmer, & Alvarez, 2017; Long et al., 2018). We used EEG and a 62 

rapid-MVPA paradigm (Grootswagers et al., 2019) to study the emergence of conceptual information. Based on 63 

previous fMRI work (Long et al., 2018), we predicted that texforms would evoke animacy-like patterns in the EEG 64 

signal similar to intact objects. In addition, we hypothesized that animacy-like patterns evoked by texforms may 65 

need more time to develop. To test this, we presented the stimuli at varying rapid presentation rates, as faster rates 66 

have been shown to limit the depth of stimulus processing (Collins, Robinson, & Behrmann, 2018; Grootswagers 67 

et al., 2019; McKeeff, Remus, & Tong, 2007; Robinson, Grootswagers, & Carlson, 2019). We found that EEG 68 

activation patterns of texform versions of the objects were decodable, but that conceptual categorical decoding of 69 

intact objects was more robust, and could be achieved at faster presentation rates, which suggests that the visual 70 

system needs less time to process the intact objects. Together, our results provide evidence that visual features 71 

contribute to the representation of conceptual object categories, but also show that higher level abstractions cannot 72 

be fully explained by statistical regularities. 73 
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74 
Figure 1. Stimuli and design. Stimuli were 120 objects categorizable as animate or inanimate, and as big or small. 75 
A. The first half of the experiment used texform versions of objects (presented first so that participants were not 76 
aware of their intact counterparts). B. In the second half of the experiment, the original intact versions were used. 77 
All images were obtained from https://osf.io/69pbd/ (Long et al., 2018). Stimuli were presented at four 78 
presentation frequencies. C. Example texform sequence at 5Hz, where stimuli were presented for 200ms each. D. 79 
Example intact object sequence at 5Hz. The sequence presentation orders for intact objects and texforms were 80 
matched. Participants performed an orthogonal task where they responded with a button press to the fixation dot 81 
turning red. 82 

  83 
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Methods 84 

Stimuli, data, and analysis code are available online through https://osf.io/sz9ve. 85 

Participants 86 

Participants were 20 volunteers (11 females, 9 males; mean age 24.6, age range: 17-59) recruited from the University 87 

of Sydney in return for payment or course credit. All participants reported normal or corrected-to-normal vision. 88 

Two participants were left-handed. The study was approved by the University of Sydney ethics committee and 89 

informed consent in writing was obtained from all participants. 90 

Stimuli and design 91 

Stimuli were obtained from https://osf.io/69pbd (Long et al., 2018). For a full description of the stimulus 92 

generation procedures, see Long et al., 2018. The stimuli were 120 visual objects that were grouped in four 93 

categories: big animals, small animals, big objects, and small objects. This allowed for orthogonal animacy and size 94 

categorisation of the stimuli. All stimuli were matched for average luminance. The stimuli underwent a scrambling 95 

procedure (Long et al., 2018) to generate texform versions of the same objects. All 240 stimuli, 120 intact objects, 96 

and 120 texform versions were used in this experiment (Figure 1). 97 

Following the procedure of Long et al., we presented participants with texform versions of the stimuli in the first 98 

half of the experiment, and with intact objects in the second half of the experiment. Participants were all naïve to 99 

the experiment aims and were not informed about the relationship between the texforms and intact images. We 100 

used a rapid serial visual processing paradigm to present the stimuli in fast succession (Grootswagers et al., 2019). 101 

Stimuli were presented in random order in streams at four presentation frequencies: 60Hz, 30Hz, 20Hz, and 5Hz, 102 

always using a 100% duty cycle, following previous work that investigated category decoding at fast presentation 103 

rates (Grootswagers et al., 2019; Mohsenzadeh, Qin, Cichy, & Pantazis, 2018). All stimuli within a category 104 

(texforms/objects) were presented in each stream (i.e., every stream contained 120 images). Stimuli were presented 105 

at 6.8 x 6.8 degrees of visual angle on a grey background and were overlaid with a white fixation dot of 0.2 degrees 106 

diameter (Figure X). During the experiment, participants responded with a button press when the dot changed 107 
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colour, which happened between 1 and 4 times during each stream, at random positions in the stream. Each object 108 

was presented 30 times in each condition (intact and texform), and at each presentation frequency. The experiment 109 

lasted about 40 minutes. 110 

EEG recordings and preprocessing 111 

Continuous EEG data were recorded from 64 electrodes arranged according to the international standard 10–10 112 

electrode placement system (Oostenveld & Praamstra, 2001) using a BrainVision ActiChamp system, digitized at 113 

a 1000-Hz sample rate and referenced online to Cz. Preprocessing was performed offline using EEGlab (Delorme 114 

