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Abstract

Tractography is a family of algorithms that use diffusion-weighted magnetic resonance
imaging data to reconstruct the white matter pathways of the brain. Although it has been
proven to be particularly effective for studying non-invasively the neuronal architecture of the
brain, recent studies have highlighted that the large incidence of false positive connections
retrieved by these techniques can significantly bias any connectivity analysis. Some solutions
have been proposed to overcome this issue and the ones relying on convex optimization
framework showed a significant improvement. Here we propose an evolution of the Convex
Optimization Modeling for Microstructure Informed Tractography (COMMIT) framework,
that combines basic prior knowledge about brain anatomy with group-sparsity regularization
into the optimization problem. We show that the new formulation dramatically reduces the
incidence of false positives in synthetic DW-MRI data.

1 Introduction
Diffusion-weighted magnetic resonance imaging (DW-MRI) is a non-invasive imaging technique
that is sensitive to how water molecules diffuse in biological tissues [1]. By capturing coherent
orientations of maximal diffusion among neighboring voxels inside white matter (WM), tractogra-
phy algorithms can infer the trajectories of the major neuronal pathways in the brain [2] and
can be used to map the human connectome [3, 4]. A connectome is a comprehensive map of the
brain’s neuronal connections and is typically represented as a graph, where nodes correspond to
gray-matter nuclei and edges to the WM connections between them. Using this representation,
brain connectivity can be studied by means of graph theory and network science [5, 6] and, over
the years, this approach has been successfully exploited to study a wide range of neurological
conditions [7, 8].

Because of the large difference between the resolution of DW-MRI acquisitions (order of
millimeters) and the size of axons (order of micrometers), a single tract reconstructed with
tractography, called streamline, cannot represent a single axon but rather a coherent set of
real anatomical fibers. This discrepancy introduces ambiguities that are difficult to resolve and,
indeed, recent studies have highlighted that the accuracy of tractography is inherently limited,
raising serious concerns about its use in connectivity analysis. Thomas et al. [9] highlighted
that existing methods suffer from an intrinsic trade-off between sensitivity, i.e. capability of
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reconstructing real WM bundles, and specificity, i.e. retrieving only true connections, even
when using very high quality data. Using graph theory, Zalesky et al. [10] demonstrated that
specificity is crucial when using tractography to study the topological properties of brain networks,
and twice as important than sensitivity. However, Maier-Hein et al. [11] actually showed that
specificity represents the main bottleneck for tractography and tractograms are typically polluted
by many false positives. Hence, improving the specificity of tractography, i.e. reducing false
positives, represents a major challenge in computational neuroscience towards a more veridical
characterization of brain connectivity.

A number of solutions have been proposed recently to improve the accuracy of tractography re-
constructions, such as MicroTrack [12], Spherical-deconvolution Informed Filtering of Tractograms
(SIFT) [13, 14], Linear Fascicle Evaluation (LiFE) [15] and Convex Optimization Modeling for
Microstructure Informed Tractography (COMMIT) [16, 17]. The common approach behind these
methods consists of combining the reconstructed set of streamlines, i.e. tractogram, with signal
forward-models to assess their actual contribution to the acquired DW-MR data and filter out the
most implausible using optimization [18]. Despite the tractograms filtered with such techniques
provide more biologically accurate estimates of the connectivity [19], none of them has been
proven effective in reducing false positives. All methods are purely data-driven and rely only on
the acquired DW-MR signal to evaluate the effective contribution of each streamline. In all cases,
the estimation process considers all streamlines as independent entities, thus ignoring the fact
that in the central nervous system axons are naturally organized in bundles. It is worth noting
that this fact is actually at the core of connectome mapping, where streamlines are grouped
together in bundles and considered as single edges of the resulting brain network [3, 4].

In this study, we present a novel processing framework for dramatically reducing the incidence
of these false positives, i.e. improving specificity, without affecting the true ones, i.e. sensitivity.
Tractography algorithms usually exploit only the directional information estimated with DW-
MRI: we speculate that this information is not enough and we advocate the need for additional
data to help tractography producing more accurate reconstructions. Our formulation injects
basic prior knowledge about brain anatomy by adding to the COMMIT framework an efficient
regularization term which can help resolving ambiguous configurations and reducing the false
positives. We evaluated quantitatively the effectiveness of our formulation on different tractography
reconstructions using a realistic digital phantom with known ground-truth.

