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Abstract 1 

Phosphate starvation response (PSR) in non-mycorrhizal plants comprises transcriptional reprogramming 2 

resulting in severe physiological changes to the roots and shoots and repression of plant immunity. Thus, 3 

plant-colonizing microorganisms – the plant microbiota – are exposed to direct influence by the soil’s 4 

phosphorous (P) content itself, as well as to the indirect effects of soil P on the microbial niches shaped 5 

by the plant. The individual contribution of these factors to plant microbiota assembly remains unknown. 6 

To disentangle these direct and indirect effects, we planted PSR-deficient Arabidopsis mutants in a long-7 

term managed soil P gradient, and compared the composition of their shoot and root microbiota to wild 8 

type plants across different P concentrations. PSR-deficiency had a larger effect on the composition of 9 

both bacterial and fungal plant-associated microbiota composition than P concentrations in both roots 10 

and shoots. The fungal microbiota was more sensitive to P concentrations per se than bacteria, and less 11 

depended on the soil community composition. 12 

Using a 185-member bacterial synthetic community (SynCom) across a wide P concentration gradient in 13 

an agar matrix, we demonstrated a shift in the effect of bacteria on the plant from a neutral or positive 14 

interaction to a negative one, as measured by rosette size. This phenotypic shift is accompanied by 15 

changes in microbiota composition: the genus Burkholderia is specifically enriched in plant tissue under P 16 

starvation. Through a community drop-out experiment, we demonstrate that in the absence of 17 

Burkholderia from the SynCom, plant shoots accumulate higher phosphate levels than shoots colonized 18 

with the full SynCom, only under P starvation, but not under P-replete conditions. Therefore, P-stressed 19 

plants allow colonization by latent opportunistic competitors found within their microbiome, thus 20 

exacerbating the plant’s P starvation. 21 

Introduction 22 

Plant-derived carbon is the primary energy source for terrestrial heterotrophs, most of which are 23 

microbial. The interaction of these microbial heterotrophs with plants ranges between the extremes of 24 

mutualistic symbiosis [1] and pathogenesis [2,3]. However, the vast majority of plant-associated microbial 25 

diversity, the plant microbiota, lies between these two extremes, inducing more subtle, context-26 

dependent effects on plant health [4–6]. The microbiota consumes plant photosynthate [7–9], and it 27 

provides benefits via protection from pathogens [10–14] or abiotic stress [15,16] or by increasing nutrient 28 

bioavailability [4,17,18]. 29 
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The microbial community composition in soil, while governed by its own set of ecological processes [19], 30 

has an immense influence on the composition of the plant microbiota [20–22]. Correlations with soil 31 

microbial diversity, and by derivation, with plant microbiota composition and diversity, were observed for 32 

soil abiotic factors such as pH [19,23–25], drought [25–30] and nutrient concentrations [19,25,31–35]. Soil 33 

nutrient concentrations, in particular orthophosphate (Pi) – the only form of phosphorous (P) that is 34 

available to plants – produce comparatively modest to unmeasurable changes in microbial community 35 

composition [35,36]. Nevertheless, available soil Pi concentrations influences where a plant-microbe 36 

interaction lies along the mutualism-pathogenicity continuum [17].  37 

Non-mycorrhizal plants respond to phosphate limitation by employing a range of phosphate starvation 38 

response (PSR) mechanisms. These manifest as severe physiological and morphological changes to the 39 

root and shoot, such as lateral root growth prioritization and depletion of shoot Pi stores [37]. In 40 

Arabidopsis, most of the transcriptional PSR driving these physiological responses is controlled by the two 41 

partially redundant transcription factors PHOSPHATE STARVATION RESPONSE 1 (PHR1) and PHR1-LIKE 42 

(PHL1) [38]. As a result, the double mutant phr1 phl1 has an impaired PSR and accumulates a low level of 43 

Pi. Pi transport into roots relies on the PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 (PHF1) gene, 44 

which is required for membrane localization of high-affinity phosphate transporters [39]. In axenic 45 

conditions, phf1 mutants constitutively express PSR and accumulate low levels of Pi [39].  46 

The plant’s response to its nutrient status is linked to its immune system. PHR1 negatively regulates 47 

components of the plant immune system, which can lead to enhanced pathogen susceptibility but also to 48 

the alteration of the plant’s microbiota under phosphate starvation [4]. Arabidopsis microbiota are altered 49 

in phr1 phl1 and phf1 mutants [4,36] in experiments using both natural and synthetic microbial 50 

communities [4]. 51 

Here, we examined (i) the effect of soil phosphorus (P) content on plant microbiota composition; (ii) how 52 

PSR modulates the plant microbiota and (iii) the interplay between PSR and soil P content in shaping the 53 

plant microbiota composition. We used a combination of greenhouse experiments with differentially P-54 

fertilized soils, Arabidopsis PSR mutants and laboratory microcosms utilizing tractable synthetic bacterial 55 

communities. Using PSR mutants planted in P-amended soil, we demonstrate that the plant PSR regulators 56 

have a profound effect on the composition of root and shoot microbiota, overshadowing the effect of the 57 

soil P content. We constructed an ecologically tractable system utilizing a complex bacterial synthetic 58 

community (SynCom) as a model of the plant root microbiome and used this system to study the 59 

interactions between microbiota assembly and abiotic stress. We demonstrate deterministic responses 60 
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of the SynCom members to changes in Pi concentrations, and we identify Pi-dependent plasticity along 61 

the mutualist-pathogen continuum. 62 

Results 63 

Phosphate starvation response in soil diverges from axenic in vitro assays 64 

To better understand the effect of PSR genes on the plant microbiome under both Pi-limiting and Pi-65 

replete conditions, we investigated how microbiota adapted to varying soil P levels interact with the 66 

plant’s PSR. We grew wild-type (wt) Arabidopsis and the PSR mutants phf1 and phr1 phl1 in soils collected 67 

from the ‘Halle long-term soil fertilization experiment’, ongoing since 1949 [40]. Each transect of soil has 68 

received one of three P fertilization treatments: zero (low), 15 (medium) and 45 (high) Kg[P].Ha-1.Year-1, 69 

resulting in a 3-5 fold difference in bioavailable P between the low and high treatments [41]. To 70 

differentiate the long-term adaptive effect of P limitation on the microbial community from the effect of 71 

short-term changes in P availability, we also fertilized a subset of the low P soil at the time of planting, 72 

and designated this condition low+P (Materials and Methods 1a-c, 4a).  73 

We examined whether PSR, defined and typically studied in axenic conditions, is active in our soil-based 74 

experimental system. We harvested 8-week old plants grown in the different soils and quantified 75 

developmental and molecular phenotypes typically associated with PSR in both wt plants and mutants 76 

(Materials and Methods 1d, 1g). We found a strong positive correlation among all developmental features 77 

analyzed: shoot area, shoot fresh weight and shoot Pi accumulation across all soil conditions (Fig S1A and 78 

S1 Table). Shoot Pi accumulation showed the highest signal-to-noise ratio (Fig 1A, S1B and S1C Fig). In wt 79 

plants, shoot Pi accumulation was correlated with soil P conditions (Fig 1A). As expected [42], phr1 phl1 80 

showed a dramatic reduction in all phenotypic parameters (Fig 1A, S1B and S1C Fig) and phf1 accumulated 81 

less shoot Pi than wt, but did not display any obvious morphological effect (Fig 1A and S1B-S1D Fig). 82 

To identify the transcriptomic signature of PSR in a low P soil, we compared the transcriptomes of the 83 

three genotypes from the low P samples to those of the low+P samples (Materials and Methods 1f, 3c, 4f-84 

g and S2 Table). Using a likelihood ratio test (Materials and Methods 4g), we identified 210 genes that 85 

were differentially expressed across genotypes and P conditions (q-value < 0.1). After hierarchical 86 

clustering, 123 (59%) of these genes fall into a single cluster (cluster 1) of co-expressed genes that are 87 

exclusively highly expressed in wt under low P and whose expression requires phr1 phl1 (Fig 1B). Thus, 88 

these genes represent a PSR under these experimental conditions. A gene ontology enrichment analysis 89 

(Fig 1D) illustrates that these genes are involved in processes such as ion homeostasis, detoxification and 90 
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response to oxidative stress. Interestingly, few PSR genes defined from in vitro experiments were 91 

significantly differentially expressed in our soil experiment. From a previously defined set of 193 PSR 92 

marker genes defined using seven day old seedlings exposed in vitro to P limitation for up to two days [4], 93 

only seven were called as significant in our experiment using eight week old plants. Nevertheless, all seven 94 

of these genes were enriched in wt in low P soil (Fig 1B and S2 Table). Surprisingly, phf1, which was shown 95 

in vitro to constitutively express PSR genes, had a gene expression profile similar to phr1 phl1 and did not 96 

exhibit the phr1 phl1 dependent PSR response we observed for wt. This suggests a hitherto unknown link 97 

between PHF1 and the PSR-responsive genes seen under these experimental conditions. To corroborate 98 

that the canonical in vitro-defined PSR is also induced in wt plants, we compared the median expression 99 

of the set of 193 PSR marker genes [4] across the different soils (Fig 1C and S1E Fig). As expected, shoot 100 

Pi content was significantly correlated with the induction of PSR marker genes (Fig 1C and S1F Fig), with 101 

the highest median expression level in the low P conditions. We conclude that while the response of eight-102 

week old plants to low P conditions in natural soil is markedly different from in vitro-defined PSR, wt plants 103 

indeed respond to low P conditions in the soils tested in a Pi concentration- and phr1 phl1-dependent 104 

manner. 105 

Bacterial and fungal plant microbiota differ in plant recruitment patterns   106 

We studied the relationship between PSR and the plant microbiome in wild-type plants and the two PSR 107 

mutants grown in all four soils. Total DNA was extracted from shoots, roots and soil and the 16S (V3-V4) 108 

and ITS1 regions were amplified and sequenced to obtain bacterial and fungal community profiles, 109 

respectively. Bacterial sequences were collapsed into amplicon sequence variants (ASVs) while fugal 110 

sequences were clustered into operational taxonomic units (OTUs) (Materials and Methods 1e, 3a-b, 4b-111 

c). Bacterial and fungal alpha- and beta-diversity measures conform to previously published data [20,36]: 112 

Microbial diversity decreased from the soil to the root and shoot compartments (Fig 2A, 2D, S2A, S2B Fig 113 

and S3 Table) and roots and shoots harbor bacterial and fungal communities distinct from the surrounding 114 

soil community and from each other (Fig 2B, 2E, S2C-S2F Fig and S4 Table). Plant-derived samples were 115 

primarily enriched in comparison to soil with members of the phyla Proteobacteria, Bacteroidetes and 116 

Actinobacteria and depleted in members of Acidobacteria and Gemmatimonadetes (Fig 2C, S2E Fig and 117 

S4 Table). Plant-enriched fungal OTUs belonged mainly to the phyla Ascomycota (orders Hypocreales and 118 

