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Abstract 17 

Variation in synonymous codon usage is abundant across multiple levels of organization: 18 

between codons of an amino acid, between genes in a genome, and between genomes of different 19 

species. It is now well understood that variation in synonymous codon usage is influenced by 20 

mutational bias coupled with both natural selection for translational efficiency and genetic drift, 21 

but how these processes shape patterns of codon usage bias across entire lineages remains 22 

unexplored. To address this question, we used a rich genomic data set of 327 species that covers 23 

nearly one third of the known biodiversity of the budding yeast subphylum Saccharomycotina. 24 

We found that, while genome-wide relative synonymous codon usage (RSCU) for all codons was 25 

highly correlated with the GC content of the third codon position (GC3), the usage of codons for 26 

the amino acids proline, arginine, and glycine was inconsistent with the neutral expectation 27 

where mutational bias coupled with genetic drift drive codon usage. Examination between genes’ 28 

effective numbers of codons and their GC3 contents in individual genomes revealed that nearly a 29 

quarter of genes (381,174/1,683,203; 23%), as well as most genomes (308/327; 94%), 30 

significantly deviate from the neutral expectation. Finally, by evaluating the imprint of 31 

translational selection on codon usage, measured as the degree to which genes’ adaptiveness to 32 

the tRNA pool were correlated with selective pressure, we show that translational selection is 33 

widespread in budding yeast genomes (264/327; 81%). These results suggest that the 34 

contribution of translational selection and drift to patterns of synonymous codon usage across 35 

budding yeasts varies across codons, genes, and genomes; whereas drift is the primary driver of 36 

global codon usage across the subphylum, the codon bias of large numbers of genes in the 37 

majority of genomes is influenced by translational selection.   38 
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Lay Summary / Significance statement 39 

Synonymous mutations in genes have no effect on the encoded proteins and were once thought 40 

to be evolutionarily neutral. By examining codon usage bias across codons, genes, and genomes 41 

of 327 species in the budding yeast subphylum, we show that synonymous codon usage is shaped 42 

by both neutral processes and selection for translational efficiency. Specifically, whereas codon 43 

usage bias for most codons appears to be strongly associated with mutational bias and largely 44 

driven by genetic drift across the entire subphylum, patterns of codon usage bias in a few codons, 45 

as well as in many genes in nearly all genomes of budding yeasts, deviate from neutral 46 

expectations. Rather, the synonymous codons used within genes in most budding yeast genomes 47 

are adapted to the tRNAs present within each genome, a result most likely due to translational 48 

selection that optimizes codons to match the tRNAs. Our results suggest that patterns of codon 49 

usage bias in budding yeasts, and perhaps more broadly in fungi and other microbial eukaryotes, 50 

are shaped by both neutral and selective processes.   51 
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Introduction  52 

One of the first insights drawn from DNA sequence analyses was that synonymous codons are 53 

used both non-randomly and in taxon-specific patterns (Air et al. 1976; Fiers et al. 1976; 54 

Grantham et al. 1981). These results were surprising given that synonymous codon changes do 55 

not alter primary protein structure (i.e., they are silent) and were therefore previously assumed to 56 

be selectively neutral. Two major explanations have been put forth to account for the non-57 

random variation in codon usage seen within and across species, namely natural selection and 58 

neutral processes, such as mutational bias coupled with genetic drift.  59 

 60 

The discovery that codon usage is correlated with both the abundance of transfer RNA molecules 61 

in the genome and with gene expression levels raised the hypothesis that optimization of codons 62 

to match the available tRNA pool (or tRNAome) promotes or regulates translation and suggested 63 

a key role for codon usage in translational dynamics (Post et al. 1979; Nakamura et al. 1980; 64 

Ikemura 1981a; Ikemura 1981b; Gouy and Gautier 1982; Sharp and Li 1986; Thomas et al. 65 

1988). It is now well established that codon usage influences multiple cellular processes, 66 

especially translation. For example, usage of codons corresponding to the tRNA pool, known as 67 

codon optimization, has been linked to increased translation speed (Bulmer 1991; Xia 1998; 68 

Chevance et al. 2014; Presnyak et al. 2015), accurate tRNA pairing (Stoletzki and Eyre-Walker 69 

2007; Zhou et al. 2009), suppressed premature cleavage and polyadenylation of transcripts (Zhou 70 

et al. 2018), and mRNA stability (Presnyak et al. 2015; Radhakrishnan et al. 2016). Conversely, 71 

non-optimal codon usage has been associated with translation initiation (Tuller et al. 2010), 72 

accurate protein folding (Zhou et al. 2013; Yu et al. 2015; Buhr et al. 2016), and signal 73 

recognition particle detection (Pechmann et al. 2014). These molecular discoveries are 74 
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complemented by a plethora of examples where specific synonymous substitutions have 75 

substantial fitness (Agashe et al. 2013; Fragata et al. 2018; Mittal et al. 2018; Ballard et al. 2019) 76 

and phenotypic effects in organisms across the tree of life, including Escherichia coli (Krisko et 77 

al. 2014), Saccharomyces cerevisiae (Kliman et al. 2003; She and Jarosz 2018), Drosophila 78 

melanogaster (Carlini and Stephan 2003), and humans (Chamary et al. 2006; Sauna and Kimchi-79 

Sarfaty 2011; Supek et al. 2014). In summary, there is now substantial evidence to suggest that 80 

codon usage bias of certain codons in certain species is under strong selection—often through 81 

translational mechanisms.   82 

 83 

In the absence of selection or in populations where genetic drift is more powerful than selection, 84 

patterns of codon usage bias will reflect the effects of genome-wide mutational pressures, such 85 

as mutational bias or GC-biased gene conversion (Sharp and Li 1987; Knight et al. 2001; Chen et 86 

al. 2004; Palidwor et al. 2010; Galtier et al. 2018). This was first suspected for species with 87 

extreme GC composition biases, such as the Gram positive bacterium Mycoplasma capricolum, 88 

which has a genomic GC composition of 25%, and only 2% of its codons end with G or C (Sharp 89 

et al. 1993). For species like M. capricolum, it was hypothesized that biased genome-wide 90 

mutational processes, such as mutational bias towards A/T bases and GC-biased gene 91 

conversion, would drive patterns of codon usage bias.  GC-biased gene conversion has been 92 

shown to influence the GC content of third codon positions in an evolutionarily neutral manner 93 

in mammals, as well as at recombination hotspots in yeasts (Galtier et al. 2001; Harrison and 94 