2 Materials and methods

2.1 Microstructure informed tractography
Given a DW-MR image I and a tractogram T , the acquired data can be seen as I = A(T ) + η,
where A : T → I is an operator describing the signal contribution of each fiber to the nd q-space
samples acquired in the nv = nxnynz voxels of I ∈ Rnx×ny×nz×nd

+ and η is the acquisition noise.
The goal of tractography is to solve the inverse problem, i.e. finding the set of streamlines T̃ that
best describe the acquired image I. The term “microstructure informed tractography” refers to a
relatively novel area of research [18] whose aim is to obtain more quantitative and biologically
meaningful estimates of brain connectivity by complementing tractography with biophysical
models of the tissue microstructure [20]. Several solutions have been proposed [12–17] but the
originality of the Convex Optimization Modeling for Microstructure Informed Tractography
(COMMIT) [16, 17] lies in the possibility to express tractography and tissue microstructure in a
unified framework and solve this inverse problem using convex optimization. The signal in each
voxel of I is described as a linear combination of the diffusion arising from all the fibers of T that
intersect the voxel, in addition to local contributions from other tissues, e.g. cerebrospinal fluid
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(CSF). The joint problem can then be expressed as a system of linear equations:

y = Ax+ η , (1)

where the vector y ∈ Rndnv
+ contains the nd DW-MR measurements acquired in the nv voxels

of I, the matrix A ∈ Rndnv×nc encodes the potential contributions of all streamlines in T (and
possibly other tissues) to the signal in each voxel according to a given multi-compartment model
and η accounts for both acquisition noise and modeling errors. The positive weights x ∈ Rnc

+

represent the actual contributions of the nc compartments, encoded as columns of A, needed to
explain the acquired data I and can be estimated using non-negative least squares (NNLS):

argmin
x≥0

||Ax− y||22 , (2)

where || · ||2 is the Euclidean norm in Rn.
Any multi-compartment model [20] can be virtually used in COMMIT. In general, a multi-

compartment model assumes different diffusion behaviors according to the microstructure geo-
metrical properties. For neuronal tissue, a common assumption is to distinguish between three
compartments [12]: intra-axonal (IA, mimicking the restricted movement of water molecules
inside axons), extra-axonal (EA, mimicking the hindered movement outside axons) and isotropic
(ISO, mimicking the free movement of the water like in CSF). The linear operator A is typically
a block matrix of this form:

A =
[
AIA AEA AISO

]
, (3)

where nc = nr+nh+ni and the sub-matricesAIA ∈ Rndnv×nr ,AEA ∈ Rndnv×nh andAISO ∈ Rndnv×ni

encode, respectively, the nr restricted, nh hindered and ni isotropic contributions to the image.

Illustrative toy example

To illustrate this estimation process, let’s consider the synthetic toy example shown in Fig. 1a.
In the left panel we display the orientation distribution functions (ODF) simulated in each voxel,
which were used to reconstruct the three streamlines visualized in the middle panel using a generic
tractography algorithm. The right panel shows the forward model we adopted to construct the
operator A: a stick to account for the anisotropic contributions of the streamlines and a ball
to consider possible CSF contaminations [20]. Fig. 1b illustrate the components of the linear
system y = Ax that we want to solve using COMMIT. In the column vector y we concatenate
the data simulated in each voxel. The matrix A is constructed by first checking which voxels are
intersected by the reconstructed streamlines: fiber 1 crosses voxels 1 and 2, fiber 2 crosses voxels
1 and 3; fiber 3 crosses voxel 2, 3 and 4. We then create one column for each streamline and store
in the rows corresponding to each voxel it traverses the contribution of a stick oriented in the
same direction of the streamline; if a streamline does not cross a voxel, the corresponding rows
are set to 0. To account for the possible presence of CSF in a voxel we add four columns and, in
each of them, we put 0 everywhere except in the rows corresponding to a distinct voxel where we
insert an isotropic contribution according to the ball model.