Pleosporales) and Basidiomycota (order Agaricales). Plant-depleted fungal OTUs belonged to 119 

Saccharomycetales (Ascomycota), Holtermanniales (Basidiomycota) and Mortierellales (Zygomycota) (Fig 120 

2F, S2F Fig and S5 Table).  121 
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To quantify the effect of soil community composition on root and shoot microbiota composition, we used 122 

Mantel tests to detect correlation between dissimilarity matrices of the three fractions (root, shoot and 123 

soil). For bacteria, both root and shoot community dissimilarities were strongly correlated with soil (S3A 124 

and S3B Fig), while for fungi no correlation was detected with soil (S3D and S3E Fig). This observation 125 

indicates that the composition of both root and shoot communities are strongly dependent on soil 126 

community composition, despite the fact that bacterial microbiota are distinct from the soil community 127 

(Fig 2B). By contrast, the fungal microbiota composition both above and belowground is independent of 128 

the soil inoculum. This difference implies that the plant’s microbiota filtering mechanisms are 129 

fundamentally different for fungi and bacteria.  130 

Shoot and root microbiota are both correlated and distinct 131 

Shoot and root samples are rarely analyzed in the same study [43]. We show here that roots and shoots 132 

harbor distinct communities from each other (Fig 2B, 2E, S2C-S2F Fig and S4 Table). To further explore 133 

organ specificity in the plant microbiome composition, we compared root and shoot samples at the 134 

OTU/ASV level. Shoots were mainly enriched with the bacterial phyla Cyanobacteria and Patescibacteria 135 

compared to the root, while roots were enriched with Proteobacteria, Chloroflexi and Bacteroidetes (Fig 136 

2C, S2E Fig and S4 Table). With regard to fungal orders, shoots were enriched with Capnodiales, 137 

Hypocreales and Rhizophydiales while roots were enriched with Pezizales, Xylariales and Mucorales (Fig 138 

2F, S2F Fig and S5 Table). The shoot enrichment of Cyanobacteria points to the availability of light as an 139 

important factor in niche differentiation within the plant [44–46]. We used Mantel tests to detect 140 

correlation between dissimilarity matrices of root and shoot samples. Despite the fact that they harbor 141 

distinct communities, roots and shoots were correlated with each other for both bacteria and fungi (S3C 142 

Fig and S3F Fig). Thus, while roots and shoots form distinct bacterial and fungal niches, shifts in microbiota 143 

in both of these niches are correlated, suggesting co-inoculation between plant fractions. 144 

The plant microbiome composition is driven by the plant PSR status.  145 

We investigated the influences of plant PSR signaling and the different soil P concentrations on microbial 146 

community composition (Materials and Methods 4c). Constrained ordination showed significant 147 

differences between both bacterial and fungal communities across the P accumulation gradients 148 

represented by the different soils and PSR mutants (Fig 3A, 3B and S4A, S4B Fig). For both bacteria and 149 

fungi, the effect of PSR status in roots was stronger than the soil P effect (Fig 3A and 3B). Notably, the 150 

effect of PSR status on the bacterial community overrides the effect of soil P (Fig 3A and S4A Fig), whereas 151 
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for the fungal community, both plant PSR and soil P had a strongly significant effect (Fig 3B and S4B Fig). 152 

This is contrary to previous results from the same soils where there was no detectable P effect on 153 

microbial community composition [41]. In shoots, both bacteria and fungi responded to PSR genotype, 154 

but in this case, did not respond to soil P (S4C Fig and S4D).  We did not observe a significant soil 155 

P:genotype interaction effect for either bacteria or fungi (S4A and S4B Fig), confirming that phf1 and phr1 156 

phl1 both had atypical bacterial microbiomes regardless of Pi status. As expected, we did not observe a 157 

PSR effect in the soil samples (S4E and S4F Fig).  158 

The relatively weak soil P effect observed here indicates that most of the soil effect on bacterial microbiota 159 

mentioned above (S3A and S3B Fig) should be explained by other edaphic factors. On the other hand, the 160 

notable genotype effect illustrates that the plant niche filtering (Fig 2B and 2E) is partly shaped by PSR.  161 

To define which taxa at the ASV (Bacteria) and OTU (Fungi) levels were influenced by soil P and/or plant 162 

PSR, we applied a generalized linear model (GLM, Materials and Methods 4c) to the count datasets, 163 

contrasting the low P samples against the low+P samples. We detected 769 bacterial ASVs (S6 Table) and 164 

39 fungal OTUs (S7 Table), accounting for 23% and 24% of the bacterial and fungal abundance in the root, 165 

respectively, that were differentially abundant in at least one genotype (Fig 3C-3F). Of these, 568 bacterial 166 

ASVs and 36 of the fungal OTUs were genotype-specific, suggesting these taxa respond to PSR-regulated 167 

processes, rather than the P concentration in the soil. 168 

Taken together, these results indicate that plant microbiota are relatively robust to differences in soil P 169 

content, but are sensitive to the plant PSR status. Responses to soil P concentration are contingent on PSR 170 

regulatory elements under both low and high P conditions. 171 

Bacterial synthetic communities modulate the plant PSR. 172 

The results obtained from the soil experiment suggest that niche sorting in the plant microbiome is not 173 

only determined by first order interactions (plant-microbe, microbe-microbe, microbe-environment), but 174 

also by higher-order interactions, such as the effect of abiotic conditions on plant-microbe interactions. 175 

This is evident in the large proportion of ASVs/OTUs that respond to soil P in a genotype-specific manner 176 

(Fig 3C-3F). To establish a system where interactions of different orders of complexity can be studied 177 

reproducibly, we constructed a plant-microbe microcosm that can be deconstructed to its individual 178 

components, while retaining a complexity that is comparable to natural ecological communities. We 179 

designed a representative bacterial synthetic community from a culture collection composed of isolates 180 

derived from surface-sterilized Arabidopsis roots [47] (Materials and Methods 2a). We selected 185 181 
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genome-sequenced isolates representing a typical plant-associated taxonomic distribution (Fig 4A and 182 

4B). We grew each isolate separately and mixed the grown cultures to equal optical densities. We grew 183 

7-day-old Arabidopsis seedlings in a Pi concentration gradient (0, 10, 30, 50, 100, 1000 µM KH2PO4) and 184 

concomitantly exposed them to the bacterial SynCom on vertical agar plates for 12 days (Materials and 185 

Methods 2c-d). 186 

First, we investigated whether PSR is induced in our experimental system. Similar to the natural soil-based 187 

experiment, we quantified developmental and transcriptional phenotypes associated with PSR in plants 188 

grown in different concentrations of Pi (Materials and Methods 2f-g). The presence of the SynCom 189 

consistently decreased root length across all Pi concentrations, but the Pi gradient did not affect root 190 

length (S5A Fig). Shoot size was correlated with Pi concentration, and the slope of this trend was affected 191 

by the presence of the SynCom: at High Pi the SynCom tended to increase shoot size, while at low Pi the 192 

SynCom decreased it (Fig 5A), suggesting that the microbiome plays a role in shaping the plant’s response 193 

to different Pi concentrations. 194 

We performed RNA-Seq on inoculated and uninoculated plants exposed to high (1000 µM) and low (50 195 

µM) Pi (Materials and Methods 3c, 4h). To confirm that our low Pi treatments induce PSR, we examined 196 

the expression of the 193 PSR markers defined in [4]. We found that 168 of the 193 PSR markers genes 197 

were significantly induced in uninoculated plants at low Pi as compared with high Pi conditions. In the 198 

presence of the SynCom, 184 out of 193 PSR marker genes were significantly induced, and the average 199 

fold change increased from 4.7 in uninoculated conditions to 11 in the presence of the SynCom (S5B Fig). 200 

We further examined whether the 123 low P responsive genes from the soil experiment (Cluster 1 in 201 

Figure 1B) are overexpressed in the agar system as well. We found that 59 of the 123 genes (47.2%) were 202 

low Pi-enriched in uninoculated plants and 72 (58.5%) were low Pi-enriched in the presence of the 203 

SynCom. The average fold change for this set of 123 genes was 1.6 in uninoculated conditions and 2.0 in 204 

the presence of the SynCom (S5C Fig). These results confirm that (i) in both our systems, wild soils and 205 

axenic conditions, PSR is induced at low Pi and (ii) the SynCom enhances this induction, similar to the 206 

results reported in [4].   207 

Bacterial synthetic communities display deterministic niche sorting in the plant microbiome  208 

To quantify the establishment of the SynCom in the plants, we determined bacterial community 209 

composition after 12 days of co-inoculation in roots, shoots and agar via 16S rRNA gene amplicon 210 

sequencing, mapping reads to 97 unique sequences (USeq) representing the 185-strain SynCom (Materials 211 
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and methods 2e, 3a, 4d-e, S8 Table). We found that plant roots and shoots sustained a higher bacterial 212 

alpha diversity than the surrounding agar (Fig 5B, S9 Table), an aspect in which our experimental system 213 

differs from a natural environment where species richness is higher in the surrounding soil than in the 214 

plant (Fig 2A). As in natural soil experimental systems, agar, roots and shoots assembled distinct bacterial 215 

communities and this difference among these three fractions explained most of the variance in 216 

community composition despite the different Pi-concentrations (Fig 5C and S5D Fig).  217 

To study which strains are enriched in the root and shoot under the different Pi concentrations, we utilized 218 

a GLM (S10 Table, Materials and Methods 4d). Noticeably, plant (root and shoot) enrichment is strongly 219 

linked to phylogeny (Fig 5D) and is robust across the phosphate gradient assayed. In contrast, the root vs 220 

shoot comparison did not exhibit a significant phylogenetic signal, highlighting the fact that the ability to 221 

differentially colonize the shoot from the root under these conditions is phylogenetically scattered across 222 

the SynCom. As in the soil census, shoot, root and agar beta diversities were significantly correlated (S5E-223 

S5G Fig). 224 

We hypothesized that by establishing a standardized protocol for producing the inoculum and controlling 225 

the growth conditions, we will have created a reproducible, controlled system that prioritizes niche sorting 226 

over stochastic processes. To test this, we compared the amount of variance explained by a GLM in the 227 

natural community experiment vs the SynCom experiment. Supporting our hypothesis, only 1,518 out of 228 

3,874 measurable ASVs (32% of the total ASVs), accounting for 72% of the relative abundance in plant 229 

tissue, shift significantly between root and soil in the natural community survey, while 58 out of 97 USeqs 230 

(59%), accounting for 99% relative abundance in plant tissue, were significantly enriched or depleted in 231 

plant tissue in the SynCom experiment (Fig 5D). This difference in tractability between the soil and 232 

microcosm experiment is also evident in the PERMANOVA model results: in the soil experiment, we could 233 

explain 21% of variance in bacterial community composition (Fig 2B, and S2C Fig), whereas in the 234 

microcosm, we could explain 57% of variance (Fig 5C and S5D Fig). 235 

These results indicate that plant colonization is largely deterministic in our SynCom system, as opposed 236 

to microbiomes in nature, which are strongly driven by stochastic and neutral processes of community 237 

assembly [48]. The reproducibility of this system, coupled with our ability to edit it as a tool for hypothesis-238 

testing, is crucial to bridge ecological observation with mechanistic understanding of plant-microbiota 239 

interactions.  240 
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Phosphate stress-induced changes in the root microbiome.  241 

