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Abstract 

 

Deep sequencing methods have matured to comprehensively detect the full set of transcribed loci, but 

there is a gap to determine the function of the resulting highly complex transcriptomes. At the center of 

the gene expression cascade, translation is fundamental in defining the fate of much of the transcribed 

genome. We have developed a new approach (SaTAnn, Splice-aware Translatome Annotation) to 

annotate and quantify translation at the single open reading frame (ORF) level, that uses information from 

ribosome profiling to determine the translational state of each isoform in a comprehensive annotation. 

For most genes, one ORF represents the dominant translation product, but our approach also detects 

translation from ORFs belonging to multiple transcripts per gene, including targets of RNA surveillance 

mechanisms such as nonsense-mediated decay. Diversity in the translation output across human cell lines 

reveals the extent of gene-specific differences in protein production, which are supported by steady-state 

protein abundance estimates. Computational analysis of Ribo-seq data with SaTAnn (available at 

https://github.com/lcalviell/SaTAnn) provides a window into the functions of the heterogeneous 

transcriptome. 
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Introduction 

 

Studying gene expression allows us to understand the functions of different molecules and regulatory 

sequence elements, whether they act at the level of transcription, the transcribed RNA, or the encoded 

protein. To ensure correct protein synthesis, transcriptional and post-transcriptional regulatory programs 

determine the identity and amount of mature RNA templates. The translation process then ensures the 

correct identity and amount of synthesized proteins. 

The ribosome is the main actor of the translation process, a complex ribonucleoparticle that is not only 

able to synthesize proteins, but also acts as quality control platform for both the nascent peptide1 and the 

translated mRNA2. Several RNA surveillance mechanisms are known to occur co-translationally, and their 

importance for different processes such as differentiation or disease has been investigated3. 

Ribosome profiling (Ribo-seq) has made it possible to pinpoint the positions of actively translating 

ribosomes transcriptome-wide, using ribosome footprinting coupled to RNA sequencing4. In the last 

decade, Ribo-seq has been extensively used to investigate the molecular mechanisms acting on the 

ribosome, and to identify the entire ensemble of translated regions (the translatome) in multiple 

organisms and conditions. The resulting rich datasets have triggered a plethora of dedicated analysis 

methods, which exploit distinct features of Ribo-seq profiles to confidently identify translated ORFs5,6. 

Many reports have focused on whether small translated regions are hidden in long non-coding RNAs, with 

less attention given so far to account for the presence of multiple transcript isoforms per gene. 

Transcript diversity can result from either alternative splicing (AS) or from alternative transcription start 

or poly-adenylation site usage, and it is now commonly profiled by RNA-seq experiments, which measure 

steady-state abundance of (m)RNAs. Large-scale efforts have uncovered a wide spectrum of multiple 

isoforms expressed by thousands of genes, with many isoforms being lowly expressed and/or presenting 

incomplete open reading frames7. The contribution of this transcript heterogeneity to an expanded 

translatome is therefore an intensely debated topic8,9, with much of transcript and protein abundance 

apparently explained by a single dominant transcript per gene10. 

The mere presence of multiple isoforms does not imply the presence of a distinct, functional protein 

translated from each transcript structure: transcripts might be retained in the nucleus, selectively 

degraded, or undergo translational repression. From a technical point of view, RNA-seq experiments 

quantify a complex scenario in which, depending on the protocol used, alternative transcripts may also 

reflect different steps of RNA processing and not the stable, steady-state cytoplasmic pool of mRNAs 

available to the ribosome. From another perspective, shotgun proteomics approaches are only recently 
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providing the sensitivity to detect tens of thousands of proteins from a single sample and cannot be 

expected to deliver the complete set of proteins, especially of lowly abundant ones11. 

To close this gap, we aimed to develop a strategy to identify and quantify translation on the subset of 

isoforms that are expressed in the cell. A recent study presented a proof-of-principle for validating the 

presence of multiple transcript isoforms in Ribo-seq data12, underlining the potential of isoform-aware 

analysis approaches to fully define the translatome. Following up on this premise, we here describe a 

splice-aware translatome annotator, or SaTAnn, a Ribo-seq analysis approach that detects and quantifies 

translation of ORFs in multiple transcript isoforms and zooms in on the potential roles of alternative 

transcripts. 

 

Results 

 

The SaTAnn approach to annotate and quantify translation 

 

Our approach is based on the premise that, despite their short length, Ribo-Seq reads are sufficient to 

support a given set of alternative isoforms (Figure 1a, b). We applied our workflow on a previously 

published Ribo-seq dataset in HEK293 cells13. Single-nucleotide positions corresponding to the peptidyl-

site for each ribosome (P-sites positions) and junction reads are first extracted from the Ribo-seq 

alignment (Methods) and then mapped to flattened gene models from a given annotation (Figure 1b). In 

this way, transcript features (e.g. exonic bins or splice junctions) are designated as unique or shared across 

multiple annotated isoforms. 