Charlesworth 2011). Mutational bias has been proposed as the major driver of codon usage bias 95 

in diverse studies in a variety of lineages, including bacteria, archaea, plants, and animals (Chen 96 

et al. 2004; Wan et al. 2004; Palidwor et al. 2010; Clement et al. 2017). Even in the presence of 97 
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selection on synonymous codon sites, it has been proposed that background substitution drives 98 

codon preference in organisms with widely different GC compositions (Sun et al. 2017). Thus, 99 

major differences in codon usage patterns between species are often considered to be primarily 100 

driven by neutral mutational changes in GC content (Knight et al. 2001; Chen et al. 2004).  101 

 102 

Selective and neutral explanations of codon usage bias are not mutually exclusive, and pioneers 103 

in this field were quick to suggest that codon bias is due to a balance between neutral and 104 

selective processes (Ikemura 1985; Shields and Sharp 1987; Sharp et al. 1993). It is unclear, 105 

however, what that balance is, how it varies across levels of biological organization (e.g., 106 

codons, genes, genomes) and across lineages, and what factors influence the balance (Bulmer 107 

1991; Sharp et al. 1993; Sharp et al. 1995; Knight et al. 2001; Hershberg and Petrov 2008; 108 

Palidwor et al. 2010).  109 

 110 

Budding yeasts (subphylum Saccharomycotina, phylum Ascomycota) present a unique 111 

opportunity to examine the impact of neutral and selective processes on codon usage bias for 112 

several reasons. First, genomes and genome annotations of 332 species across the subphylum 113 

recently became available (Shen et al. 2018), providing a state-of-the-art data set for the study of 114 

codon usage bias. Second, the genomic diversity across budding yeasts is comparable to the 115 

divergence between different animal phyla or between Arabidopsis and green algae, offering us 116 

the opportunity to examine variation in patterns of codon usage bias across a highly diverse 117 

lineage. Third, budding yeasts exhibit genetic code diversity and are the only known lineage with 118 

nuclear codon reassignments. Specifically, three different clades of buddying yeasts have 119 

undergone a reassignment of the CUG codon from leucine to serine (two clades) or alanine (one 120 
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clade) (Kawaguchi et al. 1989; Miranda et al. 2006; Muhlhausen et al. 2016; Riley et al. 2016; 121 

Krassowski et al. 2018). Codon reassignments in the Saccharomycotina provide both a challenge 122 

and an opportunity in comparing codon usage bias across the subphylum. Finally, for the 123 

majority of budding yeast species in our data set we also have metabolic trait (285 species) and 124 

isolation environment (174 species) information, which not only illustrates the ecological 125 

diversity of this group but allows us to test for other contributors to codon usage bias (Kurtzman 126 

et al. 2011; Opulente et al. 2018).  127 

 128 

To examine codon usage bias at the codon, gene, and genome levels, we examined the genomes 129 

of 327 budding yeast species in the subphylum Saccharomycotina.  Analysis of codon usage 130 

bias, measured by relative synonymous codon usage (RSCU) revealed diversity in usage at all 131 

three levels (codon, gene, genome) examined. This variation in RSCU was highly correlated with 132 

GC composition when assessed broadly across the subphylum. Furthermore, the relationship 133 

between the relative frequency of each codon and the GC composition of the 3rd codon position 134 

showed very small deviations from the neutral expectation, except for codons for three amino 135 

acids (proline, arginine, and glycine). However, at the gene level, nearly a quarter of all genes 136 

surveyed (381,174/1,683,203; 23%) did not fit the neutral expectation of the relationship 137 

between the effective number of codons and synonymous GC composition. In 94% (308/327) of 138 

the budding yeast genomes, the overall fit of genes to the neutral expectation was very low. 139 

Investigation of possible causes of this deviation revealed that 81% (264/ 327) of budding yeast 140 

genomes exhibited moderate-to-high levels translational selection on codon usage bias. While 141 

there was no significant correlation between the total number of metabolic traits or isolation 142 

environments and selection, the strength of selection was significantly correlated with genomic 143 
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tRNA gene content (tRNAome). These results suggest that translational selection on codon bias 144 

is widespread, but not ubiquitous, in the budding yeast subphylum. Our inference of strong 145 

translational selection on codon usage bias suggests that translational regulation has played a 146 

major role in the evolution of this group.  147 

 148 

Methods 149 

Sequence Data  150 

Genomic sequence and annotation data were obtained from a recent comparative genomic study 151 

of 332 budding yeast genomes (Shen et al. 2018) (Supplementary Table 1). Genomes of five 152 

species from the CUG-Alanine clade were removed from this analysis as their codon 153 

reassignment was discovered recently (Muhlhausen et al. 2016; Riley et al. 2016) and could not 154 

be accounted for by any existing software. To remove mitochondrial genome sequences from the 155 

remaining 327 budding yeast genomes, we employed blastn, version 2.6.0+ (Altschul et al. 1990; 156 

Camacho et al. 2009) with 56 partial or complete Saccharomycotina mitochondrial genomes 157 

(Supplementary Table 2) as our input queries. Hits that had 30 percent or more sequence identity 158 

to mitochondrial sequences were removed from our analyses. Similarly, protein-coding gene 159 

sequence data from the 327 genomes were filtered for mitochondrial genes by blasting (blastx) 160 

against mitochondrial protein-coding sequence data from 37 Saccharomycotina species 161 