The shifting role of the SynCom from increasing shoot size under replete Pi to decreasing shoot size and 242 

PSR induction under Pi limitation (Fig 5A and S5B Fig) can be explained by either a shift in the lifestyle of 243 

individual bacteria along the mutualist-pathogen continuum or by changes in the microbiota composition 244 

along the Pi gradient. The latter would favor the proliferation of mutualist bacteria only when sufficient 245 

nutritional requirements are met. To measure the effect of the Pi concentration in the media on the 246 

SynCom composition in wt plants, we measured alpha and beta diversity along our Pi gradient (0, 10, 30, 247 

50, 100, 1000 µM KH2PO4) in roots, shoots and agar. We observed a positive correlation between alpha 248 

diversity and Pi concentrations, resembling a partial ecological diversity-productivity relationship – the 249 

prediction/observation of a bell-shaped response of ecological diversity to environmental productivity 250 

[49,50]  – in roots and shoots, but not in the surrounding agar (Fig 5E). As for beta diversity, the 251 

composition of the SynCom shifted significantly along the Pi concentration gradient (Fig 5F and S6A-S6E 252 

Fig). Pi-stressed plants therefore assemble an altered microbiome, shifting from a net-positive outcome 253 

for the plant, to a net-negative one, as measured by shoot size (Fig 5A).  254 

Burkholderia respond to Pi stress-induced changes in the plant 255 

In a previous publication [4], we demonstrated that PHR1 negatively regulates defense-related genes 256 

under low-Pi conditions. Suppression of plant defense and consequent alterations in colonization could 257 

account for some of the shift we observed from a beneficial to a detrimental community. We thus aimed 258 

to identify bacteria that respond to Pi stress-induced changes in the plant, rather than the Pi concentration 259 

itself. To do so, we searched for USeqs that displayed a strong Pi:fraction (shoot, root, agar) interaction in 260 

our GLM (S7A Fig, S11 Table and Materials and Methods 4d). Two of the three USeqs displaying the 261 

strongest Pi:fraction interaction belonged to Burkholderiaceae, representing all 5 Burkholderia strains 262 

used in this experiment. The relative abundance of these USeqs is positively correlated with Pi 263 

concentration in the agar, but is negatively correlated with Pi concentration in the root and shoot (Fig 6A 264 

and S7B Fig). This pattern suggests that these strains are responding to physiological changes in the plant 265 

– either via a suppression of an immune mechanism that keeps them in check under high Pi, or via an 266 

unknown positive selection mechanism under low Pi. 267 

To measure the physiological effect of the specific recruitment of Burkholderia under Pi stress on the 268 

plant, we conducted a drop-out experiment in which we compared plants inoculated with the full SynCom 269 

to plants inoculated with a SynCom excluding all five Burkholderia isolates. We also included a SynCom 270 
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excluding all members of the neighboring Ralstonia clade (Fig 4A), which didn’t display any discernible Pi-271 

response. We measured Pi concentrations in the shoots (a proxy for PSR) of plants grown in high (1000 272 

µM) and low (50 µM) Pi with the different SynComs. In addition, we measured shoot Pi in a re-feeding 273 

treatment with SynCom-inoculated plants grown in low (50 µM) Pi and then transferred to high Pi (1000 274 

µM) conditions. All SynCom treatments decreased shoot Pi content in the low Pi conditions compared to 275 

the uninoculated plants but recovered to a higher shoot Pi level than the uninoculated treatments upon 276 

transferring to high Pi conditions, reproducing our previous report [4] (Fig 6B). Among inoculated 277 

treatments, plants colonized with the Burkholderia drop-out treatment (SynCom excluding all 278 

Burkholderia) had a higher Pi content than either plants colonized with the full SynCom or with the 279 

Ralstonia drop-out SynCom only in the low Pi conditions. There was no difference in shoot Pi among the 280 

SynCom treatments in either the high Pi treatment, or following the refeeding treatment. This finding 281 

suggests that the enrichment of Burkholderia in plant tissue under Pi starvation can be considered a shift 282 

in the effect of bacteria on the plant from a positive interaction to a negative one. This supposition is 283 

consistent with the plant immune system gating this taxon under replete Pi but being unable to do so 284 

under PSR. 285 

Discussion 286 

Despite the fact that phosphate is a critical nutrient for plants and their microbiota, differences in 287 

phosphate content have relatively subtle effects on plant and soil microbiome compositions compared to 288 

abiotic factors like pH or drought, which cause pronounced, phylogenetically consistent changes in 289 

community configurations [19,27,29]. Several studies link host physiological response to the soil 290 

phosphate status with the bacterial [4,51] and fungal [34,36] microbiome. A recent report of Arabidopsis 291 

planted in a 60-year-long annual phosphorus fertilization gradient (the same soil used in the current study) 292 

showed a modest P effect on plant microbiome composition [41]. Previously, we showed that PSR mutants 293 

in Arabidopsis have subtly different bacterial microbiomes in Pi replete [4] conditions and a recent 294 

publication showed that PSR mutants had a slightly altered fungal microbiome in Pi replete but not in Pi 295 

depleted conditions [36].  296 

Here, we analyzed fungi and bacteria side by side and demonstrated a pronounced effect of PSR 297 

impairment on both bacterial and fungal components of the plant microbiota. We noted an intriguing 298 

difference that emerged in the patterns of niche sorting between bacteria and fungi (S3A S3B, S3D and 299 

S3E Fig). The bacterial microbiota composition is strongly dependent on the soil bacterial community 300 

composition, whereas changes to the fungal microbiota are uncoupled from changes to the soil fungal 301 
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community composition. This indicates that the plant is markedly more selective as to the fungi allowed 302 

to proliferate in its tissue than it is with bacteria. Similar to [36], amendment of the soil with P at the time 303 

of the experiment (low P vs low+P) caused a shift in the microbial community, albeit weaker than the 304 

effect of knocking-out PSR genes. Our results show that impairment of PSR genes profoundly affects the 305 

composition of the plant microbiota, under a range of P conditions, and that observed shifts in root-306 

derived microbial communities may not be a result of sensitivity to P concentrations, but rather a response 307 

to PSR regulation in the hosts. This raises the alternative hypotheses that PSR-regulated shifts in 308 

microbiota composition are either adaptive to the plant, or reflect opportunistic strategies by bacteria, 309 

exploiting the repression of immunity by PSR regulation [4,17]. Under the former hypothesis microbes 310 

recruited by the plant under Pi stress provide the plants with an advantage vis a vis coping with this stress, 311 

whereas under the latter, opportunistic microbes might be making a bad situation worse for the plant. In 312 

the case of Burkholderia in our SynCom, results support the latter hypothesis. Burkholderia contribute to 313 

depletion of shoot Pi stores, only under Pi-limiting conditions. However, plant-adaptive microbial 314 

recruitment under low Pi has been shown to occur as well [17]. The fact that in soil bacteria responding 315 

to PSR genes are not a monophyletic group indicates that multiple mechanisms are involved. It is likely 316 

that these mechanisms encompass both plant-adaptive and opportunistic strategies.  317 

The genus Burkholderia emerges as a PSR-responsive taxon. We examined the effect of Burkholderia on 318 

shoot Pi accumulation, which we’ve shown to be a reliable marker for PSR (S1F Fig). We compared the 319 

effect of Burkholderia on shoot Pi accumulation from within a full SynCom (a realistic proxy for the 320 

bacterial community) to that of the full SynCom lacking Burkholderia, a strategy akin to knocking-out a 321 

gene of interest, also recently applied in [52].  The control treatment for this type of approach is the full 322 

SynCom, while in a plant-bacterium binary association experiment it would typically be sterile conditions. 323 

As both sterile conditions and binary association are strong deviations from conditions that may be 324 

encountered in the field, the results of binary association experiments may be correspondingly distorted. 325 

Using the drop-out approach, we expect to see more subtle differences, as the microbial load on the plant 326 

doesn’t change much, but also that these differences be more relevant to the field; an expectation that is 327 

yet to be empirically tested. Our observation that dropping Burkholederia out of the SynCom increased 328 

shoot Pi in Pi limiting conditions (50 µM Pi) but not in Pi replete conditions (1000 µM Pi) suggests that 329 

strains in this genus shift their relationship with the plant from a seeming commensal to a 330 

competitor/pathogen. It is likely that this shift is related to the repression of plant immune function by 331 

key regulators of PSR in low Pi [4], suggesting a specific plant-dependent trade off during PSR. 332 
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This study shows that despite 60 years of differential fertilization, differences in PSR and in microbiome 333 

composition between the low P and high P soils are subtle, possibly because Pi status is highly buffered 334 

by the plant ionomic regulatory network [53]. Only when comparing the low P vs the P-supplemented 335 

low+P samples, is there a discernible difference in PSR (Fig 1A), which correlates to a stronger effect on 336 

microbiota composition. This suggests that bioavailable Pi added to the soil is quickly consumed, and 337 

short-term amendments are needed in order to detect changes. It is easier to produce Pi-limiting 338 

conditions in vitro using defined media, as evidenced from shifts in both PSR gene expression and 339 

microbiome composition in the microcosm system introduced here. Our SynCom, comprising 185 340 

genome-sequenced endophytic bacterial isolates, was designed to resemble a natural bacterial 341 

community (Fig 4B). The community assembly patterns shown for this system are highly reproducible, 342 

demonstrating that microbiome assembly is largely a deterministic process. The reproducibility and 343 

editability of this system can be used for detailed mechanistic study of the processes that determine 344 

community assembly and its influence on plant phenotype and fitness.  345 

Materials and Methods 346 

1. Soil P gradient experiment 347 

a. Collection of soil from field site 348 

Soil used in this experiment was collected from the long-term Pi fertilization field (“Field D”) trial at the 349 

Julius Kühn Experimental Station at Martin Luther University of Halle-Wittenberg (51°29′45.6′′N, 350 

11°59′33.3′′E) [40,54]. Soil cores (10 cm diameter × 15 cm depth) were taken from 18 6 X 5 m unplanted 351 

plots, belonging to two strips. These plots represent three P fertilization regimens: low, medium and high 352 

P (0, 15 and 45 kg P ha−1 year−1, respectively). Strips were harvested independently in the middle of March 353 

(strip 1) and beginning of April (strip 2). Approximately 2 cm of the topsoil was discarded and the 354 

remaining lower 13 cm of soil was stored at 4 °C until use. Soils were homogenized with a mesh sieve wire 355 