We first select a subset of annotated isoforms, which is sufficient to explain all the observed P-sites or 

junction reads and reduce the occurrence of exons and junctions with no signal, using an Occam’s razor 

strategy (Methods). In brief, a transcript is filtered out if its features with Ribo-seq signal are not unique 

to that transcripts, and those features can be explained by another isoform with better support. Strictly 

nested structures are also eliminated. As Ribo-seq reads generally map to 5’UTRs and coding regions only, 

this approach cannot distinguish isoforms differing in their 3’UTR. 

This simple yet effective selection strategy leads to a significantly reduced number of transcripts. The 

observed Ribo-seq signal could be explained by 1 to 3 transcript structures for most genes (Figure 1c). 

Reassuringly, the number of selected transcripts showed only a mild correlation with overall Ribo-seq 

coverage, with signal in highly covered genes explained by more transcript structures. This selection 
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dramatically improves the assignments of both exons and junctions to transcripts (Figure 1d). When 

considering covered exons or junctions (defined as having at least one Ribo-seq read mapped to them), 

~63% of exons mapped to 1 or 2 transcripts, compared to ~31% when no selection was performed. 

Considering only annotated protein-coding transcripts does not improve the mapping of covered features, 

while it ignores the presence of covered exons and junctions unique to non-coding transcripts. Next, we 

detected translated ORFs de novo in each of the selected transcripts, using the multitaper13–15 method to 

select in-frame signal displaying 3nt periodicity. Detected ORFs are further filtered by the same strategy 

used for transcript filtering.  

After calculating coverage on unique and shared ORF features (exonic bins and splice junctions), a scaling 

factor between 0 and 1 is determined from the coverage on unique ORF features, and the amount of 

overlap between ORFs when no unique feature is present on all ORFs (Methods).  This scaling factor 

represents the fraction of Ribo-seq signal which can be assigned to that ORF. The scaled number of P-sites 

is then normalized by the ORF length to arrive at transcripts per million (TPM)16-like values, named P-sites 

per Nucleotide per Million (P_sites_pNpM). Moreover, we calculated the relative contribution of each 

ORF to the overall translation output of each gene (ORF_pct_P_sites value or percentage of gene 

translation). An additional filtering step discards poorly translated ORFs. ORFs are then annotated 

according to their position relative to their host transcript, to other detected ORFs in the same gene, and 

to annotated CDS regions. 

 

Applying SaTAnn, we quantified translation for ~24,000 ORFs in ~15,000 genes in the HEK293 data. Most 

genes (9,183, Figure 1e, left) displayed only one translated ORF, with another >5,800 genes showing 

translation of multiple ORFs. Upon closer inspection (Figure 1e, right), we observed that for the majority 

of genes (~80%), the translation of the most translated (i.e., major) ORF could explain >80% of the total 

gene translation, with only 554 genes in which the major ORF explained <50% of the translational output. 

We did not observe a dependency between number of detected ORFs (or % of translation of major ORF) 

and overall Ribo-seq coverage (Figure 1e, right). 

To illustrate the consistency of our translation estimates, we annotated the ORF structures with respect 

to the major (most translated) ORFs in each gene: this allowed us to detect genomic regions (e.g. different 

alternative splice sites) where the Ribo-seq signal should reflect different quantitative estimates of 

translation coming from different ORF(s). Aggregate profiles of Ribo-seq coverage closely reflect the 

expected pattern calculated by SaTAnn for each individual ORF (Figure 1f). Additional profiles over 

different genomic locations are shown in Supplementary Figure 1. Taken together, the translation of a 
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major ORF accounts for >80% of total gene translation for most of the genes, but distinct translated ORFs 

are detected from multiple translated isoforms for hundreds of others.  

 

 

Quantification of translation as a window into the functional relevance of alternative open 

reading frames 

 

As translation is a cytoplasmic process, we expected the ensemble of transcript structures selected by 

SaTAnn to represent bona fide cytoplasmic transcripts. To test this hypothesis, we performed a differential 

exon usage analysis with DEXSeq17, using RNA-seq data from nuclear and cytoplasmic extracts in HEK293 

cells18. Most exons unique to discarded structures showed marked nuclear localization (log2FC>0), while 

exons of selected transcripts showed a prominent cytoplasmic enrichment (Figure 2a). Transcripts in 

which we identified a complete translated ORF displayed a more marked cytoplasmic localization. An 

example of the selection strategy discarding pre-mRNA structures in favor of cytoplasmic transcripts is 

shown in Figure 2b. 