Every column in A is controlled by a different contribution in x and, for a given configuration of
contributions x, the predicted signal is obtained by performing the multiplication Ax. COMMIT
seeks for the optimal configuration of x, which must be positive, such that the predicted signal,
i.e. Ax, is as close as possible to the measured signal, i.e. y, hence it tries to minimize their
difference, i.e. argmin ||Ax − y||22. According to matrix-vector multiplication properties, we
can immediately notice that to obtain the correct profile in voxel 1, we must have a positive
contribution in the first two entries of x but 0 in x4 since there is no CSF in voxel 1. To assign
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Figure 1: Synthetic toy example to illustrate the modeling and the parameter estimation using
the COMMIT framework. (a) The simulated orientation distribution functions (ODF), a possible
tractogram estimated with a generic tractography algorithm and the forward-model used to
associate a signal contribution to each streamline. (b) The corresponding vector y containing the
simulated data in all voxels, the matrix A encoding the signal contributions of each streamline
according to the chosen forward-model (as well as potential presence of CSF) and the coefficients
x estimated by COMMIT.

the values to the remaining entries of x we continue the multiplication. Looking at voxel 2 we
observe that x3 = x5 = 0, while from the third and forth voxels we obtain x6 = 0 and x7 = 1
respectively. The entries of x are uniquely determined and, since x3 = 0, fiber 3 will be marked
as false positive and removed from the tractogram.

2.2 Injecting priors about brain anatomy and its organization
The purpose of this study was to evaluate whether we could improve the sensitivity/specificity
trade-off of tractography by taking into consideration two very basic observations about WM
anatomy during the estimation process: (i) streamlines are not “just lines” but represent neuronal
fibers, and (ii) such neuronal fibers are naturally organized in bundles. To enforce the first prior
knowledge, we implemented in A a simple forward-model that assigns a contribution, i.e. volume
or cross-sectional area, to each streamline of the input tractogram T proportionally to its length
inside each voxel. Then with Eq. 2 we require that the total amount of streamlines that traverse a
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Figure 2: Current tractography algorithms consider all streamlines in a tractogram as independent
entities and COMMIT is no exception; every column of the matrix A encodes a different streamline
and all columns are treated as independent during the estimation of their contributions (top
right). The proposed method (COMMIT2) groups streamlines belonging to the same anatomical
bundle together and considers the corresponding columns of A as a single entity in the estimation;
every streamline is still modeled by a distinct column but streamlines of the same bundle are
arranged together as a sub-block of the matrix and considered as a whole (bottom left).

voxel must sum up to the actual intra-axonal signal fraction in that voxel, which can be estimated
in every voxel of the brain from DW-MR acquisitions using standard models like NODDI [21] or
SMT [22]. In fact, as each streamline represent a coherent set of real anatomical fibers, there
cannot be space for every possible reconstructed streamline. To implement the second prior,
we first grouped together all streamlines connecting the same pairs of gray-matter regions and
rearranged the corresponding columns of A accordingly, as shown in Fig. 2. Then we added a
new term to the cost function in Eq. 2 to try explaining the data, if possible, using the minimum
number of such groups. Mathematically this is is achieved with the group lasso regularization
[23] and the problem 2 becomes:

argmin
x≥0

||Ax− y||22 + λ
∑
g∈G
||x(g)||2 , (4)

where G is a general partition of the streamlines into groups, x(g) represent the coefficients
corresponding to the streamlines in a given group g ∈ G and the parameter λ > 0 controls the
trade-off between data and the regularization term. This additional term in the cost function
penalizes the contributions at the level of groups and, in practice, promotes (but does not
constrain) convergence towards a solution that explains the signal with the minimum number
of bundles. Note that setting λ = 0 corresponds to the classical COMMIT. As this formulation
represents an extension to the COMMIT framework, we will refer to it as COMMIT2 in the
remaining of the manuscript.

Without any strong a priori knowledge on the bundles, a classical way to operatively solve
this problem is to use the so called adaptive group lasso [24] which penalizes all groups in the
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same manner independently of their cardinality. The problem can then be rewritten as:

argmin
x≥0

||Ax− y||22 +
∑
g∈G

λ(g) ||x(g)||2 , (5)

with

λ(g) =
λ
√
|g|

||x(g)
NNLS||2

, (6)

where |g| is the cardinality of the group g and x
(g)
NNLS are the weights of the streamlines obtained

by solving the NNLS problem in Eq. 2, i.e. without any regularization term.