(5 × 5 m2) and about 300 g of soil were added to each pot (7 × 7 × 7 cm3). 356 

b. Experimental design 357 

Each of the three Arabidopsis genotypes was grown in soil from all 18 plots (6 plots per P treatment). In 358 

addition, a 4th P regimen designated ‘Low+P’ was created by adding additional P to a set of pots with low 359 

P. The amount of P added to these pots is based on the difference in total P between Low and High P 360 
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plots. The average difference between Low and High P over all the plots is 42 mg P per kg soil [41]. Per 361 

pot, this is 12.6 mg P (accounting for 300 g soil per pot). Thus, a 10 ml solution consisting of 4.2 mg P in 362 

the form of 20% K2HPO4 and 80% KH2PO4 was added to the pots in 3 applications (Week 2, 4 and 6) before 363 

watering (in order to distribute the P through the soil). 364 

Thus, the experiment included four soil treatments (low P, medium P, high P, low+P) and three genotypes 365 

(Col-0, phf1 and phr1 phl1) with 6 independent replicates, amounting to 72 pots. Pot positions in the 366 

greenhouse was randomized. 367 

c. Plant growth conditions 368 

Arabidopsis thaliana ecotype Col-0 and mutants phf1 and phr1 phl1 (both in the Col-0 background) were 369 

used. Seeds were surface sterilized (20 min 70% EtOH, 10 s 100% EtOH) and planted directly onto moist 370 

soil. Sown seeds were stratified for 3 days at 4 °C before being placed in a greenhouse under short-day 371 

conditions (6/18 day-night cycle; 19 to 21 °C) for 8 weeks. Germinating seedlings were thinned to four 372 

plants per pot. 373 

d. Sample harvest  374 

After eight weeks of growth, pots were photographed, and shoot size was quantified using WinRhizo 375 

software (Regent instruments Inc. Québec, Canada). For DNA extraction, two roots, two shoots and soil 376 

from each pot were harvested separately. Roots and shoots were rinsed in sterile water to remove soil 377 

particles, placed in 2 ml Eppendorf tubes with 3 sterile glass beads, then washed three times with sterile 378 

distilled water to remove soil particles and weakly associated microbes. Root and shoot tissue were then 379 

pulverized using a tissue homogenizer (TissueLyser II; Qiagen) and stored at ˗80 ˚C until processing. Five 380 

ml of soil from each pot was suspended in 20 ml of sterile distilled water. The resulting slurry was sieved 381 

through a 100 µm sterile cell strainer (Fisher Scientific) and the flow-through was centrifuged twice at 382 

maximum speed for 20 minutes, removing the supernatant both times. The resulting pellet was stored at 383 

˗80 ˚C until processing. For RNA extraction, one root system and one shoot were taken from three 384 

replicates of each treatment, washed lightly to remove soil particles, placed in 2 ml Eppendorf tubes with 385 

three glass beads and flash frozen with liquid nitrogen. Tubes were stored at ˗80 ˚C until processing. For 386 

shoot Pi measurement, 2-3 leaves from the remaining shoot in each pot were placed in an Eppendorf tube 387 
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and weighed. 1% acetic acid was then added and samples were flash frozen and stored at ˗80 ˚C until 388 

processing. 389 

e. DNA extraction 390 

DNA extractions were carried out on ground root and shoot tissue and soil pellets, using the 96-well-391 

format MoBio PowerSoil Kit (MoBio Laboratories; Qiagen) following the manufacturer’s instruction. 392 

Sample position in the DNA extraction plates was randomized, and this randomized distribution was 393 

maintained throughout library preparation and sequencing. 394 

f. RNA extraction 395 

RNA was purified from plant tissue using the RNeasy Plant Mini Kit (Qiagen) according to the 396 

manufacturer’s instructions and stored at ˗80 ˚C. 397 

g. Quantification of plant phenotypes 398 

The Ames method [55] was used to determine the phosphate concentration in the shoots of plants grown 399 

on different Pi regimens and treatments. Shoot area was measured using WinRhizo software (Regens 400 

Instruments Inc.). 401 

2. Bacterial SynCom experiment 402 

a. Bacterial isolation and culture 403 

The 185-member bacterial synthetic community (SynCom) contained genome-sequenced isolates 404 

obtained from Brassicaceae roots, nearly all Arabidopsis, planted in two North Carolina, USA, soils. Since 405 

both bacteria and fungi responded similarly to PSR in our soil experiments, we only included bacteria, 406 

which are more compatible with our experimental system, in our SynCom. A detailed description of this 407 

collection and isolation procedures can be found in [47]. One week prior to each experiment, bacteria 408 

were inoculated from glycerol stocks into 600 µL KB medium in a 96 deep well plate. Bacterial cultures 409 

were grown at 28°C, shaking at 250 rpm. After five days of growth, cultures were inoculated into fresh 410 

media and returned to the incubator for an additional 48 hours, resulting in two copies of each culture, 7 411 

days old and 48 hours old. We adopted this procedure to account for variable growth rates of different 412 

SynCom members and to ensure that non-stationary cells from each strain were included in the inoculum. 413 
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After growth, 48-hour old and 7-day old plates were combined and optical density (OD) of the culture was 414 

measured at 600 nm using an Infinite M200 Pro plate reader (TECAN, Switzerland). All cultures were then 415 

pooled while normalizing the volume of each culture according to the OD (we took a proportionally higher 416 

volume of culture from cultures with low OD). The mixed culture was then washed twice with 10 mM 417 

MgCl2 to remove spent media and cell debris and vortexed vigorously with sterile glass beads to break up 418 

aggregates. OD of the mixed, washed culture was then measured and normalized to OD=0.2. 100 µL of 419 

this SynCom inoculum was spread on each agar plate prior to transferring seedlings. 420 

b. Experimental design of agar experiments 421 

We performed the Pi-gradient experiment in two independent replicas (experiments performed at 422 

different time, with fresh bacterial inoculum and batch of plants), each containing three internal 423 

replications, amounting to six samples for each treatment. We had two SynCom treatments: no bacteria 424 

(NB) and SynCom; six Pi concentrations: 0, 10, 30, 50, 100 or 1000 µM Pi; and two plant treatments: 425 

planted plates, and unplanted plates (NP). 426 

For the drop-out experiment, the entire SynCom, excluding all five Burkholderia and both Ralstonia 427 

isolates was grown and prepared as described above (Materials and Methods 2a). The Burkholderia and 428 

Ralstonia isolates were grown in separate tubes, washed and added to the rest of the SynCom to a final 429 

OD of 0.001 (the calculated OD of each individual strain in a 185-Member SynCom at an OD of 0.2), to 430 

form the following four mixtures: (1) Full community – all Burkholderia and Ralstonia isolates added to 431 

the SynCom; (2) Burkholderia drop-out – only Ralstonia isolates added to the SynCom; (3) Ralstonia drop-432 

out – only Burkholderia isolates added to the SynCom; (4) Uninoculated plants – no SynCom. The 433 

experiment had three Pi conditions: low Pi (50 µM Pi), high Pi (1000 µM Pi) and lowhigh Pi. 12 days 434 

post-inoculation the low Pi and high Pi samples were harvested, and the lowhigh plants were 435 

transferred from 50 µM Pi plates to 1000 µM Pi plates for an additional 3 days. The experiment was 436 

performed twice and each rep consisted of six plates per SynCom mixture and Pi treatment, amounting 437 

to 72 samples. Upon harvest, shoot Pi accumulation was measured using the Ames method (Materials 438 

and Methods 1g).  439 
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c. In vitro plant growth conditions  440 

All seeds were surface-sterilized with 70% bleach, 0.2% Tween-20 for 8 min, and rinsed three times with 441 

sterile distilled water to eliminate any seed-borne microbes on the seed surface. Seeds were stratified at 442 

4 °C in the dark for two days. Plants were germinated on vertical square 10 X 10 cm agar plates with 443 

Johnson medium (JM; [4]) containing 0.5% sucrose and 1000 µM Pi, for 7 days. Then, 10 plants were 444 

transferred to each vertical agar plate with amended JM lacking sucrose at one of the following 445 

experimental Pi concentrations: 0, 10, 30, 50, 100 or 1000 µM Pi. The SynCom was spread on the agar 446 

prior to transferring plants. Each experiment included unplanted agar plates with SynCom for each media 447 

type (designated NP) and uninoculated plates with plants for each media type (designated NB). Plants 448 

were placed in randomized order in growth chambers and grown under a 16-h dark/8-h light regime at 449 

21°C day/18°C night for 12 days. 450 

d. Sample harvest 451 

Twelve days post-transferring, plates were imaged using a document scanner. For DNA extraction; roots, 452 

shoots and agar were harvested separately, pooling 6 plants for each sample. Roots and shoots were 453 

placed in 2.0 ml Eppendorf tubes with three sterile glass beads. Samples were washed three times with 454 

sterile distilled water to remove agar particles and weakly associated microbes. Tubes were stored at ˗80 455 

˚C until processing. For RNA, samples were collected from a separate set of two independent experiments, 456 

using the same SynCom and conditions as above, but with just two Pi concentrations: 1000 µM Pi (high) 457 

and 50 µM Pi (low). Four seedlings were harvested from each sample and samples were flash frozen and 458 

stored at ˗80 ˚C until processing. 459 

e. DNA extraction 460 

Root and shoot samples were lyophilized for 48 hours using a Freezone 6 freeze dry system (Labconco) 461 

and pulverized using a tissue homogenizer (MPBio). Agar from each plate was stored in a 30 ml syringe 462 

with a square of sterilized Miracloth (Millipore) at the bottom and kept at ˗20 °C for a week. Syringes were 463 

then thawed at room temperature and samples were squeezed gently into 50 ml tubes. Samples were 464 

centrifuged at maximum speed for 20 minutes and most of the supernatant was discarded. The remaining 465 

1-2 ml of supernatant containing the pellet was transferred into clean microfuge tubes. Samples were 466 

centrifuged again, supernatant was removed, and pellets were stored at ˗80 °C until DNA extraction. 467 
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DNA extractions were carried out on ground root and shoot tissue and agar pellets using 96-well-format 468 

MoBio PowerSoil Kit (MOBIO Laboratories; Qiagen) following the manufacturer’s instruction. Sample 469 

position in the DNA extraction plates was randomized, and this randomized distribution was maintained 470 

throughout library preparation and sequencing. 471 

f. RNA extraction 472 

RNA was extracted from A. thaliana seedlings following [56]. Frozen seedlings were ground in liquid 473 

nitrogen, then homogenized in a buffer containing 400 μl of Z6-buffer; 8 M guanidinium-HCl, 20 mM MES, 474 

20 mM EDTA at pH 7.0. 400 μL phenol:chloroform:isoamylalcohol, 25:24:1 was added, and samples were 475 

vortexed and centrifuged (20,000 g, 10 minutes) for phase separation. The aqueous phase was transferred 476 

to a new 1.5 ml tube and 0.05 volumes of 1 N acetic acid and 0.7 volumes 96% ethanol were added. The 477 