(Supplementary Table 3). The coding sequences were further filtered to conform to the required 162 

input for the species-specific tRNA adaptation calculations by stAIcalc, version 1.0 (Sabi and 163 

Tuller 2014). This filtering step removed all coding sequences that did not begin with the start 164 

codon ATG, did not have a whole number of codons, or were shorter than 100 codons 165 

(Supplementary Table 1). Codons containing ambiguous bases were also removed.  166 
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 167 

Codon usage bias calculations  168 

To examine the variation in codon usage across the yeast subphylum, we calculated the relative 169 

synonymous codon usage (RSCU) for each codon in the 1,683,203 protein-coding genes of the 170 

327 budding yeast genomes that remained after filtering. RSCU is the observed frequency of a 171 

synonymous codon divided by the frequency expected if all the synonymous codons were used 172 

equally (Sharp and Li 1986). We computed RSCU values using DAMBE7, version 7.0.28 (Xia 173 

2018), because it allowed us to accommodate the known nuclear codon reassignment in the 174 

CUG-Ser1 and CUG-Ser2 clades (Kawaguchi et al. 1989; Miranda et al. 2006; Muhlhausen et al. 175 

2016; Riley et al. 2016; Krassowski et al. 2018).  176 

 177 

To examine broad patterns of codon usage, hierarchical clustering of all RSCU values for each 178 

species was calculated and visualized in the R programming environment. To investigate which 179 

codons drive between-species differences in codon usage, we performed correspondence analysis 180 

of RSCU values (Grantham et al. 1981). This technique is highly suitable and informative 181 

because it reduces the high number of dimensions present in codon usage statistics into a very 182 

small number of axes (Grantham et al. 1980; Suzuki et al. 2008). 183 

 184 

To examine the influence of phylogeny on the observed variation in codon bias, we computed 185 

two measures of phylogenetic signal in R, Pagel’s λ (Pagel 1999) and Blomberg’s K (Blomberg 186 

et al. 2003). The phylogeny used for this analysis was obtained through maximum likelihood-187 

based inference from a data matrix comprised of 2,408 genes obtained from Shen et al. (2018). 188 
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 189 

Mutational bias and codon usage 190 

To assess the role of mutational bias in determining the observed patterns of codon bias in the 191 

yeast subphylum, we tested the observed patterns against neutral expectations, both across 192 

species and across codons. Between-species patterns in codon usage bias were measured by 193 

calculating the Pearson’s correlation of the RSCU of each codon against the GC composition of 194 

the 3rd codon position (GC3) across all genes in each genome, for each of the 327 species. To 195 

account for the observed phylogenetic dependence within both variables, we also assessed the 196 

relationship between RSCU and GC3 using the phylogenetic generalized least squares (PGLS). 197 

The influence of mutational bias within each set of codons encoding an amino acid was assessed 198 

by comparing the equilibrium solutions for relative codon frequencies based on GC3 content 199 

generated by Palidwor et al. (2010) to the empirical values. Observed relative codon frequencies 200 

were calculated as the total number of observations of a codon divided by the total number of 201 

observations of the corresponding amino acid. Total codon counts within the genomes were 202 

calculated in DAMBE version 7.0.28 (Xia 2018). For each codon, predicted values of relative 203 

frequency were generated from the corresponding equilibrium solution. R2 values were then 204 

calculated based on the predicted and empirical relative frequency values. Data from the 98 205 

genomes present in the CUG-Ser1 and CUG-Ser2 clades were removed from the analyses of the 206 

amino acids leucine and serine. 207 

 208 

To assess the influence of mutational bias within every genome, we compared the effective 209 

number of codons (ENC) (Wright 1990) of each gene to the synonymous GC3 proportion of that 210 

gene. The NC for each gene within the 327 genomes was computed in DAMBE version 7.0.28 211 
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using the improved index created by Sun et al. (2013), which allows for CUG codon 212 

reassignments to serine (Xia 2018). This distribution was compared against the predicted neutral 213 

distribution proposed by dos Reis et al. (2004) using the suggested parameters. This neutral 214 

distribution is a modified version of Wright’s proposed function (Wright 1990) for calculating 215 

ENC (dos Reis et al. 2004). We computed an R2 value between the observed and empirical ENC 216 

values based on the GC3 of each gene. To ensure that R2 values were not driven by phylogenetic 217 

signal, we calculated Blomberg’s K for the R2 values. 218 

 219 

Calculation of selection on codon usage 220 

To determine if selection on translational processes has optimized the codon usage within each 221 

species, we tested if there is a significant correlation between the selective pressure on a gene 222 

and its level of optimization to the tRNAome for every genome. First, the species-specific value 223 

for each codon’s relative adaptiveness (wi) was calculated in stAIcalc, version 1.0 (Sabi and 224 

Tuller 2014). Calculation of wi values requires genomic tRNA counts, which we calculated in 225 

tRNAscan-SE 2.0 for all species (Lowe and Chan 2016). The results from tRNAscan-SE 2.0 226 

correctly identified the CUG-Ser1 and CUG-Ser2 tRNAs that have a CAG anticodon but the 227 

recognition elements for serine (Supplementary Table 4). The species-specific tRNA adaptation 228 

index of each gene was then calculated by taking the geometric mean of all wi values for the 229 

codons (except the start codon). One drawback of stAIcalc is that it does not account for the 230 

nuclear codon reassignment in the CUG-Ser1 and CUG-Ser2 clades. Therefore, we also tested all 231 

genomes after removing all CUG codons from all sequences.  232 

 233 
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To test whether selection has influenced codon usage bias, we calculated the S-value proposed 234 

by dos Reis et al. (2004). This metric is the correlation between the tRNA adaptation index 235 

