Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Inhibiting fibroblast aggregation in skin wounds unlocks developmental pathway to regeneration

View ORCID ProfileAshley W. Seifert, Adam B. Cook, Douglas Shaw
doi: https://doi.org/10.1101/608075
Ashley W. Seifert
1Department of Biology, University of Kentucky, Lexington, KY 40506, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ashley W. Seifert
  • For correspondence: awseifert@uky.edu
Adam B. Cook
1Department of Biology, University of Kentucky, Lexington, KY 40506, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Douglas Shaw
1Department of Biology, University of Kentucky, Lexington, KY 40506, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

ABSTRACT

Salamanders are capable of full-thickness skin regeneration where removal of epidermis, dermis and hypodermis results in scar-free repair. What remains unclear is whether regeneration of these tissues recapitulates the cellular events of skin development or occurs through a process unique to regenerative healing. Unfortunately, information on the post-embryonic development of salamander skin is severely lacking, having focused on compartments or cell types, but never on the skin as a complete organ. By examining coordinated development of the epidermis and dermis in axolotls we establish six distinct stages of skin development (I-VI): I-V for normally paedomorphic adults and a sixth stage following metamorphosis. Raising animals either in isolation (zero density pressure) or in groups (density pressure) we find that skin development progresses as a function of animal size and that density directly effects developmental rate. Using keratins, p63, and proliferative markers, we show that although the epidermis lacks visible stratification at early stages of skin development, when the dermis transforms into the stratum spongiosum and stratum compactum keratinocytes differentiate into at least three distinct phenotypes that reveal a cryptic stratification program uncoupled from metamorphosis. Lastly, comparing skin regeneration to skin development, we find that dermal regeneration occurs through a unique process, relying heavily on remodeling of the wound extracellular matrix, rather than proceeding through direct development of a dermal lamella produced by the epidermis. By preventing fibroblast influx into the wound bed using beryllium nitrate, we show that in the absence of fibroblast generated ECM production skin regeneration occurs through an alternate route that recapitulates development.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.
Back to top
PreviousNext
Posted April 13, 2019.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Inhibiting fibroblast aggregation in skin wounds unlocks developmental pathway to regeneration
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Inhibiting fibroblast aggregation in skin wounds unlocks developmental pathway to regeneration
Ashley W. Seifert, Adam B. Cook, Douglas Shaw
bioRxiv 608075; doi: https://doi.org/10.1101/608075
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Inhibiting fibroblast aggregation in skin wounds unlocks developmental pathway to regeneration
Ashley W. Seifert, Adam B. Cook, Douglas Shaw
bioRxiv 608075; doi: https://doi.org/10.1101/608075

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Developmental Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4229)
  • Biochemistry (9118)
  • Bioengineering (6753)
  • Bioinformatics (23947)
  • Biophysics (12103)
  • Cancer Biology (9498)
  • Cell Biology (13745)
  • Clinical Trials (138)
  • Developmental Biology (7617)
  • Ecology (11664)
  • Epidemiology (2066)
  • Evolutionary Biology (15479)
  • Genetics (10621)
  • Genomics (14297)
  • Immunology (9467)
  • Microbiology (22806)
  • Molecular Biology (9081)
  • Neuroscience (48895)
  • Paleontology (355)
  • Pathology (1479)
  • Pharmacology and Toxicology (2566)
  • Physiology (3826)
  • Plant Biology (8309)
  • Scientific Communication and Education (1467)
  • Synthetic Biology (2294)
  • Systems Biology (6172)
  • Zoology (1297)