RNA was precipitated at ˗20 °C overnight. Following centrifugation (20,000 g, 10 minutes, 4 °C), the pellet 478 

was washed with 200 μl sodium acetate (pH 5.2) and 70% ethanol. The RNA was dried and dissolved in 30 479 

μL of ultrapure water and stored at ˗80 °C until use. 480 

g. Quantification of plant phenotypes 481 

The Ames method [55] was used to determine the phosphate concentration in the shoots of plants grown 482 

on different Pi regimens and treatments. Primary root length elongation was measured using ImageJ [57] 483 

and for shoot area and total root network measurement, WinRhizo software (Regens Instruments Inc.),  484 

was used. 485 

3. DNA and RNA sequencing 486 

a. Bacterial 16S sequencing  487 

We amplified the V3-V4 regions of the bacterial 16S rRNA gene using primers 338F (5′-ACTCCTACGGGAG488 

GCAGCA-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′). Two barcodes and 6 frameshifts were added 489 

to the 5’ end of 338F and 6 frameshifts were added to the 806R primers, based on the protocol in [58]. 490 

Each PCR reaction was performed in triplicate, and included a unique mixture of three frameshifted primer 491 

combinations for each plate. PCR conditions were as follows: 5 μl Kapa Enhancer (Kapa Biosystems), 5 μl 492 

Kapa Buffer A, 1.25 μl of 5 μM 338F, 1.25 μl of 5 μM 806R, 0.375 μl mixed rRNA gene-blocking peptide 493 

nucleic acids (PNAs; 1:1 mix of 100 μM plastid PNA and 100 μM mitochondrial PNA; PNA Bio), 0.5 μl Kapa 494 
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dNTPs, 0.2 μl Kapa Robust Taq, 8 μl dH2O, 5 μl DNA; temperature cycling: 95 °C for 60 s, 24 cycles of 95 °C 495 

for 15 s, 78 °C (PNA) for 10 s, 50 °C for 30 s, 72 °C for 30 s, 4 °C until use. Following PCR cleanup, the PCR 496 

product was indexed using 96 indexed 806R primers with the same reaction mix as above, and 9 cycles of 497 

the cycling conditions described in [29]. PCR products were purified using AMPure XP magnetic beads 498 

(Beckman Coulter) and quantified with a Qubit 2.0 fluorometer (Invitrogen). Amplicons were pooled in 499 

equal amounts and then diluted to 10 pM for sequencing. Sequencing was performed on an Illumina 500 

MiSeq instrument using a 600-cycle V3 chemistry kit. The raw data for the natural soil experiment is 501 

available in the NCBI SRA Sequence Read Archive (accession XXXXXXX). The raw data for the SynCom 502 

experiment is available in the NCBI SRA Sequence Read Archive (accession XXXXXXX). 503 

b. Fungal/Oomycete ITS sequencing  504 

We amplified the ITS1 region using primers ITS1-F (5′-CTTGGTCATTTAGAGGAAGTAA-3′; [59]) and ITS2 (5′-505 

GCTGCGTTCTTCATCGATGC-3′; [60]). Samples were diluted to concentrations of 3.5 ng µl−1 of DNA with 506 

nuclease-free water for the first PCR reaction to amplify the ITS1 region. Reactions were prepared in 507 

triplicate in 25 µl volumes consisting of 10 ng of DNA template, 1× incomplete buffer, 0.3% bovine serum 508 

albumin, 2 mM MgCl2, 200 µM dNTPs, 300 nM of each primer and 2 U of DFS-Taq DNA polymerase (Bioron, 509 

Ludwigshafen, Germany); temperature cycling: 2 min at 94 °C, 25 cycles: 30 s at 94 °C, 30 s at 55 °C, and 510 

30 s at 72 °C; and termination: 10 min at 72 °C. PCR products were cleaned using an enzymatic cleanup 511 

(24.44 µl: 20 µl of template, 20 U of exonuclease I, 5 U of Antarctic phosphatase, 1× Antarctic phosphatase 512 

buffer; New England Biolabs, Frankfurt, Germany); incubation conditions: (30 min at 37 °C, 15 min at 85 513 

°C; centrifuge 10 min at 4,000 rpm). A second PCR was then performed (2 min at 94 °C; 10 cycles: 30 s at 514 

94 °C, 30 s at 55 °C, and 30 s at 72 °C; and termination: 10 min at 72 °C), in triplicate using 3 µl of cleaned 515 

PCR product and sample-specific barcoded primers (5′- 516 

AATGATACGGCGACCACCGAGATCTACACTCACGCGCAGG-ITS1F-3′; 5′-CAAGCAGAAGACGGCATACGAGAT-517 

BARCODE(12-NT)-CGTACTGTGGAGA-ITS2-3′). PCR reactions were purified using with Agencourt AMPure 518 

XP purification kit (Beckman Coulter, Krefeld, Germany). Amplicons were pooled in equal amounts and 519 

then diluted to 10 pM for sequencing. Sequencing was performed on an Illumina MiSeq instrument using 520 

a 600-cycle V3 chemistry kit. The raw data is available in the NCBI SRA Sequence Read Archive (Project 521 

Number PRJNA531340). 522 
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c. Plant RNA sequencing 523 

Illumina-based mRNA-Seq libraries were prepared from 1 μg RNA following [51]. mRNA was purified from 524 

total RNA using Sera-mag oligo(dT) magnetic beads (GE Healthcare Life Sciences) and then fragmented in 525 

the presence of divalent cations (Mg2+) at 94 °C for 6 minutes. The resulting fragmented mRNA was used 526 

for first-strand cDNA synthesis using random hexamers and reverse transcriptase, followed by second-527 

strand cDNA synthesis using DNA Polymerase I and RNAseH. Double-stranded cDNA was end-repaired 528 

using T4 DNA polymerase, T4 polynucleotide kinase, and Klenow polymerase. The DNA fragments were 529 

then adenylated using Klenow exo-polymerase to allow the ligation of Illumina Truseq HT adapters (D501–530 

D508 and D701–D712). All enzymes were purchased from Enzymatics. Following library preparation, 531 

quality control and quantification were performed using a 2100 Bioanalyzer instrument (Agilent) and the 532 

Quant-iT PicoGreen dsDNA Reagent (Invitrogen), respectively. Libraries were sequenced using Illumina 533 

HiSeq4000 sequencers to generate 50-bp single-end reads. 534 

4. Data processing and Statistical analyses  535 

a. Quantification of plant phenotypes – soil experiment 536 

To measure correlation between all measured plant phenotypes (shoot Pi, shoot weight, shoot size) we 537 

applied hierarchical clustering based on the all vs all pairwise correlation coefficients between all the 538 

phenotypes measured. We used the R package corrplot v.0.84  [61] to visualize correlations. To compare 539 

shoot Pi accumulation, we performed a paired t-test between low P and P-supplemented low P (low+P) 540 

samples, within each plant genotype independently (α < 0.05). 541 

b. Amplicon sequence data processing – soil experiments 542 

Bacterial sequencing data was processed with MT-Toolbox [62]. Usable read output from MT-Toolbox 543 

(that is, reads with 100% correct primer and primer sequences that successfully merged with their pair) 544 

were quality filtered using Sickle [63] by not allowing any window with a Q-score under 20. After quality 545 

filtering, samples with < 3000 reads, amounting to 51 samples, all soil samples, were discarded. The 546 

resulting sequences were collapsed into amplicon sequence variants (ASVs) using the R package DADA2 547 

v1.8.1 [64]. Taxonomic assignment of each ASV was performed using the naïve Bayes kmer method 548 

implemented in the DADA2 package using the Silva 132 database as training reference [64]. 549 
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Fungal sequencing data was processed as previously described [41]. Briefly, a combination of QIIME [65] 550 

and USEARCH [66] pipelines were used to cluster the fungal reads into 97% OTUs. Filtering of non-fungal 551 

OTUs was performed by aligning each representative against a dedicated ITS database. Finally, taxonomic 552 

assignment of each OTU was performed using the WarCup fungal ITS training set (2016) [67]. 553 

The resulting bacterial and fungal count tables were deposited at https://github.com/isaisg/hallepi 554 

c. Community analyses – soil experiments 555 

The resulting bacterial and fungal count tables were processed and analyzed with functions from the 556 

ohchibi package [68]. Both tables were rarefied to 3000 reads per sample. An alpha diversity metric 557 

(Shannon diversity) was calculated using the diversity function from the vegan package v2.5-3 [69]. We 558 

used ANOVA to test for differences in Shannon Diversity indices between groups. Tukey’s HSD post-hoc 559 

tests here and elsewhere were performed using the cld function from the emmeans R package [70]. Beta 560 

diversity analyses (Principal coordinate analysis, and canonical analysis of principal coordinates) were 561 

based on Bray-Curtis dissimilarity calculated from the rarefied abundance tables. We utilized the capscale 562 

function from the vegan R package v.2.5-3 [69] to compute a constrained analysis of principal coordinates 563 

(CAP). To analyze the full dataset (all fraction, all genotypes all phosphorus treatments), we constrained 564 

by fraction, plant genotype and phosphorus fertilization treatment, while conditioning for the plot effect. 565 

We performed the Genotype: phosphorus interaction analysis over each fraction independently, 566 

constraining for the plant genotype and phosphorus fertilization treatment while conditioning for the plot 567 

effect. In addition to CAP, we performed Permutational Multivariate Analysis of Variance (PERMANOVA) 568 

over the two datasets described above using the adonis function from the vegan package v2.5-3 [69]. 569 

Finally, we used the function chibi.permanova from the ohchibi package to plot the R2 values for each 570 

significant term in the PERMANOVA model tested. 571 

The relative abundance of bacterial phyla and fungal taxa were depicted using the stacked bar 572 

representation encoded in the function chibi.phylogram from the ohchibi package.  573 

We used the R package DESeq2 v1.22.1 [71] to compute the enrichment profiles for both bacterial ASVs 574 

and fungal OTUs. For the full dataset model, we estimated main effects for each variable tested (Fraction, 575 

Plant Genotype, and Phosphorus fertilization) using the following design: 576 

Abundance ~ Fraction + Genotype + Phosphorus Treatment 577 
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We delimited ASV/OTU fraction enrichments using the following contrasts: Soil vs Root, Soil vs Shoot and 578 

Root vs Shoot. An ASV/OTU was considered statistically significant if it had q-value < 0.1. 579 

We implemented a second statistical model in order to identify ASVs and OTUs that exhibited statistically 580 

significant differential abundances depending on genotype. For this analysis we utilized only root-derived 581 

low P and P-supplemented low P (low+P) treatments. We utilized a group design framework to facilitate 582 

the construction of specific contrasts. In the group variable we created, we merged the genotype and 583 

phosphate levels per sample (e.g. Col-0_lowP, phf1_low+P or phr1 phl1_lowP). We controlled the paired 584 

structure of our design by adding a plot variable, resulting in the following model design: 585 