(stAI) and the confounded effects of the selection effect of the codon usage of a gene and 236 

uncontrollable random factors. Ultimately, the S-value measures the proportion of codon bias 237 

variance that cannot be explained by mutational bias or random factors alone. S-values were 238 

calculated with the R package tAI.R, version 0.2 (https://github.com/mariodosreis/tai) for each 239 

genome using the previously calculated stAI values. We calculated the S-value twice for each 240 

genome: once with CUG codons included and once without CUG codons.  241 

 242 

To test whether the S-value for a given genome significantly deviated from what would be 243 

expected under neutrality, we ran a permutation test. Specifically, we ran 10,000 permutations 244 

where each genome’s wi values were randomly assigned to codons, the tAI values were then 245 

recalculated for each gene, and the S-test was run on that permutation. A genome’s observed S-246 

value was considered statistically significant if it fell in the top 5% of the distribution formed by 247 

the 10,000 values obtained by the permutation analysis.  248 

 249 

To investigate which features may influence the level of translational selection occurring within 250 

a genome, we tested the contributions of tRNAome size (calculated from tRNA-scan-SE), 251 

genome size,  number of predicted coding sequences, total number of reported metabolic traits, 252 

and total number of reported isolation environments (Shen et al. 2018) on S-value variation. We 253 

preformed linear regression analysis on individual and combinations of variables in R. In 254 

addition to the linear models, we tested a Gaussian distribution on a subset of features based on 255 
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visual inspection. We also tested a PGLS analysis on S-value distribution to examine correlations 256 

that may be corrected by phylogenetic consideration.  257 

 258 

Results 259 

Budding yeast genomes exhibit substantial variation in codon usage  260 

To measure variation in codon usage bias across budding yeast genomes, we measured the 261 

RSCU of each codon in each Saccharomycotina species. Hierarchical clustering of the codons 262 

revealed three major groups of codons (Fig. 1). One group contained codons that were generally 263 

overrepresented (RSCU > 1) in budding yeast genomes, which included A/U-ending codons and 264 

one G/C-ending codon (UUG). The next group contained mostly G/C-ending codons and two 265 

A/U-ending codons (AUA and GUA) that were generally underrepresented (RSCU < 1) across 266 

budding yeast genomes. Finally, the smallest group contained A/U-ending codons (CUA, UUA, 267 

CGA, GGA, AUA, CCU, and GUA) that were relatively underrepresented across some budding 268 

yeast genomes as compared to the first set of A/U-ending codons. Interestingly, the 269 

underrepresentation of the CUA codon, which encodes leucine, was driven most strongly by the 270 

CUG-Ser1 and CUG-Ser2 clades where the CAG leucine codon has been recoded as serine (Fig. 271 

1).  272 

 273 

Genome-level variation in codon usage corresponds with mutational bias  274 

To summarize the overall variation in codon usage between species, we conducted a 275 

correspondence analysis on RSCU across all 327 species. The majority of the variation in codon 276 

usage between species was described by the first dimension of the correspondence analysis 277 

(66.891%; Fig. 2), which was driven by differential usage of codons that vary at the third codon 278 
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position, with the codons UUA, CGU, GGC and GUG making the largest contributions 279 

(Supplementary Figure 1a). The second axis, which explained 7.093% of the variation in codon 280 

usage, showed some clustering by clade, with the CUG-Ser clade, the CUG-Ser2 clade and the 281 

only member of the Alloascoidea clade (Alloascoidea hylecoeti) clustering separately from the 282 

rest of the clades. This clustering was driven primarily by the codons CUA, CUG, UUG, and 283 

UUA (Supplementary Figure 1b), with species in the CUG-Ser, CUG-Ser2 and A. hylecoeti 284 

being underrepresented in CUA and CUG and overrepresented in UUA and UUG. These four 285 

codons are all canonically decoded as leucine, suggesting that the reassignment of the CUG 286 

codon in the CUG-Ser1 and CUG-Ser2 clades is largely responsible for the separation of CUG-287 

Ser1 and CUG-Ser2 clades from the rest. This result, however, does not explain the clustering of 288 

A. hylecoeti, which had the second highest overrepresentation of the UUA codon among the 289 

sampled Saccharomycotina, including the CUG-Ser1 and CUG-Ser2 clades. A. hylecoeti is the 290 

only representative genome of the major clade Alloascoideaceae in the dataset, and its genome 291 

contains tRNAs that decode all of the leucine codons, except for CUC. Moreover, there is no 292 

evidence of alternative codon usage in this species (Muhlhausen et al. 2018). Additional species 293 

in this major clade will need to be sequenced to further understand why A. hylecoeti is an outlier 294 

in the relative usage of the UUA codon. 295 

 296 

We next tested whether values of the RSCU metric across species had phylogenetic signal by 297 

measuring Pagel’s λ (Pagel 1999) and Blomberg’s K (Blomberg et al. 2003; Ives et al. 2007; 298 

Revell 2012) (Supplementary Table 5). Pagel’s λ tests for the presence of phylogenetic signal in 299 

a given trait using tree transformation—making the tree more or less star-like. Values for Pagel’s 300 

λ vary from 0, which denotes that the trait absence of any phylogenetic signal, to 1, which 301 
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denotes that the trait varies according to a Brownian model of random genetic drift.  Codons’ 302 

values for Pagel’s λ ranged from 0.953 (for CUU) to 1 (for multiple codons) with p-values of 303 

<<0.001. These data suggest that codon usage between closely related species is more similar 304 

than expected under a Brownian motion model. Blomberg’s K measures the ratio of trait 305 

variation among species to the contrasts variance. If the trait varies according to a Brownian 306 

model of random genetic drift Blomberg’s K will equal 1. Blomberg’s K however can be greater 307 

than 1 which indicates that variance in the trait occurs between clades (versus within.) 308 