& Makeig, 2004). Data were filtered using a Hamming windowed FIR filter with 0.1Hz highpass and 100Hz 115 

lowpass filters and were downsampled to 250Hz. No further preprocessing steps were applied. All analyses were 116 

performed on the channel voltages at each time point. Epochs were created for each stimulus presentation ranging 117 

from [-100 to 1000 ms] relative to stimulus onset. 118 

Decoding analysis 119 

We applied an MVPA decoding pipeline (Grootswagers, Wardle, & Carlson, 2017) applied to the EEG channel 120 

voltages. The decoding analyses were implemented in CoSMoMVPA (Oosterhof, Connolly, & Haxby, 2016). 121 

Regularised linear discriminant analysis (LDA) classifiers were used in combination with a sequence cross-122 

validation approach to decode pairwise image identities firstly between all pairs of texform images, and secondly 123 

between all pairs of intact object images. For animacy decoding, an exemplar-by-sequence cross-validation 124 

approach was used (Carlson et al., 2013; Grootswagers et al., 2019). That is, a pair of animate and inanimate images 125 

from one sequence was used as test data, and classifiers were trained on the remaining images from the remaining 126 

sequences. This was repeated for all animate-inanimate pairs and all sequences, averaging the resulting cross-127 

validated prediction accuracies. Real-world size decoding used the same pipeline, with an exemplar-by-sequence 128 

cross-validation procedure. To test for the similarity between texform and object patterns, we performed the same 129 

analyses and cross-validation designs described above, but we trained the classifiers on intact object sequences and 130 

tested on the texform sequences, and vice versa. All analyses were repeated for each time point in the epochs, 131 
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resulting in a decoding accuracy over time for every presentation frequency, within subject. The subject-averaged 132 

results for each frequency were analysed at the group level. 133 

Statistical inference 134 

For each decoding analysis, we used Bayesian statistics to determine the evidence for above chance decoding or 135 

non-zero differences between texform and intact object decoding accuracies (Dienes, 2011, 2016; Jeffreys, 1961; 136 

Rouder, Speckman, Sun, Morey, & Iverson, 2009; Wagenmakers, 2007). For the alternative hypothesis of above-137 

chance (50%) decoding or a non-zero difference, a JZS prior (Rouder et al., 2009) was set with a scale factor of 138 

0.707 (Jeffreys, 1961; Rouder et al., 2009; Wetzels & Wagenmakers, 2012; Zellner & Siow, 1980). We then 139 

calculated the Bayes factor (BF) which is the probability of the data under the alternative hypothesis relative to the 140 

null hypothesis. We thresholded BF > 10 as evidence for the alternative hypothesis, and BF < 1/3 as evidence in 141 

favour of the null hypothesis (Jeffreys, 1961; Wetzels et al., 2011). In addition to the Bayes factors, we computed 142 

p-values for decoding against chance, and the differences between texform and intact object decoding accuracies. 143 

We used a sign-swap permutation test (1000 iterations), and computed threshold-free cluster enhancement (TFCE; 144 

Smith & Nichols, 2009) values at each time point. To correct for multiple comparisons, the maximum TFCE 145 

statistic across time for each permutation were selected to form a corrected null-distribution (Maris & Oostenveld, 146 

2007). We then calculated p-values by comparing the observed TFCE values to the corrected permutation 147 

distribution. 148 

Exploratory channel-searchlight analysis 149 

To obtain insights into the source of the difference between texform and intact object decoding, we performed a 150 

channel by timepoint searchlight. For all contrasts, we performed multiclass decoding instead of all pairwise 151 

comparisons to reduce computation time. A leave-one-sequence-out cross-validation approach was performed on 152 

local clusters of channels. For each channel, a local cluster was constructed by taking the closest four neighbouring 153 

channels, and the decoding analyses were performed on the signal of just these channels. The decoding accuracies 154 

were stored at the centre channel of the cluster. This resulted in a time by channel map of decoding accuracy for 155 
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each of the contrasts, and for each subject, at each frequency. Here, we reported the results for the decoding 156 

differences at 5Hz and have added the other frequencies to the project’s online repository. 157 