Abundance ~ Plot + group 586 

We delimited 6 sets (S1, S2, S3, S4, S5, S6) of statistically significant (q-value < 0.1) ASVs/OTUs from our 587 

model using the following contrasts: 588 

S1 = {Samples from Col-0, higher abundance in low treatment in comparison to low+P treatment} 589 

S2 = {Samples from phf1, higher abundance in low treatment in comparison to low+P treatment} 590 

S3 = {Samples from phr1 phl1, higher abundance in low treatment in comparison to low+P treatment} 591 

S4 = {Samples from Col-0, higher abundance in low+P treatment in comparison to low treatment} 592 

S5 = {Samples from phf1, higher abundance in low+P treatment in comparison to low treatment} 593 

S6 = {Samples from phr1 phl1, higher abundance in low+P treatment in comparison to low treatment} 594 

The six sets described above were used to populate Figures 3c-f.  595 

The interactive visualization of the enrichment profiles was performed by converting the taxonomic 596 

assignment of each ASV/OTU into a cladogram with equidistant branch lengths using R. We used the 597 

interactive tree of life interface (iTOL) [72] to visualize this tree jointly with metadata files derived from 598 

the output of the statistical models described above. The cladograms for both bacteria and fungi can be 599 

downloaded from the links described above or via the iTOL user hallepi.  600 

In order to compare beta diversity patterns across samples, we only used samples coming from pots 601 

where sequence data from all three fractions (soil root and shoot) passed quality filtering. Then, for each 602 

fraction we estimated a distance structure between samples inside that fraction using the Bray Curtis 603 

dissimilarity metric. Finally, we computed Mantel [73] correlations between pairs of distance objects (e.g. 604 

samples from Root or samples from Shoot) using the vegan package v2.5-3 [69] implementation of the 605 

Mantel test. 606 
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All scripts and datasets required to reproduce the soil experiment analyses are deposited in the following 607 

GitHub repository: https://github.com/isaisg/hallepi/.  608 

d. Amplicon sequence data processing – SynCom experiments 609 

SynCom sequencing data were processed with MT-Toolbox [62]. Usable read output from MT-Toolbox 610 

(that is, reads with 100% correct primer and primer sequences that successfully merged with their pair) 611 

were quality filtered using Sickle [63] by not allowing any window with Q-score under 20. The resulting 612 

sequences were globally aligned to a reference set of 16S rRNA gene sequences extracted from genome 613 

assemblies of SynCom member strains. For strains that did not have an intact 16S rRNA gene sequence in 614 

their assembly, we generated the 16S rRNA gene using Sanger sequencing. The reference database also 615 

included sequences from known bacterial contaminants and Arabidopsis organellar 16S sequences (S12 616 

table). Sequence alignment was performed with USEARCH v7.1090 [66] with the option ‘usearch_global’ 617 

at a 98% identity threshold. On average, 85% of sequences matched an expected isolate. Our 185 isolates 618 

could not all be distinguished from each other based on the V3-V4 sequence and were thus classified into 619 

97 unique sequences (USeqs). A USeq encompasses a set of identical (clustered at 100%) V3-V4 sequences 620 

coming from a single or multiple isolates.  621 

Sequence mapping results were used to produce an isolate abundance table. The remaining unmapped 622 

sequences were clustered into Operational Taxonomic Units (OTUs) using UPARSE [74] implemented with 623 

USEARCH v7.1090, at 97% identity. Representative OTU sequences were taxonomically annotated with 624 

the RDP classifier [75] trained on the Greengenes database [76] (4 February 2011). Matches to Arabidopsis 625 

organelles were discarded. The vast majority of the remaining unassigned OTUs belonged to the same 626 

families as isolates in the SynCom. We combined the assigned Useq and unassigned OTU count tables into 627 

a single table. 628 

The resulting count table was processed and analyzed with functions from the ohchibi package. Samples 629 

were rarefied to 1000 reads per sample. An alpha diversity metric (Shannon diversity) was calculated using 630 

the diversity function from the vegan package v2.5-3 [69]. We used ANOVA to test for differences in alpha 631 

diversity between groups. Beta diversity analyses (Principal coordinate analysis, and canonical analysis of 632 

principal coordinates) were based on were based on Bray-Curtis dissimilarity calculated from the rarefied 633 

abundance tables. We used the capscale function from the vegan R package v.2.5-3 [69] to compute the 634 

canonical analysis of principal coordinates (CAP). To analyze the full dataset (all fraction, all phosphate 635 
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treatments), we constrained by fraction and phosphate concentration while conditioning for the replicate 636 

effect. We performed the Fraction:Phosphate interaction analysis within each fraction independently, 637 

constraining for the phosphate concentration while conditioning for the rep effect. In addition to CAP, we 638 

performed Permutational Multivariate Analysis of Variance (PERMANOVA) analysis over the two datasets 639 

described above using the adonis function from the vegan package v2.5-3 [69]. Finally, we used the 640 

function chibi.permanova from the ohchibi package to plot the R2 values for each significant term in the 641 

PERMANOVA model tested. 642 

We visualized the relative abundance of the bacterial phyla present in the SynCom using the stacked bar 643 

representation encoded in the chibi.phylogram from the ohchibi package.  644 

We used the package DESeq2 v1.22.1 [71] to compute the enrichment profiles for USeqs and OTUs 645 

present in the count table. For the full dataset model, we estimated main effects for each variable tested 646 

(fraction and phosphate concentration) using the following model specification: 647 

Abundance ~ Fraction + Phosphate Treatment + Replicate 648 

We calculated the USeqs/OTUs fraction enrichments using the following contrasts: Agar vs Root, Agar vs 649 

Shoot and Root vs Shoot. A USeq/OTU was considered statistically significant if it had q-value < 0.1. In 650 

order to populate the heatmaps shown in Figure 5C, we grouped the Fraction and Phosphate treatment 651 

variable into a new group variable that allowed us to fit the following model: 652 

Abundance ~ Replicate + group 653 

We used the fitted model to estimate the fraction effect inside each particular phosphate level (e.g. Root 654 

vs Agar at 0Pi, or Shoot vs Agar at 1000Pi). 655 

Additionally, we utilized a third model for the identification of USeqs/OTUs that exhibited a significant 656 

Fraction:Phosphate interaction between the planted agar samples and the plant fractions (Root and 657 

Shoot). Based on the beta diversity and alpha diversity results, we only used samples that were treated 658 

with 0, 10, 100 and 1000 µM of phosphate. We grouped the samples into two categories based on their 659 

phosphate concentration, low (0 µM and 10 µM) and high (100 µM and 1000 µM). Then we used the 660 

following model specification to derive the desired interaction effect:  661 

Abundance ~ Fraction + Category + Fraction:Category + Replicate 662 

Finally, we subset USeqs that exhibited a significant interaction (Fraction:Category, q-value < 0.1) in the 663 

following two contrasts (Planted Agar vs Root) and (Planted Agar vs Shoot). 664 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2019. ; https://doi.org/10.1101/608133doi: bioRxiv preprint 

https://doi.org/10.1101/608133
http://creativecommons.org/licenses/by/4.0/


25 
 

In order to compare beta diversity patterns across samples, we only used samples coming from pots 665 

where sequence data from all three fractions (soil root and shoot) passed quality filtering. Then, for each 666 

fraction we estimated a distance structure between samples inside that fraction using the Bray Curtis 667 

dissimilarity metric. Finally, we computed Mantel [73] correlations between pairs of distance objects (e.g. 668 

samples from Root or samples from Shoot) using the vegan package v2.5-3 [69] implementation of the 669 

Mantel test. 670 

For the drop-out experiment, we ran an ANOVA model inside each of the phosphate treatments tested 671 

(50 µM Pi, 1000 µM Pi and 501000 µM Pi). We visualized the results of the ANOVA models using the 672 

compact letter display encoded in the CLD function from the emmeans package. 673 

All scripts necessary to reproduce the synthetic community analyses are deposited in the following GitHub 674 

repository: https://github.com/isaisg/hallepi.  675 

e. Phylogenetic inference of the SynCom Isolates 676 

To build the phylogenetic tree of the SynCom isolates, we utilized the super matrix approach previously 677 

described in [47]. Briefly, we scanned 120 previously defined marker genes across the 185 isolate genomes 678 

from the SynCom utilizing the hmmsearch tool from the hmmer v3.1b2 [77]. Then, we selected 47 markers 679 

that were present as single copy genes in 100% of our isolates. Next, we aligned each individual marker 680 

using MAFFT [78] and filtered low quality columns in the alignment using trimAl [79]. Afterwards, we 681 

concatenated all filtered alignments into a super alignment. Finally FastTree v2.1 [80] was used to infer 682 

the phylogeny utilizing the WAG model of evolution. 683 

We utilized the inferred phylogeny along with the fraction fold change results of the main effect model to 684 

compute the phylogenetic signal (Pagel’s λ) [81] for each contrast (Planted Agar vs Root, Planted Agar vs 685 

Shoot and Root vs Shoot) along each concentration of the phosphate gradient. The function phylosig from 686 

the R package phytools [82] was used to test for significance of the phylogenetic signal measured. 687 

Multiple panel figures were constructed using the egg R package [83]. 688 

f. RNA-Seq read processing 689 
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Initial quality assessment of the Illumina RNA-seq reads was performed using FastQC v0.11.7 [84]. 690 

Trimmomatic v0.36 [85] was used to identify and discard reads containing the Illumina adaptor sequence. 691 

The resulting high-quality reads were then mapped against the TAIR10 [86] Arabidopsis reference genome 692 

using HISAT2 v2.1.0 [87]with default parameters. The featureCounts function from the Subread package 693 

[88] was then used to count reads that mapped to each one of the 27,206 nuclear protein-coding genes. 694 

Evaluation of the results of each step of the analysis was done with MultiQC v1.1 [89]. Raw sequencing 695 

data and read counts are available at the NCBI Gene Expression Omnibus accession number GSE129396. 696 

g. RNA-Seq statistical analysis – soil experiment 697 

To measure the transcriptional response to Pi limitation in soil, we used the package DESeq2 v.1.22.1 [71] 698 

to define differentially expressed genes (DEGs) using the raw count table described above (Materials and 699 

Methods 4f). We used only samples from low P and P-supplemented low P (low+P) treatments along the 700 

three genotypes tested (Col-0, phf1 and phr1 phl1). We combined the Genotype and Phosphorus 701 

Treatment variables into a new group variable (e.g. Col-0_lowP or phf1_low+P). Because we were 702 

interested in identifying DEGs among any pair of levels (6 levels) of the group variable (e.g. Col-0_lowP vs 703 

Col-0_low+P) we performed a likelihood ratio test (LRT) between a model containing the group variable 704 

and a reduced model containing only the intercept. Next, we defined DEGs as genes that had a q-value < 705 

0.1.  706 

For visualization purposes, we applied a variance stabilizing transformation to the raw count gene matrix. 707 