Interestingly, examination of Blomberg’s K identified between-clade variance (K>1) for only the 309 

codons CGA, CCA, UUG, and CUA, with the majority of the variance of the remaining codons 310 

present within major clades (K<1). Taken together, Pagel’s λ and Blomberg’s K suggest that the 311 

phylogenetic signal for most codons resides towards the tips of the phylogeny and explains 312 

variation in RSCU between closely related species. Two of the four codons that have 313 

phylogenetic signal deeper in the phylogeny (UUG and CUA) canonically encode leucine and 314 

were identified as drivers of the second explanatory axis in the correspondence analysis. This 315 

result suggests that the phylogenetic correlation between CGA, CCA, UUG and CUA is not 316 

restricted to closely related species and represents phylogenetically-driven differences between 317 

major clades, whereas the phylogenetic correlation of most other codons is only between closely 318 

related species and not between major clades.  319 

 320 

Individual codon usage is driven by neutral and non-neutral forces 321 

The correspondence analysis of RSCU revealed that major differences in codon usage are largely 322 

explained by differences in the usage of G/C- and A/U-ending codons (Fig. 2). To determine the 323 

influence of neutral mutational bias on the usage of individual codons, we used Pearson’s 324 
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correlation and phylogenetic generalized least squares (PGLS) to examine the relationship 325 

between codon usage and mutational bias. Across all species, the Pearson’s correlation of GC3 326 

and RSCU revealed that all G/C-ending codons and two A/U-ending codons were positively 327 

correlated with GC3 (p-value < 0.001 in all cases) (Supplementary Table 6). The two A/U-328 

ending codons that were positively correlated with GC composition bias were CUU and CGA. 329 

Interestingly, CGA was one of the codons identified by Blomberg’s K as being phylogenetically 330 

differentiated between clades. It is, therefore, not surprising that CGA and CUU are negatively 331 

correlated with GC3 in the phylogenetically corrected PGLS analysis (Fig. 3, Supplementary 332 

Table 7). In the PGLS analysis all A/U-ending codons are negatively correlated with GC3 and all 333 

G/C-ending codons are positively correlated with GC3. These results reveal that there is a strong 334 

correlation between mutational bias and codon usage at the genome level.  335 

 336 

While the Pearson’s correlation and PGLS analyses suggest that codon bias and GC composition 337 

due to mutational bias are correlated, these metrics do not account for the non-linear relationship 338 

between GC composition and codon usage. Therefore, we compared observed relative codon 339 

frequencies with equilibrium solutions generated by Palidwor et al. (2010). We compared the 340 

observed relative codon frequencies for every codon with the equilibrium solutions and 341 

measured fit using R2 (Fig. 4; Supplementary Table 8). All but one of the 2-fold degenerate 342 

codons had an R2 value > 0.5 when compared to the neutral expectation (Fig. 4C). For example, 343 

the codon GCC fit the neutral expectation very well (R2 = 0.671; Fig 4a). The only 2-fold 344 

degenerate amino acid encoded by a codon that had an R2 < 0.5 was phenylalanine (R2 = 0.236). 345 

For the 3-fold and 4-fold degenerate codons, the R2 values for the individual codons varied but, 346 

as previously noted (Palidwor et al. 2010), the summed predictions for G/C-ending codons and 347 
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A/T-ending codons better fit the neutral expectation (Fig. 4C: second column). The exceptions to 348 

this were proline, arginine, and glycine, which showed deviations from the neutral expectation 349 

even with the summed statistics (Fig. 4B). To ensure that phylogenetic signal was not driving the 350 

deviations from the neutral expectation, we assessed Blomberg’s K of the individual species’ 351 

residuals used to compute the R2 value. A total of 7 codons had Blomberg’s K variances over 1 352 

(Fig. 4C: Supplementary Table 8), suggesting that deviations from the neutral expectation were 353 

driven by differences between major clades. Even after accounting for phylogenetic signal and 354 

the improved fit of the summed predictions, codons for proline, glycine, and arginine still 355 

showed deviations from the neutral expectation, suggesting that their usages are at least partially 356 

driven by selection.  357 

 358 

Gene-level codon usage does not fit the neutral expectation 359 

To assess the role of mutational bias across all genes within each genome, we next examined the 360 

relationship between the ENC of each gene and its GC3s vis-a-vis the neutral expectation (i.e., 361 

the relationship between ENC and GC3s if neutral mutational bias were the only force acting on 362 

codon usage). For each genome, we computed the number of genes that fell 10% and 20% of the 363 

maximum value outside of the neutral expectation between NC and GC3s (dos Reis et al. 2004). 364 

Out of a total of 1,683,203 genes, 381,174 (23%) genes fell outside the 10% threshold and 365 

205,558 (12%) fell outside of the 20% threshold (Fig. 5A; Supplementary Table 9). We also 366 

tested each species’ overall fit to the neutral expectation by calculating an R2 fit to the neutral 367 

expectation (Fig. 5B & 5C). This analysis revealed that 7 genomes had R2 values greater than 368 

0.5, suggesting that codon usage in these species can largely be explained by neutral mutational 369 

bias. Twelve species had an intermediate R2 value between 0.25 and 0.5 (or [0.25 – 0.50]), 370 
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suggesting that neutral mutational bias is partially responsible for codon usage in most genes in 371 

these species. Finally, 72 species had low R2 values between 0.00 and 0.25, while the remaining 372 

277 species had values below 0. The species with low and negative R2values deviate from the 373 

neutral expectation, suggesting that mutational bias is not the sole driving factor of codon bias 374 

within these genomes.  375 

 376 

Codon usage in most budding yeast genomes is under translational selection 377 

The previous analysis suggested that most Saccharomycotina species deviate from the strictly 378 

neutral expectation between GC3s and NC within their genomes (Fig. 5). To test whether 379 

translational selection influenced codon usage in budding yeast genomes, we calculated the S-380 

value or the amount of selection on codon usage due to tRNA adaptation. To determine the effect 381 

of not accounting for CUG codon reassignment in our analysis, we calculated S-values for 382 

genomes with CUG and with all CUG codons removed (Supplementary Table 10). The R2 value 383 

when comparing the S-value for the CUG and CUG-removed datasets was 0.99. This suggests 384 

that our results are valid despite not accounting for the codon reassignment. S-values could not 385 

be produced for the species Martiniozyma abiesophila, Nadsonia fulvescens var. fulvescens, and 386 