Figure 3: Synthetic dataset used to quantitatively evaluate our method (a), inspired from real
anatomical bundles of the human brain (b). White-matter and gray-matter masks used for
tractography (c). Examples of true-positive (d) and false-positive (e) bundles that can potentially
be reconstructed with tractography. Ground-truth connectivity represented as a graph (f): blue
circles correspond to the 53 gray-matter ROIs of (c), whereas green and red arcs represent true-
positive and false-positive bundles, respectively; please note that no false positives are present in
the ground truth.

2.3 Data and experiments
We quantitatively evaluated our novel approach using the synthetic phantom developed for the
Reconstruction Challenge organized in 2013 at the IEEE International Symposium on Biomedical
Imaging [25]. This simulated dataset is shown in Fig. 3a and consists of 27 ground-truth fiber
bundles that were specifically designed to mimic real fiber configurations typically encountered in
the brain (Fig. 3b). These include complex arrangements of bending, crossing and branching fibers,
at various angles and with different curvatures; in addition, three spherical regions corresponding
to fast diffusive compartments such as in brain ventricles were added. The intra-axonal signal
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fraction of this phantom was computed from the geometry of the ground-truth streamlines. The
corresponding DW-MR signal was generated using the Composite Hindered And Restricted
Model of Diffusion [26] along 64 directions with b = 3000s/mm2 and adding Rician noise with a
signal-to-noise ratio (SNR) of 30. Fig. 3c shows the white-matter mask used for tractography as
well as the 53 regions of interest (ROIs) that define the nodes of the corresponding connectome.
Figg. 3d-e illustrate two examples of true-positive and false-positive bundles that may potentially
be reconstructed with any tractography algorithm. The ground-truth connectivity of this dataset
is shown in Fig. 3f and is represented as a graph: the 53 ROIs are displayed as blue circles that
are connected by green or red arcs depending whether there is a true-positive and false-positive
bundle of streamlines between them, respectively.

Connectome estimation

Connectomes were constructed from the reconstructions obtained with both deterministic and
probabilistic tractography using the 53 gray-matter ROIs as network nodes. We employed the
MRtrix software [27] as it is a very popular processing suite to analyze DW-MR data. First, we
computed the fiber orientation distributions (FOD) in each voxel using Constrained Spherical
Deconvolution [28] with `max = 8. Then, we reconstructed 1 million streamlines with both
deterministic (SD_STREAM) and probabilistic (iFOD2) algorithms, using default parameters,
and performing the tracking using the WM mask as seed region. Finally, we assigned each
endpoint of a streamline to a node if that point fell within 2 mm from one of the 53 gray-matter
ROIs (default setting); a streamline was considered as connecting two nodes if both endpoints
were assigned, otherwise it was discarded and excluded from the analysis.

Evaluation criteria

We assessed the sensitivity and specificity of a connectome using the Tractometer metrics defined
in [29]. True positives are described in terms of the Valid Connections (VC) ratio, which is the
proportion of streamlines in the tractogram that connect a correct pair of ROIs, as well as the
corresponding number of Valid Bundles (VB). Similar metrics can be computed for the false
positives, i.e. Invalid Connections (IC) and Invalid Bundles (IB). To summarize sensitivity and
specificity in a single score, we computed the Youden’s index J = sensitivity + specificity − 1.
Sensitivity is defined as the ratio between VB and the number of real positive bundles (27 in
this dataset), and specificity as 1-IB/N, where N is the number of real negatives (462 in this
dataset). N represents the number of ROI pairs that may potentially be connected (incorrectly)
by tractography and was computed by reconstructing 10 million streamlines with the probabilistic
algorithm, for it is more permissive.