We then standardized (z-score) each gene along the samples. We subset DEGs from this standardized 708 

matrix and for each gene calculated the mean z-score expression value in a particular level of the group 709 

variable (e.g. Col-0_lowP); this resulted in a matrix of DEGs across the six levels in our design. Next, we 710 

created a dendrogram of DEGs by applying hierarchical clustering (method ward.D2, hclust R-base [90]) 711 

to a distance object based on the correlation (dissimilarity) of the expression profiles of the genes across 712 

the six levels in our design. Finally, we delimited the cluster of DEGs by cutting the output dendogram into 713 

five groups using the R-base cutree function [90]. Gene ontology enrichment was performed for each 714 

cluster of DEGs using the R package clusterProfiler [91]. 715 

For the PSR marker gene analysis we downloaded the ID of 193 genes defined in [4]. Then, we subset 716 

these genes from our standardized matrix and computed for each gene the mean z-score expression value 717 
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in a particular level of the group variable. Finally, we visualized the average expression of this PSR regulon 718 

across our groups of interest utilizing the function chibi.boxplot from the ohchibi package.   719 

All scripts necessary to reproduce the RNA-Seq analyses are deposited in the following GitHub repository: 720 

https://github.com/isaisg/hallepi. 721 

h. RNA-Seq statistical analysis – SynCom experiment 722 

To measure the transcriptional response to Pi limitation in the SynCom microcosm, we used the package 723 

DESeq2 v.1.22.1 [71] to define differentially expressed genes (DEGs) using the raw count gene table. We 724 

combined the Bacteria (No bacteria, Full SynCom) and Phosphorus Treatment variables into a new group 725 

variable (e.g. NB_50Pi or Full_1000Pi). Afterwards we fitted the following model to our gene matrix: 726 

Abundance Gene ~ Rep + group 727 

Finally, utilizing the model fitted, we contrasted the phosphate treatment inside each level of the Bacteria 728 

variable (e.g. NB_1000Pi vs NB_50Pi). Any gene with q-value < 0.1 was defined as differentially expressed.  729 

For the PSR marker gene analysis we downloaded the ID of 193 genes defined in [4]. Then, we subset 730 

these genes from our standardized matrix and computed for each gene the mean z-score expression value 731 

in a particular level of the group variable. Finally, we visualized the average expression of the PSR regulon 732 

across our groups of interest utilizing the function chibi.boxplot from the ohchibi package.   733 

All scripts necessary to reproduce the RNA-Seq analyses are deposited in the following GitHub repository: 734 

https://github.com/isaisg/hallepi 735 
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Figure 1. Plants respond to differen�al P condi�ons in soil. 
(A) Free phosphate content normalized by shoot fresh weight (mmol·mg-1) across wild type Col-0 plants 
and two PSR mutants, phf1 and phr1 phl1 (Materials and Methods 2a). Sta�s�cal significance between 
low P and low+P treatments was determined across each genotype independently by a paired t-test 
(p-value < 0.05). (B) Heatmap showing the average standardized expression of 210 differen�ally expressed 
genes (DEGs) across the low P and low+P samples in the Col-0, phf1 and phr1 phl1 genotypes (Materials 
and methods 4g). The black bar to the right highlights the distribu�on of seven genes belonging to the in 
vitro defined phosphate starva�on response (PSR) marker genes [4] across the five clusters in the heat-
map. (C) Average expression of 193 PSR marker genes [4] across the four phosphorus regimes in the Col-0 
genotype (Materials and methods 4g). (D) Gene ontology (GO) enrichment for Clusters 1 and 4. Clusters 
2, 3 and 6 did not show any sta�s�cally significant GO enrichment. The gene ra�o is the propor�on of 
genes per cluster that belong to a GO category.
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Figure 2. Plant recruitment pa�erns of bacteria and fungi. 
(A,D) Bacterial and fungal alpha diversity es�mated using the Shannon Diversity Index (Materials and 
methods 4b). Le�ers represent post-hoc test results, based on a full factorial ANOVA model. (B,E) Canoni-
cal analysis of principal coordinates (CAP) based on Bray-Cur�s dissimilari�es between bacterial and 
fungal communi�es across the soil, root and shoot (Materials and methods 4b). The bar graph to the le� 
of the CAP depicts the percentage of variance explained by sta�s�cally significant (p-value < 0.05) terms in 
a PERMANOVA model. (C) Le� panel: Rela�ve abundance profiles of the main bacterial phyla across the 
soil, root and shoot frac�ons. Right panel: Number of sta�s�cally significant amplicon sequence variants 
(ASVs) enriched in specific frac�ons (Materials and methods 4b). The arrows on the bo�om of the panel 
denote the direc�on of the enrichment rela�ve to the name of the contrast tested, the up arrow means 
enrichment in the le� frac�on of the contrast, whereas the down arrow means enrichment in the right 
frac�on of the contrast (e.g. RootvsSoil, up arrow enriched in root rela�ve to soil, bo�om arrow enriched 
in soil rela�ve to root). A detailed interac�ve visualiza�on of the bacterial enrichment pa�erns across the 
mul�ple taxonomic levels can be found at (h�ps://itol.embl.de/tree/1522316254174701551987253). (F) 
Le� panel: Rela�ve abundance profiles of the main fungal orders across soil, root and shoot frac�ons. 
Right Panel: Number of sta�s�cally significant opera�onal taxonomic units (OTUs) enriched in specific 
frac�ons (Materials and methods 4b). The arrows on the bo�om of the panel denote the direc�on of the 
enrichment rela�ve to the name of the contrast tested, the up arrow signifies enrichment in the le� 
frac�on of the contrast, whereas the down arrow signifies enrichment in the right frac�on of the contrast 
(e.g. RootvsSoil, up arrow enriched in root rela�ve to soil, bo�om arrow enriched in soil rela�ve to root). 
A detailed interac�ve visualiza�on of the fungal enrichment pa�erns across the mul�ple taxonomic levels 
can be found at   (h�ps://itol.embl.de/tree/1522316254174721551987262).
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Figure 3. Plant phosphate starva�on response controls the assembly of the plant microbiome. 
(A,B) Canonical analysis of principal coordinates showing the influence of plant genotypes and soil phos-
phorus content over the (A) bacterial and (B) fungal communi�es in the root (Materials and methods 4b). 
The p-value and R2 values inside each plot are derived from a PERMANOVA model and correspond to the 
genotype and phosphorus term respec�vely. (C,E) Venn diagrams showing the distribu�on of (C) bacterial 
ASVs and (E) fungal OTUs with sta�s�cally significant (q-value < 0.1) higher abundance in the low P treat-
ment in comparison to the low+P treatment in the Col-0, phf1 and phr1 phl1 roots (Materials and meth-
ods 4b). (D,F) Venn diagrams showing the distribu�on of (D) bacterial ASVs and (F) fungal OTUs with sta�s-
�cally significant (q-value < 0.1) higher abundance in the low+P treatment in comparison to the low P 
treatment across the Col-0, phf1 and phr1 phl1 roots. RA=rela�ve abundance.
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Figure 4. Bacterial synthe�c community reproduces the typical plant-associated taxonomic distribu�on 
found in soil.
(A) Phylogene�c tree of 185 bacterial genomes included in the synthe�c community (SynCom) (Materials 
and methods 4e). The tree �ps are colored according to the phylum classifica�on of the genome in (B), the 
outer ring shows the distribu�on of the 12 dis�nct bacterial orders present in the SynCom. (B) Le� Panel: 
Propor�on of amplicon sequence variants (ASVs) enriched in the root in comparison to the natural soil 
across all treatments and genotypes based on a fi�ed generalized linear model (q-value < 0.1). Each ASV 
is colored according to its phylum level classifica�on. Right Panel: Rela�ve abundance profiles of bacterial 
isolates across the ini�al bacterial inoculum, planted agar, root and shoot frac�ons. Each isolate is colored 
according to its phylum level classifica�on based on the genome-derived taxonomy.
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Figure 5: Synthe�c bacterial communi�es display determinis�c niche sor�ng in plants. 
(A) Stripchart displaying the average shoot size of plants grown across a Pi gradient either in sterile condi-
�ons or with the SynCom (Materials and methods 2g). Each dot in the sca�erplot represents the mean 
value for that par�cular treatment, the range crossing each dot represents the 95% confidence interval 
calculated. The lines are drawn to connect the means. (B) Alpha diversity across the frac�ons sampled was 
es�mated using the Shannon Diversity index (Materials and methods 4d). An ANOVA model followed up 
by a Tukey HSD test were applied to es�mate differences between inoculum, unplanted agar, planted agar, 
root and shoot frac�ons. Le�ers represent the results of the post hoc test. (C) Canonical analysis of princi-
pal coordinates (CAP) based on Bray Cur�s dissimilari�es between bacterial communi�es across the four 
frac�ons sampled (Materials and methods 4d). The bar graph to the le� of the CAP depicts the percentage 
of variability explained by sta�s�cally significant (p-value < 0.05) terms in the PERMANOVA model. (D) 
Enrichment pa�erns of the SynCom (Materials and methods 4d). Each row along the different panels of 
the figure represents a USeq: a USeq encompasses a set of indis�nguishable V3-V4 16S rRNA sequences 
present in the 185-member-SynCom. Phylogene�c tree (on the le�) is colored based on the phylum-level 
classifica�on of the corresponding USeq. Each column in the heatmaps represents a specific contrast in 
the enrichment model. We calculated root vs agar (le� heatmap), shoot vs agar (middle heatmap) and 
root vs shoot (right heatmap) enrichments within each Pi treatment (e.g. Root_0Pi vs Agar_0Pi, Materials 
and methods 4d). The heatmaps are colored based on log2 fold changes derived from the fi�ed GLM. 
Posi�ve fold changes (colored in red gradient) represent enrichments on the le� side of the name of the 
contrast (e.g. Root-Agar, enriched in root in comparison to agar), whereas nega�ve fold changes (colored 
in blue gradient) represent enrichments on the right side of the name of the contrast (e.g. Root-Agar, 
enriched in agar in comparison to agar). The bo�om panel depicts the transformed (-log10) q-value 
derived from a phylogene�c signal Pagel’s λ test. Tests were performed per column in the heatmap (e.g. 
Root0µM pi vs Agar0µM pi). (E) Bacterial alpha diversity es�mated using the Shannon Diversity index 
(Materials and methods 4d). Le�ers represent the results of the post hoc test. Lines connect the means. 
(F) Canonical analysis of principal coordinates showing the influence of phosphate on the bacterial com-
muni�es in the root (Materials and methods 4d). The bar graphs to the le� of the CAP depict the percent-
age of variability explained by sta�s�cally significant (p-value < 0.05) variables based on a PERMANOVA 
model.
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Figure 6. Bacterial strains respond to Pi-stress-induced physiological changes in the wild type plants.
(A) Rela�ve abundance of Burkholderia Useq 16 that exhibits a sta�s�cally significant (q-value < 0.1) 
Pi-enrichment between the plant frac�ons and the agar frac�on (Materials and methods 4d). The middle 
dot of each strip bar corresponds to the mean of that par�cular condi�on, the range of the strip bar corre-
sponds to the 95% confidence interval of the mean. The lines are drawn connec�ng the means for each 
Pi concentra�on. (B) Boxplots showing the phosphate accumula�on in plants exposed to different 
synthe�c communi�es across three phosphate treatments. Sta�s�cally significant differences among 
SynCom treatments were computed inside each phosphate treatment separately using an ANOVA model. 
Le�ers represent the results of the post hoc test.
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S1 Figure. Phosphate starva�on response in soil. (A) Heatmap showing the all vs all pairwise Pearson 
correla�on coefficient calculated between the quan�fied phenotypes associated with the phosphate 
starva�on response: shoot area, shoot fresh weight and shoot free Pi accumula�on. (B) Boxplot showing 
the distribu�on of the shoot area measured across the phosphorus gradient within each of the three 
genotypes. Le�ers represent the results of the post hoc test. (C) Boxplot showing the distribu�on of shoot 
fresh weight measured across the phosphorus gradient within each of the three genotypes. Le�ers 
illustrate the results of the post hoc test. (D) Boxplot showing the shoot Pi accumula�on across the three 
genotypes. Le�ers represent the results of the post hoc test. (E) Boxplots displaying the average expres-
sion of 193 PSR marker genes across the low and low+P samples in each of the three genotypes tested. (F) 
Sca�erplot showing the rela�onship between the standardized average phosphate accumula�on in leaves 
(x-axis) and the average standardized expression of 193 PSR marker genes (y-axis). The p-value and R value 
were calculated according to Pearson’s product moment correla�on coefficient. 
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Phosphate treatment
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low+P