Botryozyma nematodophila, because they did not produce viable wi values from stAI-calc due to 387 

software issues (Supplementary Table 11). S-values were computed for the remaining 324 388 

species, and significance was assessed using a permutation test (Fig. 6A). Thirty-four species 389 

from 6 of the 9 clades did not have S-values that were significant at the 0.05 or 0.95 level in the 390 

permutation test (Supplementary Table 10). These non-significant results ranged in S-value 391 

between -0.252 and 0.577, with a median value of 0.273. This result suggests that, in these 392 

species, gene-level codon usage could not be distinguished from neutral mutational bias; 393 
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therefore, it is unlikely that translational selection is broadly acting in these species. In contrast, 394 

27 species exhibit moderate S-values between 0.28 and 0.5 (Fig. 6B), on par with levels of 395 

translational selection observed in C. elegans (S-value of 0.45; dos Reis et al. 2004). A 396 

moderately high S-value between 0.5 and 0.75 was observed in 157 species. Finally, a very high 397 

S-value above 0.75 was observed for 107 species, including S. cerevisiae (Fig. 6C), as previously 398 

reported (dos Reis et al. 2004). Overall, 291 / 324 (94%) of genomes examined showed moderate 399 

to very high S-values, suggesting that translational selection is widespread across budding yeast 400 

genomes. 401 

 402 

Translational selection is weakly associated with tRNAome size 403 

To determine which features are associated with S-values, we examined the relationship between 404 

S-values with the combinations of two or more of the following features: genome size, 405 

tRNAome size, gene number, number of metabolic traits, and number of isolation environments 406 

(Supplementary Table 12). The linear model with the highest explanatory power, which 407 

accounted for 17.47% of the variation in S-value, includes genome size, tRNAome size, gene 408 

number, and total metabolic traits (Supplementary Table 13).  Among the four features in the 409 

model, tRNAome size had the biggest contribution, followed by genome size, gene number, and 410 

reported metabolic traits (0.612 versus 0.229, 0.119, and 0.039, respectively.) To gain further 411 

insight into the contribution of the tRNAome size, we tested a Gaussian model (Fig. 7) based on 412 

previously reported analyses (dos Reis et al. 2004). The R2 value of the Gaussian model was 413 

higher than that of the linear model (0.11 vs 0.04), although neither model had a very good fit. 414 

The Gaussian model suggests that the maximum selection occurs at an intermediate tRNAome 415 

size. Interestingly, the estimated maximum for S-value occurs at a tRNAome size of 336 tRNA 416 
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genes, a value similar to the tRNAome size that corresponds with the maximum modeled S-value 417 

from previous models (tRNAome of about 300) (dos Reis et al. 2004).  The phylogenetically 418 

corrected PGLS analysis revealed no correlation between S-value and either genome size or 419 

tRNAome (Supplementary Fig. 2). Overall, none of the features we tested had strong 420 

associations, individually or additively, with S-value, even when phylogenetically corrected.  421 

 422 

Discussion  423 

In this study, we surveyed the patterns and forces underlying codon bias across 327 budding 424 

yeasts from the subphylum Saccharomycotina. Cluster, correspondence, and correlation analyses 425 

of the relative synonymous codon usage across the subphylum is consistent with mutational bias 426 

as a significant driver of codon bias—A/U ending codons are generally overrepresented and G/C 427 

ending codons are generally underrepresented. This finding is consistent with the low GC 428 

content (average silent GC context of 42%) found across the subphylum. Several previous 429 

studies have suggested that genome-wide mutational processes are the primary drivers of 430 

genome-wide codon usage (Knight et al. 2001; Chen et al. 2004; Wan et al. 2004), and we 431 

clearly observed the influence of these neutral processes at the genome level. Notably, we also 432 

found evidence of selection in both specific codons and genes, which we discuss below. 433 

 434 

At the level of individual codon usage, two codons in particular—CGA and CUA—had multiple 435 

lines of evidence for violating assumptions of neutral GC-mutational bias. For CGA, our results 436 

are consistent with previous reports that decoding of the CGA codon in S. cerevisiae is inhibitory 437 

to translation due to codon-anticodon interactions (Letzring et al. 2010; Letzring et al. 2013). 438 

This effect, however, may not be universal across the Saccharomycotina: CGA was 439 
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underrepresented (RSCU < 1) in 222 species but overrepresented (RSCU > 1) in 105 species. 440 

RSCU of CGA also varies between major clades of the Saccharomycotina with the 441 

Dipodascaceae/Trichomonascaceae clade having the highest average RSCU (1.47) and the 442 

Phaffomycetaceae clade having the lowest average RSCU (0.66). Given that 443 

Dipodascaceae/Trichomonascaceae clade is distantly related to Saccharomycetaceae, the major 444 

clade that S. cerevisiae belongs to, it is likely that the two independent defects in translation that 445 

result in the inhibitory nature of CGA in S. cerevisiae (Letzring et al. 2013) evolved within 446 

Saccharomycetaceae, after the divergence of the two clades. The codon CGA is not the only 447 

arginine encoding codon to violate the neutral assumptions (Fig. 4C). Deviations in the 448 

remaining arginine codons may be a result of strong directional selection due to the large number 449 

of degenerate codons encoding arginine, which may result in more opportunities for poor codon-450 

tRNA pairing (Duret and Mouchiroud 1999; McVean and Vieira 2001).  451 

 452 

For CUA, departure from assumptions of neutral GC-mutational bias are likely driven by the 453 

reassignment of CUG in the CUG-Ser1 and CUG-Ser2 clades, which had profound effects on the 454 

remaining leucine codons since the majority of CUG codons that remained leucine were 455 

reassigned to UUG or UUA (Massey et al. 2003; Miranda et al. 2006). This conclusion is 456 

supported by the observation that the CUA codon is underrepresented in the CUG-Ser1 and 457 

