


Figure 5. Expanded enzyme sets combine multiple enzyme sets into larger pathways. Individual enzyme

sets (Efalcon) for S. mutans (model iSMUv1 [24]) are shown by coloring the associated reactions. The

expanded enzyme sets (E
∗
falcon

) are represented by colored shading around the reactions.

efficiency, we deleted only one reaction in each coupled reaction set since deleting any

reaction in a coupled set has the same effect on the model. Fortunately, the efficiency of

the cachedFCF makes delete-and-couple tractable, requiring 1.7 minutes to complete on a

desktop computer. We found “expanded" enzyme sets for P. aeruginosa in two ways. First,

we applied delete-and-couple to the P. aeruginosa metabolic model to identify expanded

reaction sets. We collected enzymes associated with the reactions in each set, producing

Efcf(R∗) sets. (The R∗ notation indicates that the reaction sets were expanded with delete-

and-couple and subsequentlymapped to enzymes.) We also calculated expanded enzyme

sets directly (E
∗
falcon

sets) by applying delete-and-couple to enzymes in a FALCONmodel.

The E
∗
falcon

sets directly calculated with the FALCONmodel are smaller than the Efcf(R∗)
sets, just as the Efalcon sets are smaller than the Efcf(R) sets (Figure 4e). On average,

both the Efcf(R∗) and E∗
falcon

sets are larger than the Efcf(R) and Efalcon sets, respectively.

The delete-and-couple E
∗
falcon

sets each contain one or more Efalcon sets. Visually, the

expandedE
∗
falcon

sets alignwith traditional views ofmetabolic pathways, while theEfalcon

sets alone are often small linear branches of more complex pathways (Figure 5).

The expanded E
∗
falcon

sets contain more enzymes per set, but the enzymes in each set

remain functionally linked. Looking again at pairwise correlations in P. aeruginosa gene
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expression, we see that pairs of enzymes in the same E
∗
falcon

have higher gene expression

correlation than randomly selected pairs of enzymes or enzymes in Efcf(R∗) sets (Figure
4f). The enzymes added when Efalcon sets are expanded with delete-and-couple are often

co-expressed with other enzymes in the set.

Our analysis also showed that fitness and expression changes cluster within Efalcon

sets. Multiple Efalcon sets comprise each E
∗
falcon

sets, but are the Efalcon sets in each

E
∗
falcon

alike? Do the Efalcon sets with all expression changes join together, or are fitness

and expression changes consolidated into E
∗
falcon

sets? We can view each E
∗
falcon

set as

a network of connected Efalcon sets (Figure 6a). The Efalcon sets are connected based on

shared enzymes identified during the delete-and-couple procedure. Two Efalcon sets are

connected inside a E
∗
falcon

set if the Efalcon sets were fully coupled during at least one

perturbation. We tested how often delete-and-couple connected pairs of Efalcon sets with

fitness or expression changes. Sets with expression changes (∆exp sets) connected with

other ∆exp sets more often than expected by chance (Figure 6b). Sets with fitness changes

(∆fit sets) connected with other ∆fit sets more often than expected. We also observed

frequent connections involving both a sets with fitness and expression changes (Figure

6c). Of all the ways to connect sets with both fitness and expression changes, only the case

where a set with both expression and fitness changes connects to another set with both

changes is overrepresented (Figure 6e-g). Other cases, such as connections between a ∆fit

set and a ∆exp set (Figure 6e), occur randomly.

Implementation

The cachedFCF, FALCON, and delete-and-couple algorithms were written in R using the

sybil package [31]. All source code (including a Python implementation of cachedFCF) is

freely available at the authors’ website: http://jensenlab.net/tools. Simulations were

performed on a quad-core 3.2 GHz Intel i7 workstation with 48 GB of RAM using Gurobi

version 8.0.

Discussion

Flux coupling is a powerful tool for analyzing genome-scale, constraint-based models.

Unfortunately, users of current flux coupling algorithms face three challenges: 1.) identi-

fying coupled reactions is computationally expensive, especially for non-convex models;

2.) complex associations between enzymes and reactions make it difficult to translate cou-

pled reaction sets into coupled enzyme sets; and 3.) fully coupled sets are often too small,

while partial or directionally coupled sets can be large and diffuse [9]. Our cachedFCF,

FALCON, and delete-and-couple tools overcome these obstacles.

Like the original FCF algorithm, cachedFCF has a worst-case runtime that scales

quadratically with the number of model variables. In practice, we see a 100-1000 fold

reduction in the number of optimizations and a 10-100 fold decrease in runtime using

cachedFCF. The efficiency of cachedFCF enables new applications of flux coupling, such

as our delete-and-couple method. Delete-and-couple has cubic worst-case scaling but

runs in hours for the P. aeruginosa genome-scale model.
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Figure 6. Expanded enzyme sets (E
∗
falcon

) link enzyme sets with similar functional profiles. A.An expanded

enzyme set viewed as a network of individual enzymes sets (Efalcon). Two Efalcon sets are connected if they

are joined by shared enzymes during a perturbation in the delete-and-couple analysis. To test if Efalcon

sets join with similar Efalcon sets, we compared the frequency of connections in P. aeruginosa (red dashed

line) with a null distribution of 1000 simulations where ∆exp and ∆fit changes are randomly assigned to

genes (grey histograms). Connections between two ∆exp sets or two ∆fit sets occur more frequently than

expected (B,D). Connections between two sets that both have ∆exp and ∆fit genes are also overrepresented

(G). Other connections (E, F) occur randomly.
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The COBRA Toolbox [14] uses random sampling to identify flux couplings by cal-

culating correlation coefficients between all pairs of fluxes. Our global cache screening

takes a similar approach, although we use the lack of correlation to identify non-coupled

reactions. By only skipping pairs of reactions with clear evidence of no coupling, cached-

FCF avoids missing couplings due to incomplete or non-uniform random sampling. We

believe cachedFCF balances the efficiency of random sampling with the completeness of

the original FCF algorithm. Most importantly, cachedFCF makes no assumptions about

the structure of the metabolic model. The algorithm is compatible with any mathematical

program (LPs, MILPs, MIQCPs, etc.), allowing researchers to add regulatory constraints

or true enzyme associations with FALCON.

FALCON is not the first framework to incorporate enzyme activities as continuous

variables in constraint-based models [20, 21]. It is the first approach that fully couples

activity to the corresponding reaction fluxes. FALCONmodels require binary variables to

prevent cycles of activity in reversible reactions. FALCONmodels are non-convex because

of the binary variables. Activity cycles are not a problem for many FBA-type analyses

where surplus enzyme activity would be suboptimal. For algorithms like FCF, activity

cycles can break the correlation between coupled reactions by allowing physiologically

meaningless activity distributions. While FALCON models are more computationally

demanding than models using other frameworks, they allow analyses like flux coupling

to be applied directly to enzymes.

Using FALCON models, many constraint-based modeling algorithms that operate on

reactions can be applied to enzymes. Combining FALCON with common methods like

flux variability analysis [32], MOMA [33], and random sampling [34] could offer new in-

sights on how the enzymatic network coordinates the metabolic network. Gene or protein

expression profiles are far cheaper andmore comprehensive than flux profiles, so moving

to an enzyme-centric view of metabolism would accelerate data-driven approaches to

constraint-based modeling.
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