Results 158 

Participants (N=20) viewed streams of texform stimuli and intact objects (Figure 1). The stimuli were presented 159 

in random order at four presentation frequencies (60Hz, 30Hz, 20Hz, 5Hz) to target different levels of visual 160 

processing (Grootswagers et al., 2019; Robinson et al., 2019). The stimuli were developed by Long et al., (2017), 161 

and obtained from https://osf.io/69pbd/ (Long et al., 2017, 2018). Continuous EEG was recorded during the 162 

streams and cut into overlapping epochs based on the onset of each stimulus within the streams. The epoched 163 

data were subjected to a multivariate decoding analysis, similar to previous work that decoded individual images 164 

in fast presentation streams (Grootswagers et al., 2019; Robinson et al., 2019).  165 

To investigate how image representations differed between the texform and intact versions, we obtained cross-166 

validated classifier performance between all pairwise texform images (Figure 2A), and all pairwise intact object 167 

images (Figure 2B). The differences between texform and intact object decoding accuracies (Figure 2C) showed 168 

evidence for no difference in the initial response (up to around 150ms), but higher accuracies for intact objects 169 

after that. These differences were localised in occipito-temporal areas (Figure 2D). Both texforms and intact 170 

objects were decodable from around 90 ms after stimulus onset at all presentation frequencies, characteristic of 171 

early stages of visual processing (Carlson et al., 2013; Cichy et al., 2014; Contini et al., 2017). Faster presentation 172 

frequencies resulted in lower peak decoding and shorter decoding durations, consistent with previous results 173 

showing that fast rates restrict visual processing (Robinson et al., 2019). In general, the image-level decoding results 174 

were similar between texforms and intact objects, apart from the intact objects at 5Hz, where a larger second peak 175 

was observed that was not apparent for the texforms. To further investigate the similarity between the underlying 176 

patterns, we performed cross-decoding where we trained on intact object patterns and tested on texform versions 177 

(Figure 2E), and vice versa (Figure 2F). The results of these analyses showed that the evoked patterns are 178 

sufficiently similar to allow for above-chance cross-decoding at all presentation frequencies. 179 
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180 
Figure 2. Decoding texforms and intact objects. A. Decoding between all texform image pairs. B. Decoding 181 
between all intact object image pairs. C. Difference between intact objects and texforms at each frequency. D. 182 
Channel searchlight maps at nine time points for the decoding differences at 5Hz. E. Decoding texforms, training 183 
the classifier on intact objects. F. Decoding intact objects, training on texforms. Different lines in each plot show 184 
decoding accuracy for different presentation frequencies over time relative to stimulus onset, with shaded areas 185 
showing standard error across subjects (N=20). Thresholded Bayes factors (BF) and p-values for above-chance 186 
decoding or non-zero differences are displayed below the plot for each frequency. 187 
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To investigate to what extent the visual features preserved in the texform versions of the objects drive categorical 188 

distinctions in activation patterns, we trained classifiers on decoding animacy from the stimuli, using an exemplar-189 

by-sequence cross-validation approach to avoid overfitting to individual images (Carlson et al., 2013; Grootswagers 190 

et al., 2019). For texforms, above chance decoding of (featural) animacy was observed between 300ms and 400ms 191 

after stimulus onset (Figure 3A) for the 5Hz presentation frequency but was not evident for the faster presentation 192 

rates. Animacy decoding in intact object images, in contrast, was above chance for 5Hz, 20Hz and 30Hz (Figure 193 

3B). Onset of animacy decoding was approximately 150ms for the 5Hz and 20Hz conditions, and at 220ms for 194 

the 30Hz frequency. The differences between texform and intact object animacy decoding accuracies (Figure 3C) 195 

highlight the substantial difference at 5Hz, which an exploratory searchlight suggested to be mainly located across 196 

occipito-temporal areas (Figure 3D). Cross-decoding (Figure 3E&F) showed that part of the animacy pattern 197 

generalised between intact objects and texforms. This result shows that the shared visual features between 198 

texforms and intact objects contributes to, but do not wholly explain, the categorical representation of animacy in 199 

the brain. 200 

In the final analysis, we asked if the categorical representation of real-world size emerges similarly for intact and 201 

texform versions of objects. An exemplar-by-sequence cross-validation approach was used to decode real world 202 

size (small versus large objects) for the texform and intact objects. At none of the presentation rates was (featural) 203 

real-world size decodable from the texform stimuli (Figure 4A). Real world size of the intact object images was 204 

decodable for 5Hz and 20Hz frequencies (Figure 4B). The differences between texform and intact object size 205 

decoding accuracies are shown in Figure 4C. Cross-decoding showed evidence for no shared pattern of object size 206 