CUG-Ser2 clades (Fig. 1; Supplementary Table 14) compared to other major clades in the 458 

subphylum (Fig. 1: Supplementary Table 14). Underrepresentation of CUA is not exclusive to 459 

the CUG-Ser2 and CUG-Ser1 clades—the Dipodascaceae/Trichomonascaceae major clade had 460 

an average RSCU of 0.60 and includes 12 species (of 37) with a very low RSCU less than 0.5. 461 

This may suggest that the Dipodascaceae/Trichomonascaceae major clade experienced similar 462 
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evolutionary pressures to those that may have contributed to codon reassignment, such as the 463 

hypothesized presence of a Virus-Like Element with killer activity in the CUG-Ser1 and CUG-464 

Ser2 clades (Krassowski et al. 2018). The most studied member of the 465 

Dipodascaceae/Trichomonascaceae major clade, Yarrowia lipolytica, possesses virus-like 466 

particles, but these particles do not appear to be associated with a killer phenotype (Tréton et al. 467 

1985; el-Sherbeini et al. 1987). This finding highlights the strong impact of codon reassignment 468 

on codon usage. 469 

 470 

We also observed deviations from the neutral expectation in all codons that encode proline. 471 

Biases in proline codon usage may be related to proline-induced stalling in translation (Artieri 472 

and Fraser 2014). This stalling was observed in S. cerevisiae riboprofiling data (Artieri and 473 

Fraser 2014) and may be related to the slow incorporation of proline into the growing amino acid 474 

chain due to its imino side-chain (Pavlov et al. 2009; Doerfel et al. 2013). Additionally, in S. 475 

cerevisiae, codons for proline and glycine (which also deviate from the neutral expectation) are 476 

involved in frameshift suppression via suppressor tRNAs that contain four-base anticodon 477 

sequences that allow for frameshift read-through (Donahue et al. 1981; Gaber and Culbertson 478 

1982). As a whole, the results of the codon-specific analysis suggest that while many codons are 479 

highly correlated with mutational bias, specific codons may be under a variety of selective 480 

forces—especially translational selection—that alter codon usage. 481 

 482 

Almost a quarter of the 1,683,203 genes found in the 327 budding yeast genomes deviate from 483 

the neutral expectation by at least 10%. These results are consistent with the observation that 484 

codon bias varies between transcripts within a species (Sharp et al. 1988; Chen et al. 2004) and is 485 
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associated with increased expression. In fact, for the species Saccharomyces mikatae, the degree 486 

to which a transcript differs from the neutral expectation (greater residual) is moderately 487 

associated with greater expression at steady state (R2 of 0.414; Supplementary Figure 3; 488 

Tsankov et al. 2010). For the majority of the species examined (320), mutational bias is not the 489 

only force influencing codon bias among transcripts. 490 

 491 

Assessing how translational selection may influence codon usage bias within species, we found 492 

that the majority of species exhibited moderate or high contribution of selection to the variation 493 

in codon bias (Fig. 6A). Previous work suggested a model in which the highest amount of 494 

selection on synonymous codon usage occurs at intermediate genome size. At the lower end of 495 

genome size, low selection is hypothesized to be due to the correlation between small genomes 496 

and small tRNAomes with low tRNA gene redundancy. In turn, low tRNA gene redundancy 497 

restricts the ability of selection to act on codon bias (Kanaya et al. 1999; dos Reis et al. 2004). At 498 

the larger end of genome size, low selection is hypothesized to be due to drift in species with 499 

small effective population sizes: this drift would increase the genome size and decrease the 500 

ability of selection to shape codon usage (Bulmer 1991). Within Saccharomycotina, the role of 501 

tRNAome size is consistent with these predictions, except for genome size. This exception is 502 

likely due to a low correlation between genome size and tRNAome size in this group. While 503 

tRNAome size and genome size are positively correlated when analyzed using a phylogenetically 504 

independent contrast (PIC) (Felsenstein 1985), this correlation is not very strong (adjusted R2 of 505 

0.1629.)  506 

 507 
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In summary, we find that the balance between neutral and selective forces on codon usage varies 508 

between genomes, between codons, and between genes within a genome. Some 509 

Saccharomycotina species exhibit nearly neutral codon usage in line with those observed in 510 

humans or bacteria, such as  Helicobacter pylori, while other budding yeast species show 511 

extremely high adaptation to the tRNA pool through translational selection (dos Reis et al. 2004). 512 

This range in the magnitude of forces acting on codon usage in the Saccharomycotina and the 513 

low explanatory power of the factors examined suggest that it is difficult to predict a priori 514 

selection on codon bias based on lineage, cellularity, genome size, tRNAome, or GC 515 

composition.  516 

 517 

There is moderate to strong evidence for translational selection in most budding yeast genomes 518 

examined. This trend may be due to the rapid growth that characterizes most budding yeasts: 519 

growth efficiency has been linked to translational selection in codon usage (Andersson and 520 

Kurland 1991; Kurland 1991). One interesting implication of this abundance of translational 521 

selection is that codon optimization may be a useful proxy for highly expressed genes. It has 522 

long been known that ribosomal genes are among both the most highly expressed and highly 523 

codon usage-optimized genes across species (Shields et al. 1988; Sharp et al. 1995), leading to 524 

their use as the basis for the codon adaptation index (Sharp and Li 1987; Nakamura and Tabata 525 

1997). In our dataset, there are 11,047 genes (average of 35 per species) that are as highly or 526 

more highly optimized than the ribosomal genes, suggesting there is a wealth of information 527 

about which genes may be highly expressed or differentially highly expressed across this lineage.  528 