3 Results
Fig. 4 analyzes the quality of the reconstructions that can be obtained by processing the raw
tractogram using the proposed method. These plots correspond to probabilistic tracking, but
similar results are obtained with the deterministic algorithm. In the first row are reported the
number of valid and invalid bundles (VB and IB respectively) as a function of the regularization
strength λ. Values at λ = 0 correspond to the raw/unprocessed tractogram: VB=27 (correspond-
ing to a sensitivity of 100%) and IB=393 (specificity 14.9%). We can notice that, as λ increases,
the number of IB decreases rather quickly but, correspondingly, the VB exhibit a much slower
decrease trend. The decreasing rate of the IB slows down when they 65reach a value comparable
with the VB. However, as expected, by increasing the regularization even further the number of
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VB also begins to decrease because, as it is known in optimization theory, when λ is too large
the second term of Eq. 4 dominates and all groups are progressively discarded. To help choosing
the optimal value for λ we made use of the Youden’s index (J), which is shown in the second
row along with the percentage of valid connections (VC). The maximum value of J is about
0.96, which corresponds to VB=27 (sensitivity 100%) and IB=20 (specificity 95.7%). After it
reaches its maximum, J starts decreasing as more and more VB are suppressed. Nonetheless, it is
interesting to note that the percentage of VC exhibits an increasing trend also after this value,
indicating that the rate of decrease of the IB if faster than the VB.

Figure 4: Impact of adding the bundle-wise anatomical priors to COMMIT on the quality of the
reconstructions. In the first row are reported the number of valid (VB) and invalid (IB) bundles
as function of the regularization strength (λ). In the second row are reported the Youden’s index
and the percentage of valid connections (VC). Results correspond to probabilistic tractography.

Fig. 5 reports the number of valid bundles (VB) and invalid bundles (IB) bundles in the raw
tractogram, as well as in the ones filtered with COMMIT and COMMIT2. Results are shown for
both probabilistic and deterministic tractography and correspond to the regularization parameter
λ that maximizes the Youden’s index J. Both tracking algorithms were able to reconstruct all 27
true bundles, i.e. high sensitivity, but at the price of recovering a large amount of false positives,
i.e. very low specificity (IB=393 in case of probabilistic tracking and IB=204 for deterministic).
These results agree with previous literature [9–11]. We can clearly see that when COMMIT or
COMMIT2 are applied the sensitivity is not affected, as both tractograms still contain all 27
true bundles, while the inclusion of anatomical priors has a dramatic impact on the specificity.
Using COMMIT (i.e. no anatomical priors, second column) the number of IB diminished only
marginally (393→ 374 and 204→ 190, respectively). On the other hand, the last column clearly
shows that when using COMMIT2 the number of IB is dramatically reduced (393 → 20 and
204→ 17, respectively).
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Figure 5: Sensitivity and specificity of tractography before (first column) and after applying
COMMIT and COMMIT2 (second and third column, respectively). In all subplots, we identify the
true positives in "green" and the false positives in "red". When using probabilistic tractography
(first row) the raw tractogram contained VB=27 and IB=393; note that the true positives are
barely visible. After COMMIT, the IB were slightly reduced (from 393 to 374), whereas with
COMMIT2 their number was dramatically decreased from 393 to 20. In all cases all 27 true
bundles were preserved. Deterministic tractography led to similar results (second row): the IB
were reduced from 204 in the raw tractogram to 190 with COMMIT and 17 with COMMIT2.
Results hold also for other combinations of tracking algorithm and parameters.

4 Discussion
It is worth to highlight that, since the proposed framework allows us to directly inject priors
on the bundle, we could also set these values of λ(g) in terms of known anatomical bundles. In
practice, if we are sure that a connection surely exists (from a population study or any atlas), we
can promote the corresponding group by setting λ(g) = 0. On the contrary, if we know that a
chosen tractography algorithm is keen to find a particular implausible connection, we can set the
corresponding λ(g) to a very high number which translates in penalizing this group more than
the others in the connectome. Another way to take advantage of this property of COMMIT2 is
to inject priors coming from other imaging modalities that provide information on bundles. For
example, we could set the regularization parameters in terms of functional connectivity results
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obtained by analyzing functional MRI or magnetoencephalography data that provide us which
grey matter ROIs are functionally connected (directly or indirectly).