Term DF SumsOfSqs MeanSqs F.Model R2 p-value
Fraction 2 10.367 5.1837 19.3481 0.16921 1.00E-04
Genotype 2 0.908 0.4538 1.6939 0.01481 0.005399
Pi 3 1.044 0.348 1.299 0.01704 0.052095
Plot 15 11.894 0.7929 2.9596 0.19413 1.00E-04
Fraction:Genotype 4 1.497 0.3742 1.3966 0.02443 0.009999
Fraction:Pi 6 1.909 0.3182 1.1878 0.03117 0.058094
Genotype:Pi 6 1.476 0.2461 0.9184 0.0241 0.744126
Fraction:Genotype:Pi 10 2.702 0.2702 1.0086 0.04411 0.439556
Residuals 110 29.471 0.2679 0.48101
Total 158 61.269 1

Term DF SumsOfSqs MeanSqs F.Model R2 p-value
Fraction 2 8.38 4.1902 20.0187 0.1874 1.00E-04
Genotype 2 0.759 0.3797 1.8142 0.01698 0.0189
Pi 3 1.232 0.4106 1.9615 0.02754 0.004
Plot 15 5.511 0.3674 1.7552 0.12324 1.00E-04
Fraction:Genotype 4 1.585 0.3963 1.8935 0.03545 0.0019
Fraction:Pi 6 1.667 0.2778 1.3271 0.03727 0.0478
Genotype:Pi 6 1.384 0.2307 1.1021 0.03095 0.2509
Fraction:Genotype:Pi 12 2.64 0.22 1.0512 0.05905 0.3323
Residuals 103 21.559 0.2093 0.48211
Total 153 44.718 1
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S2 Figure. Characteriza�on of the soil and plant microbiota in soils exposed to different level of phopho-
rus fer�liza�on. (A,B) Boxplots showing the distribu�on of the alpha diversity (Shannon diversity index) 
across all levels of phosphorus in the soil for bacteria (A) and fungi (B). (C,D) PERMANOVA results in which 
the effect of the three variables (Frac�on, Genotype and Soil P) and their interac�on on the assembly of 
the bacterial (C) and fungal (D) communi�es were tested. (E) Rela�ve abundance profiles of the main 
bacterial phyla in the three variables (Frac�on, Genotype and Soil P) across all levels of P in the soils. (F) 
Rela�ve abundance profiles of the main fungal orders in the three variables (Frac�on, Genotype and Soil 
P) across all the levels of P in the soils. 
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S3 Figure. Bacterial but not fungal plant microbiota composi�on is strongly dependent on soil 
inoculum. (A,B,C) Correla�on plots between Bray-Cur�s distance matrices calculated for bacteria 
within soil treatments, root and shoot frac�ons. The R and p-values were calculated using Mantel 
tests. (A) Correla�on plot of soil vs root. (B) Correla�on plot of soil vs shoot. (C) Correla�on plot 
of root vs shoot. (D,E,F) Correla�on plots between Bray-Cur�s distance matrices calculated for 
fungi within soil treatments, root and shoot frac�ons. The R and p-values were calculated using 
Mantel tests. (D) Correla�on plot of soil vs root. (E) Correla�on plot of soil vs shoot. (F) Correla-
�on plot of root vs shoot.
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Pi treatmentGenotype
low medium high low+PCol-0 phf1 phr1 phl1

Term DF SumsOfSqs MeanSqs F.Model R2 p-value
Genotype 2 1.0282 0.51412 2.3503 0.04558 0.0015
Pi 3 0.9467 0.31556 1.4426 0.04197 0.0458
Plot 15 9.8092 0.65395 2.9895 0.43484 1.00E-04
Genotype:Pi 6 1.368 0.22801 1.0423 0.06064 0.3461
Residuals 43 9.4062 0.21875 0.41697
Total 69 22.5584 1

Term DF SumsOfSqs MeanSqs F.Model R2 p-value
Genotype 2 1.0793 0.53965 2.408 0.0855 0.0004
Pi 3 1.2042 0.40142 1.7911 0.09539 0.00559
Plot 13 4.786 0.36816 1.6427 0.37913 3.00E-04
Genotype:Pi 6 1.5202 0.25337 1.1305 0.12042 0.23718
Residuals 18 4.034 0.22411 0.31956
Total 42 12.6238 1

A BBacteria Fungi

S4 Figure. Plant genotypes and soil phosphorus concentra�ons influence the composi�on of the plant 
microbiota. (A,B) PERMANOVA results showing the influence of the plant genotype and soil P concentra-
�on and their interac�on on the assembly of the root (A) bacterial and (B) fungal communi�es. (C,D) 
Canonical analysis of principal coordinates showing the effect of plant genotype and P content in the soil 
over the shoot (C) bacterial and (D) fungal communi�es (Materials and methods 4b). The p-value and R2 
values in each plot are derived from a PERMANOVA model and correspond to the genotype and soil P term 
respec�vely. (E,F) Canonical analysis of principal coordinates showing the influence of genotype and P on 
the soil (E) bacterial and (F) fungal communi�es (Materials and methods 4b). The p-value and R2 values in 
each plot are derived from a PERMANOVA model and correspond to the genotype and soil P term respec-
�vely.
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Term DF SumsOfSqs MeanSqs F.Model R2 p-value
Fraction 3 3.5223 1.1741 41.384 0.41082 1.00E-04
Pi 5 0.7945 0.1589 5.601 0.09267 1.00E-04
Fraction:Pi 15 0.6256 0.04171 1.47 0.07297 0.0039
Residuals 128 3.6314 0.02837 0.42355
Total 151 8.5738 1
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S5 Fig. A bacterial synthe�c community modifies the plant phosphate starva�on response. 
(A) Boxplots displaying the primary root elonga�on of plants grown in a gradient of Pi concentra�ons in 
sterile condi�ons or with the SynCom (Materials and methods 2g). A t-test was used for each Pi treatment 
to es�mate differences between SynCom-treated and uninoculated plants. (B) Average expression of the 
193 PSR markers genes in low (50 µM) and high (1000 µM) Pi condi�ons within Syncom-treated and unin-
oculated plants. (Materials and methods 4g). (C) Average expression of the 123 genes from Cluster 1 
(Figure 1B) in low (50 µM) and high (1000 µM) Pi condi�ons within Syncom-treated and uninoculated 
plants. (D) PERMANOVA model results showing the influence of the two variables (Frac�on and Pi concen-
tra�on) and their interac�on on the assembly of the bacterial community in the plant. (E,F,G) Correla�on 
plots between Bray-Cur�s distance matrices calculated for bacterial profile within agar, root and shoot 
frac�ons. The R and p-values were calculated using mantel tests. (E) Correla�on plot of agar vs root. (F) 
Correla�on plot of agar vs shoot. (G) Correla�on plot of root vs shoot.
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Terms PERMANOVA
0μM

Phosphate treatment
10μM 30μM 50μM 100μM 1000μM

A B

Term DF SumsOfSqs MeanSqs F.Model R2 p-value
Pi 5 0.3082 0.061641 4.0894 0.39744 1.00E-04
Residuals 31 0.46728 0.015073 0.60256
Total 36 0.77548 1

Term DF SumsOfSqs MeanSqs F.Model R2 p-value
Pi 5 0.3634 0.072679 2.5647 0.29945 1.00E-04
Residuals 30 0.85014 0.028338 0.70055
Total 35 1.21353 1

C

D

Term DF SumsOfSqs MeanSqs F.Model R2 p-value
Pi 5 0.3609 0.072179 4.0715 0.42098 1.00E-04
Residuals 28 0.49638 0.017728 0.57902
Total 33 0.85728 1
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S6 Figure. Bacterial synthe�c community responds to the phosphate concentra�on in the media. 
(A,B) Canonical analysis of principal coordinates showing the influence of Pi concentra�on in the media on 
the bacterial communi�es in the (A) plant shoot and (B) agar. The bar graphs to the le� of each plot depict 
the percentage of variability explained by sta�s�cally significant (p-value < 0.05) variables based on a 
PERMANOVA model (Materials and methods 4d). (C,D,E) PERMANOVA model results showing the influ-
ence of Pi concentra�on on the assembly of the bacterial community in (C) roots, (D) shoot and (E) agar.
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S7 Figure.  USeqs in the bacterial synthe�c community displayed a strong Pi:frac�on (shoot, root, agar) 
interac�on. (A) Sca�er plot (volcano plot) showing the results of the GLM interac�on model between 
frac�on and Pi concentra�on. The axes of the plot represent the output of the sta�s�cal test. The x-axis is 
the transformed q-value and the y-axis the log2 fold change. Each dot in the sca�erplot represents a USeq. 
USeqs that showed a sta�s�cally significant frac�on:Pi interac�on are colored in red.  USeqs genus and ID 
are displayed. The top right quadrant represents USeqs that are enriched in the plant �ssues under low Pi 
condi�ons. (B) Rela�ve abundance of Burkholderia Useq 30 that exhibits a sta�s�cally significant (q-value 
< 0.1) Pi-enrichment between the plant frac�ons and the agar frac�on (Materials and methods 4d). The 
middle dot of each strip bar corresponds to the mean of that par�cular condi�on, the range of the strip 
bar corresponds to the 95% confidence interval of the mean. 
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