 529 
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Figure 1. Relative synonymous codon usage (RSCU) analysis revealed an overrepresentation of A/U-
ending codons across most of the Saccharomycotina subphylum. Columns correspond to the 59 non-
degenerate, non-stop codons; A/U-ending codons are shown in in purple font, and GC-ending codons are shown 
in green font. Rows correspond to the 327 Saccharomycotina species colored by major clade, following the 
recent genome-scale phylogeny of the subphylum (Shen et al. 2018). Blue cells indicate overrepresented codons 
(RSCU > 1) and red cells indicate underrepresented codons (RSCU < 1). Codons were clustered (using 
hierarchical clustering) by RSCU value into three general groups (shown by horizontal bars of different colors): 
underrepresented A/U-ending codons (grey bar), underrepresented codons mostly ending in G/C (red bar), and 
overrepresented codons mostly ending in A/U (blue bar).  
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Figure 2. Differences in relative synonymous codon usage values between species are largely driven by 
variation in the usage of G/C- and A/U-ending codons. The plot shows each of the 327 budding yeast species 
examined in this study along the first two dimensions (the X and Y axes) of a correspondence analysis. Each 
axis is labeled with the percent variance explained by the corresponding dimension and the codons that are the 
major drivers of the observed variance. The first dimension, which explains nearly 67% of the variation 
between species, is driven by the differential usage of G/C- versus A/U-ending codons. The second dimension, 
which differentiates the CUG-Ser1 clade, the CUG-Ser2 clade, and one Alloascoideaceae species from the rest 
of the species in the subphylum, explains a much smaller fraction of the observed variation (about 7%) and is 
primarily driven by differential usage of the CUA, CUG, UUG, and UUA codons in the two groups.  
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Figure 3. The high correlation between codon usage and GC composition of the third codon position 
suggests that codon usage bias at the level of individual codons is likely driven by genetic drift. The graph 
illustrates a phylogenetic generalized least squares comparison between relative synonymous codon usage 
values and third codon position GC composition (GC3) for each codon across the 327 budding yeast species. 
Colors toward the red spectrum indicate a positive correlation between CG-ending codons and increasing GC3. 
Blue colors indicate a negative correlation between A/U-ending codons and increasing GC3. Grey cells denote 
non-degenerate codons encoding methionine or tryptophan or stop codons.  
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Figure 4. The complex relationship between relative frequency and genome-wide average base 
composition of the third codon position (GC3) suggests that individual codons vary in their fit to the 
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neutral expectation (i.e., that codon usage is solely driven by GC mutational bias and genetic drift). The 
neutral expectations for the different codons were obtained from the models developed by Palidwor et al. 
(2010). A) Observed relative frequency of the alanine codon GCC (shown on the Y axis) plotted against GC3 
(shown on the X axis) for each of the 327 budding yeast species analyzed in this study. The codon GCC had a 
good fit to the neutral expectation (black line, R-squared value = 0.671). B) Observed relative frequency of the 
arginine codon CGU plotted against GC3 composition for each species. The codon CGU had a poor fit to the 
neutral expectation (black line, R-squared value = -0.165); the same trend was also observed in the other Group-
2 arginine codons (CGA and AGG). C) R-squared values for each of the codons (first column) and the sum of 
all codons for an amino acid (second column) compared to their neutral expectations. Boxes colored towards 
the red spectrum indicate a better fit to the neutral model, while boxes colored towards the blue spectrum 
indicate a poorer fit (i.e., worse than the mean) to the neutral model. Grey-colored boxes in the first column 
indicate non-degenerate amino acids or stop codons; grey boxes in the second column indicate codons that 
either have their own models (e.g., ATC) or have values that stem from the same model (e.g., all  amino acids 
encoded by two codons, such as tyrosine (Y), which is encoded by TAT and TAC). Asterisks indicate codons 
with a Blomberg’s K variance over 1 when comparing GC3 and relative frequency, suggesting that the GC3 and 
relative frequency values for these codons are correlated due to phylogeny (i.e., closely related species tend to 
have more similar GC3 and relative frequency values due to shared ancestry). 
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Figure 5. Comparison of the silent third position GC composition (GC3s) to the effective number of 
codons (Nc) across 327 budding yeast species shows that a significant portion of the genes in many 
species’ genomes deviate substantially from the neutral expectation. A) Distribution of the percentage of 
genes that deviate more than 10% (purple bars) or 20% (blue bars) from the neutral expectation. Almost half of 
the genomes have 10% or more of their genes deviate at the 20% threshold (159 / 327), and almost all of the 
genomes do so at the 10% threshold (309 / 327). B) The genome of the yeast Alloascoidea hylecoeti shows a 
high correlation between GC3s and Nc (R-squared value = 0.762), in line with neutral expectations. The neutral 
expectation (i.e., the expectation when the only influence is GC mutational bias and genetic drift) of the 
effective number of codons for a given GC content of third positions in a genome is indicated by the black line. 
C) In contrast, the genome of Saccharomyces cerevisiae shows a lack of correlation between GC3s and Nc (R-
squared value = -4.027) and does not conform with the neutral expectation.   
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Figure 6. Most genomes in the budding yeast subphylum exhibit moderate to high levels of translational 
selection on codon bias. Translational selection on codon bias was measured using the S-test, which examines 
the correlation between the stAI value and the selective pressure (estimated by f(GC3)-ENC where f(GC3) is a 
modified function of Wright’s neutral relationship between the silent GC content of a gene and the effective 
number of codons) on all coding sequences in a genome. Each point in the comparison between stAI and 
selective pressure is a single coding sequence in one genome. Higher S-values indicate higher levels of 
translational selection on codon bias. A) Distribution of the significant S-values (p<0.05 in permutation test; 
293 species out of 327) and non-significant S-values (p>0.05 in permutation test; 34 / 327 species). B) Pichia 
membranifaciens, an example of a species that exhibits low translational selection on codon bias (p<0.05 in 
permutation test; n=10,000).  C) Saccharomyces cerevisiae, an example of a species that exhibits high 
translational selection on codon bias (p < 0.01 in permutation test; n=10,000).  
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Figure 7. Maximum translational selection occurs at an intermediate number of total tRNA genes in the 
genome. This plot shows the relationship between the total number of tRNA genes in a genome (tRNAome 
size) and S-value for each the 327 budding yeast species analyzed in this study. The best fitting model (blue) 
was a Gaussian distribution with a maximum S-value at 336 tRNA genes. This suggests that species with either 
low or high numbers of total tRNA genes exhibit lower levels of translational selection.  
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