To explain how COMMIT works with the toy example in Fig. 1, we used the simple 2-
compartment “ball and stick model” [20] to build the operator A. This choice was made to
not burdening the notations and make the exposition as easy as possible. Nevertheless, it is
worth noticing that the flexibility of COMMIT (and then COMMIT2) allow us to use any
microstructure model to describe the DW-MR signal (as presented in the original papers [16, 17]).
In accordance with the acquisition parameters, we can thus take more complicate models whose
performances have been already investigated in literature. For example, in this work we showed
that COMMIT2 framework can be used to fit not only the entire DW-MR signal acquired, but also
to any microstructure map (derived by any imaging modality) provided that the microstructure
feature to be decoupled on each streamline can be considered as invariant along the path. For
example, considering the resolution we have with MRI images, we in this work we supposed that
the intra-axonal sectional area could be considered to be constant for each streamline, since it
represents the intra-axonal sectional area of a group of axons sharing the same path. This property
of COMMIT opens to the possibility of using multimodal images also to assign contributions
to the streamlines and not only to penalize the bundles as mentioned before. A valid option
could be to use myelin maps derived from MR relaxometry, quantitative magnetization transfer
or quantitative susceptibility. By using COMMIT2 to fit simultaneously an intra-axonal and a
myelin signal fraction maps, one could estimate at the same time the intra-axonal and the myelin
volumes associated to each individual streamline and thus compute pathway specific g-ratio.

4.1 Limitations and future perspectives
Although we obtained outstanding results, we acknowledge that the proposed framework is not
without limitations and there is room for future improvements. First, the bundle regularization
guarantees that if a bundle is necessary to explain the signal, then all its streamlines will be
kept. This implies that none of the eventual redundant streamlines present in a group will be
eliminated; rather the weights will be equally distributed among them resulting in very small
contributions. Moreover, even if a streamline follows a very different path from the other in the
same group, because of this choice of regularization, it will kept since it still connects the same
two ROIs. Although a proper way to filter inside the groups is yet under investigation and will
be object of future works, we can speculate that one possible way to do that is considering a finer
parcellation for the gray matter resulting in smaller groups to be evaluated by the framework.
Another way could be using clustering techniques to group streamlines together (e.g. [30, 31]).
All these possibilities will be tested and compared in future analysis.

Another current limitation is the choice of the parameter λ that scales the groups penalization.
From the literature we know that if the columns of the operator A are linearly independent there
exists an upper (λmax) an lower (λmin) bounds for λ (see [24] as reference). However, this is
not the case for a general tractogram, because the same (or geometrically equivalent) pathway
could be shared by more than one streamline inducing redundancy inside A. In this work we
set λmin = 0, which provided the results of the standard COMMIT framework, and we found
the λmax empirically evaluating the loss of fibers and stopping when too many bundles were
discarded resulting also in a worse fit. Future investigations to possibly set a priori a λmax, and
consequently find the optimum λ are needed especially when using COMMIT on in vivo data.
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5 Conclusion
Recent studies have shown that current tractography algorithms are quite good at reconstructing
the major WM bundles, i.e. high sensitivity, but at the price of also recovering a large amount
of false positive ones, i.e. low specificity. In particular, those false positive streamlines can
drastically bias any subsequent analysis, as non-existent structures are mixed with real ones. In
this work, we showed that adding basic prior information on the organization of the neuronal
connections can help microstructure informed tractography in dramatically improving the quality
of reconstructions. Moreover, our novel formulation (COMMIT2) opens up the possibility of
injecting any prior knowledge of the bundles in the framework. This leads to the opportunity of
including multimodal acquisitions in a unique framework resulting in the reconstruction of a more
veridical connectome. In conclusion, our results represent an important step forward to boost
the accuracy of tractography and may have profound implications for the use of tractography to
study structural brain connectivity.

Acknowledgements
This work was supported by the Rita Levi Montalcini Programme for young researchers of the
Italian Ministry of Education, University and Research (MIUR).

References
[1] H. Johansen-Berg and T. E. J. Behrens, Diffusion MRI: From Quantitative Measurement to

In vivo Neuroanatomy. Elsevier Science, 2013.

[2] P. J. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi, “In vivo fiber tractography
using DT-MRI data,” Magnetic Resonance in Medicine, vol. 44, no. 4, pp. 625–632, 2000.

[3] O. Sporns, G. Tononi, and R. Kötter, “The human connectome: a structural description of
the human brain,” PLoS computational biology, vol. 1, no. 4, p. e42, 2005.

[4] P. Hagmann, “From diffusion mri to brain connectomics,” tech. rep., EPFL, 2005.