between intact objects and texforms (Figure 4E&F). Combined, the animacy and size decoding results show a 207 

fundamental difference in how conceptual categories emerge for intact objects and their scrambled counterparts. 208 
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Figure 3. Decoding animacy from texforms and intact objects. A. Decoding the animacy of the texform 209 
images. B. Decoding the animacy of the intact objects. C. Difference between intact objects and texforms at each 210 
frequency. D. Channel searchlight maps at nine time points for the decoding differences at 5Hz. E. Decoding 211 
animacy from texforms, training the classifier on intact objects. F. Decoding animacy from intact objects, training 212 
on texforms. Different lines in each plot show decoding accuracy for different presentation frequencies over time 213 
relative to stimulus onset, with shaded areas showing standard error across subjects (N=20). Thresholded Bayes 214 
factors (BF) and p-values for above-chance decoding or non-zero differences are displayed below the plot for each 215 
frequency. 216 
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Figure 4. Size was only decodable from intact objects. A. Decoding the real-world size of the texform images. 217 
B. Decoding the real-world size of the intact objects. C. Difference between intact objects and texforms at each 218 
frequency. D. Channel searchlight maps at nine time points for the decoding differences at 5Hz. E. Decoding size 219 
from texforms, training the classifier on intact objects. F. Decoding size from intact objects, training on texforms. 220 
Different lines in each plot show decoding accuracy for different presentation frequencies over time relative to 221 
stimulus onset, with shaded areas showing standard error across subjects (N=20). Thresholded Bayes factors (BF) 222 
and p-values for above-chance decoding or non-zero differences are displayed below the plot for each frequency. 223 
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Discussion 224 

In this study, we assessed the contribution of mid-level features to high level categorical object representations 225 

using a combination of fast periodic visual processing streams and multivariate EEG decoding. We used images 226 

of intact and texform versions of objects from a previously published study (Long et al., 2018) and found that 227 

their neural representations were similarly distinct at the image level. In contrast, the decoding accuracies of the 228 

original categorical distinctions of animacy and real-world size varied markedly across the texform and intact 229 

versions of the objects. The patterns of neural activity evoked by animate and inanimate intact objects were 230 

decodable during a larger time period than their texform versions, suggesting the temporal dynamics of animacy-231 

like patterns varied between intact and texform versions despite their shared mid-level visual features. In addition, 232 

the animacy of intact objects was decodable at 5Hz, 20Hz and 30Hz, but texforms were only decodable at 5Hz. 233 

Higher level categorical brain regions exhibit larger responses to slower presentation rates relative to faster rates 234 

(McKeeff et al., 2007), and we previously found that slower object presentations reached higher, more abstract 235 

levels of visual processing (Grootswagers et al., 2019; Robinson et al., 2019). Thus, the absence of animacy 236 

decoding for texform objects at faster presentation rates indicates that higher level processing was required for the 237 

animate/inanimate distinction in texform stimuli. Moreover, a clear double-peak structure was observed for 238 

decoding the intact objects at 5Hz, but not for the texforms. This could reflect an additional conceptual processing 239 

step that is unique to intact objects presented at a frequency that allows reaching conceptual processing stages. We 240 

interpret these findings as evidence that shared visual features between texforms and intact objects contribute to, 241 

but do not wholly explain, the categorical organisation of animacy in the brain. 242 

Our results corroborate fMRI results using the same stimuli showing that texforms and intact objects generated 243 

similar categorical representations along the visual hierarchy but that the recognizable images generated stronger 244 

category responses (Long et al., 2018). The current results further show a clear difference in the temporal dynamics 245 

of animacy representations within the visual system for featural versus conceptual object representations. At faster 246 

presentation rates, animacy decoding was observed in intact objects but not in texforms, indicating that intact 247 

objects promote categorical representations with limited processing. It is important to note that the intact objects 248 

were shown only in the second half of the experiment, which might have contributed to better animacy decoding 249 

for intact objects. However, image-level results were similar between texforms and intact objects, which suggests 250 
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that the experimental paradigm was not wholly responsible for the differences in categorical-level decoding. 251 

Together, these results suggest that brain responses to intact objects contain additional animacy category 252 

information over and above the statistical visual regularities present in the texforms.  253 

The texform scrambling process was used to render images unrecognisable at the individual image level, while 254 

maintaining featural image statistics. Some low-level visual information may have been lost in the scrambling 255 

process, such as shape and curvature information, which is a strong cue for animacy (Levin, Takarae, Miner, & 256 