[5] E. T. Bullmore and D. S. Bassett, “Brain graphs: graphical models of the human brain
connectome,” Annual review of clinical psychology, vol. 7, pp. 113–140, 2011.

[6] D. S. Bassett and O. Sporns, “Network neuroscience,” Nature neuroscience, vol. 20, no. 3,
p. 353, 2017.

[7] D. S. Bassett and E. T. Bullmore, “Human brain networks in health and disease,” Current
opinion in neurology, vol. 22, no. 4, p. 340, 2009.

[8] A. Griffa, P. S. Baumann, J.-P. Thiran, and P. Hagmann, “Structural connectomics in brain
diseases,” NeuroImage, vol. 80, pp. 515–26, 2013.

[9] C. Thomas, F. Ye, O. Irfanoglu, P. Modi, K. Saleem, D. Leopold, and C. Pierpaoli, “Anatom-
ical accuracy of brain connections derived from diffusion MRI tractography is inherently
limited,” Proceedings of the National Academy of Sciences of the United States of America,
vol. 111, no. 46, pp. 16574–9, 2014.

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 13, 2019. ; https://doi.org/10.1101/608349doi: bioRxiv preprint 

https://doi.org/10.1101/608349
http://creativecommons.org/licenses/by-nc-nd/4.0/


[10] A. Zalesky, A. Fornito, L. Cocchi, L. L. Gollo, M. P. van den Heuvel, and M. Breakspear,
“Connectome sensitivity or specificity: which is more important?,” NeuroImage, vol. 142,
pp. 407–20, 2016.

[11] K. H. Maier-Hein, P. F. Neher, J.-C. Houde, M.-A. Côté, E. Garyfallidis, J. Zhong, M. Cham-
berland, F.-C. Yeh, Y.-C. Lin, Q. Ji, W. E. Reddick, J. O. Glass, D. Q. Chen, Y. Feng,
C. Gao, Y. Wu, J. Ma, H. Renjie, Q. Li, C.-F. Westin, S. Deslauriers-Gauthier, J. O. O.
González, M. Paquette, S. St-Jean, G. Girard, F. Rheault, J. Sidhu, C. M. W. Tax, F. Guo,
H. Y. Mesri, S. Dávid, M. Froeling, A. M. Heemskerk, A. Leemans, A. Boré, B. Pinsard,
C. Bedetti, M. Desrosiers, S. Brambati, J. Doyon, A. Sarica, R. Vasta, A. Cerasa, A. Quat-
trone, J. Yeatman, A. R. Khan, W. Hodges, S. Alexander, D. Romascano, M. Barakovic,
A. Auría, O. Esteban, A. Lemkaddem, J.-P. Thiran, H. E. Cetingul, B. L. Odry, B. Mailhe,
M. S. Nadar, F. Pizzagalli, G. Prasad, J. E. Villalon-Reina, J. Galvis, P. M. Thompson,
F. D. S. Requejo, P. L. Laguna, L. M. Lacerda, R. Barrett, F. Dell’Acqua, M. Catani,
L. Petit, E. Caruyer, A. Daducci, T. B. Dyrby, T. Holland-Letz, C. C. Hilgetag, B. Stieltjes,
and M. Descoteaux, “The challenge of mapping the human connectome based on diffusion
tractography,” Nature communications, vol. 8, no. 1, p. 1349, 2017.

[12] A. Sherbondy, M. Rowe, and D. Alexander, “MicroTrack: An Algorithm for Concurrent
Projectome and Microstructure Estimation,” in Proc. MICCAI, pp. 183–90, 2010.

[13] R. E. Smith, J. D. Tournier, F. Calamante, and A. Connelly, “SIFT: Spherical-deconvolution
informed filtering of tractograms,” NeuroImage, 2013.

[14] R. E. Smith, J. D. Tournier, F. Calamante, and A. Connelly, “SIFT2: Enabling dense
quantitative assessment of brain white matter connectivity using streamlines tractography,”
NeuroImage, 2015.

[15] F. Pestilli, J. D. Yeatman, A. Rokem, K. N. Kay, and B. A. Wandell, “Evaluation and
statistical inference for human connectomes,” Nature Methods, 2014.