Keil, 2001; Schmidt, Hegele, & Fleming, 2017; Zachariou, Giacco, Ungerleider, & Yue, 2018). In MEG and EEG 257 

decoding studies, classification can be strongly driven by differences in object shape (Proklova et al., 2019), and 258 

silhouette similarity is often a strong predictor of the similarities between the earliest neural responses (Carlson et 259 

al., 2013; Grootswagers et al., 2019; Teichmann, Grootswagers, Carlson, & Rich, 2018; Wardle, Kriegeskorte, 260 

Grootswagers, Khaligh-Razavi, & Carlson, 2016). It is also important to note that while the texform images are 261 

not recognisable at the individual level, they can still be categorised (e.g., for animacy) above chance (Long et al., 262 

2017). Human categorisation accuracies on these images was found to be predicted by the amount of curvilinear 263 

and rectilinear information in the image (Zachariou et al., 2018). Yet, even if intermediate visual features are 264 

sufficient to classify conceptual categories above-chance behaviourally, our results suggest that this is only possible 265 

given sufficient processing time. 266 

These findings support the notion that large-scale categorical organisations in the visual system are to some extent 267 

driven by mid-level visual features. However, if concepts were decodable using only brain responses to mid-level 268 

feature, then this would predict above-chance decoding of concepts also at faster frequencies for the texforms. 269 

This was not the case in our results. Instead, we only observed animacy decoding for the slowest (5Hz) 270 

presentation frequency, which suggests that the conceptual animacy category only emerges from mid-level features 271 

after deeper processing. Thus, it could be the case that mid-level feature coding in early visual areas does not allow 272 

for concept decoding, but these features are “untangled” by higher visual areas into linearly separable categorical 273 

organisations (DiCarlo & Cox, 2007). This would mean that visual features could indeed drive the organisation in 274 

high level areas, but only given sufficient processing time for such untangling processes to complete. Furthermore, 275 

the speed of processing or information transfer to these higher visual areas could be modulated by the amount of 276 

evidence that supports the successful recognition of an object. For example, the intact objects have a well-defined 277 
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outline that separates the object from the background, while the edges of the texforms are more blurred. This 278 

potentially could disrupt segmentation processes which in turn delays the amount of time it takes for information 279 

to reach higher level recognition stages. The results of this study therefore suggest a complex interplay between 280 

early and late stages of processing that ultimately manifests in more abstract categorical representations. 281 

A limitation of the current study is that the animacy and size category boundaries of the stimulus set also define 282 

four subcategories, for example, most small objects are tools, and most big animals are mammals. Therefore, the 283 

results could be driven by these subcategories, rather than overall conceptual animacy and size organisations. 284 

Future work could explore this possibility, using stimulus sets that in addition match the subcategories within 285 

animacy and size categories. In addition, while it is important to disentangle perceptual features from conceptual 286 

representations, the two are inherently intermingled. Categorical organisations, such as animacy, are strongly 287 

represented partly because they share perceptual characteristics, which makes them easier to discriminate. Indeed, 288 

inanimate stimuli that share perceptual features with animate items evoke brain responses that are similar to other 289 

animate stimuli (Bracci et al., 2019). On the other hand, neural responses to animate stimuli that share 290 

characteristics with inanimate objects (e.g., a starfish) are more confusable with inanimate stimuli (Grootswagers, 291 

Ritchie, et al., 2017). Moreover, when stimuli are closely matched in shape, the activation patterns can become 292 

indistinguishable (Proklova et al., 2016, 2019). Together, these examples could be taken to suggest that the 293 

dichotomy of animacy should be revised to more closely reflect, for example, a continuous account of perceptual 294 

and conceptual animal typicality (Connolly et al., 2012; Contini, Goddard, Grootswagers, Williams, & Carlson, 295 

2019; Grootswagers, Ritchie, et al., 2017; Iordan, Greene, Beck, & Fei-Fei, 2016; Sha et al., 2015; Thorat, Proklova, 296 

& Peelen, 2019). 297 

In conclusion, we found that animacy was decodable from texform versions of objects, but that animacy of intact 298 

objects was more strongly decodable, and at faster presentation frequencies. Information contained in the texform 299 

versions of the objects thus not fully account for the distinct patterns of neural responses evoked by conceptual 300 

object categories. These findings suggest that complex interactions between lower and higher levels of visual 301 

processing mediate the representations of category, which has important implications for disentangling perceptual 302 

and conceptual representations in the human brain.  303 
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