[16] A. Daducci, A. Dal Palu, A. Lemkaddem, and J.-P. Thiran, “A convex optimization framework
for global tractography,” in ISBI, pp. 524–27, 2013.

[17] A. Daducci, A. Dal Palù, A. Lemkaddem, and J.-P. Thiran, “COMMIT: Convex optimization
modeling for microstructure informed tractography,” IEEE transactions on medical imaging,
vol. 34, no. 1, pp. 246–57, 2015.

[18] A. Daducci, A. Dal Palú, M. Descoteaux, and J.-P. Thiran, “Microstructure informed
tractography: Pitfalls and open challenges,” Frontiers in Neuroscience, 2016.

[19] R. E. Smith, J.-D. Tournier, F. Calamante, and A. Connelly, “The effects of SIFT on the
reproducibility and biological accuracy of the structural connectome,” NeuroImage, vol. 104,
pp. 253–65, 2015.

[20] E. Panagiotaki, T. Schneider, B. Siow, M. G. Hall, M. F. Lythgoe, and D. C. Alexander,
“Compartment models of the diffusion MR signal in brain white matter: a taxonomy and
comparison,” NeuroImage, vol. 59, no. 3, pp. 2241–54, 2012.

[21] H. Zhang, T. Schneider, C. A. Wheeler-Kingshott, and D. C. Alexander, “NODDI: practical
in vivo neurite orientation dispersion and density imaging of the human brain,” NeuroImage,
vol. 61, no. 4, pp. 1000–16, 2012.

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 13, 2019. ; https://doi.org/10.1101/608349doi: bioRxiv preprint 

https://doi.org/10.1101/608349
http://creativecommons.org/licenses/by-nc-nd/4.0/


[22] E. Kaden, F. Kruggel, and D. C. Alexander, “Quantitative mapping of the per-axon diffusion
coefficients in brain white matter,” Magnetic Resonance in Medicine, vol. 75, no. 4, pp. 1752–
63, 2016.

[23] M. Yuan and Y. Lin, “Model selection and estimation in regression with grouped variables,”
Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 68, no. 1,
pp. 49–67, 2006.

[24] H. Wang and C. Leng, “A note on adaptive group lasso,” Computational Statistics & Data
Analysis, vol. 52, no. 12, pp. 5277–86, 2008.

[25] E. Caruyer, A. Daducci, M. Descoteaux, J.-C. Houde, J.-P. Thiran, and R. Verma, “Phan-
tomas: a flexible software library to simulate diffusion MR phantoms,” in ISMRM, 2014.

[26] Y. Assaf and P. J. Basser, “Composite hindered and restricted model of diffusion (CHARMED)
MR imaging of the human brain,” NeuroImage, vol. 27, no. 1, pp. 48–58, 2005.

[27] J.-D. Tournier, F. Calamante, and A. Connelly, “MRtrix: Diffusion tractography in crossing
fiber regions,” International Journal of Imaging Systems and Technology, vol. 22, no. 1,
pp. 53–66, 2012.

[28] J.-D. Tournier, F. Calamante, and A. Connelly, “Robust determination of the fibre orien-
tation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical
deconvolution,” NeuroImage, vol. 35, pp. 1459–1472, may 2007.

[29] M.-A. Côté, G. Girard, A. Boré, E. Garyfallidis, J.-C. Houde, and M. Descoteaux, “Trac-
tometer: Towards validation of tractography pipelines,” Med Image Anal, vol. 17, no. 7,
pp. 844–57, 2013.

[30] E. Garyfallidis, M. Brett, M. M. Correia, G. B. Williams, and I. Nimmo-Smith, “QuickBundles,
a Method for Tractography Simplification,” Frontiers in Neuroscience, 2012.

[31] V. Siless, K. Chang, B. Fischl, and A. Yendiki, “Anatomicuts: Hierarchical clustering of
tractography streamlines based on anatomical similarity,” NeuroImage, vol. 166, pp. 32 – 45,
2018.

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 13, 2019. ; https://doi.org/10.1101/608349doi: bioRxiv preprint 

https://doi.org/10.1101/608349
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Materials and methods
	Microstructure informed tractography
	Injecting priors about brain anatomy and its organization
	Data and experiments

	Results
	Discussion
	Limitations and future perspectives

	Conclusion