When examining the GENCODE annotation19 of the transcripts hosting the de novo identified ORFs, we 

noticed ~2,000 ORFs in non-coding isoforms of protein-coding genes (Figure 2c). Compared to ORFs in 

annotated protein-coding isoforms, these ORFs exhibited much lower translation, accounting for a 

median of 6.8 % of host gene translation, compared to 87% for ORFs that fully matched annotated CDSs. 

More than 3,500 N-terminal truncation events were also detected, showing high levels of translation. 

uORFs and other small ORFs exhibited low overall levels of translation, albeit high when normalized by 

their length. In annotated non-coding genes, we detected >2,300 ORFs from annotated pseudogenes and 

~900 ORFs from other non-coding RNA genes. Based on length-normalized translation values 

(P_sites_pNpM), ORFs located in long ncRNAs and non-coding isoforms show considerably lower 

translation than protein-coding isoforms (Figure 2c). 

Analyzing a deep polysome profiling dataset (Trip-Seq20) from the same cell line showed that the 

quantitative estimates of translation agreed with distinct polysome profiles (Figure 2d,e; Supplementary 

Figure 2): Exons uniquely mapping to transcripts harboring lowly translated ORFs accumulated in low 

polysomes and were depleted in heavier polysomal fractions. Conversely, highly translated transcripts 

exhibited sustained levels also in heavy polysomes. Despite the fundamental differences between 

polysome profiling and Ribo-seq in representing the translated transcriptome, the two techniques 

therefore agreed in detecting quantitative differences in the translation of multiple transcripts per gene. 
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The presence of numerous lowly translated ORFs detected in non-coding isoforms (Figure 2c) suggests 

inefficient translation and/or low steady-state abundance of the translated transcript. We wondered 

whether transcripts subject to RNA surveillance mechanisms (such as nonsense-mediated decay, NMD) 

might cause such a low but detectable Ribo-seq signal. The presence of a premature termination codon 

(PTC) is an important feature of many NMD targets21, which is assumed to be recognized as such when 

located sufficiently upstream of the last splice junction, i.e. when a downstream Exon Junction Complex 

(EJC) is not displaced during translation elongation (Figure 3a). To investigate the putative action of NMD 

on PTC-containing transcripts, we divided transcripts based on the presence of a splice site downstream 

of a detected ORF. A recent study mapped NMD-mediated cleavage events on the transcriptome in 

HEK293 cells22, by knocking down the exonuclease XRN1 in charge of degrading the cleaved transcripts. 

When aligning the cleavage sites at the stop codons of (putative) PTC- and non-PTC-containing transcripts 

(taken from the same genes), we observed a clear difference (Figure 3b): transcripts without PTC, i.e. 

where all EJCs are presumably displaced, showed background-like signal, while transcripts harboring a 

putative PTC showed a marked degradation profile around their stop codon21. The degradation signal was 

less pronounced when SMG6 or UPF1 were also knocked-down, underlining the effect of known key 

factors of the NMD pathway at our candidate NMD targets. A clear example of such pattern is visible on 

a translated ORF in the GAS5 gene (Figure 3c). 

To further explore the dependency of NMD with regards to the location of PTCs as well as the transcript 

type, we determined the number of endonucleolytic cuts at the stop codon as a function of PTC distance 

to the last exon-exon junction. We observed an increase in degradation for NMD candidate ORFs for all 

the surveyed ORFs (including uORFs; Figure 3d). As reported22, ORFs in snoRNA host genes (such as GAS5, 

Figure 3c) showed the highest degradation profile, while other categories exhibited a lower amount of 

degradation.  

In summary, Ribo-seq data can serve as an excellent means to identify mature mRNAs, quantify different 

levels of translation output within single genes, and infer transcript-specific cytoplasmic fates. 

 

A subset of genes translates different major ORFs across cell lines 

 

To investigate the patterns of alternative ORF usage across different conditions, we ran SaTAnn on Ribo-

seq datasets from 6 different human cell lines (Supplementary Table 1, Supplementary Data 1, Figure 4a), 
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with newly generated data for K562 and HepG2 cell lines complementing previously published libraries 

from HEK293, HeLa, U2OS and Jurkat cells23–25.  For each dataset we observed the same trend described 

in Figure 1d, with most genes showing translation of one major ORF, and hundreds of genes showing 

sustained translation of multiple ORFs, with a weak dependency of the overall Ribo-seq signal 

(Supplementary Figures 3, 4). Across all cell lines, we detected ORF translation for ~17,800 genes 

(excluding pseudogenes), with ~89% of them annotated as protein-coding genes. 

For each gene and cell line, we defined the major ORF as the most translated ORF from a gene, regardless 

of its positional features and existing ORF annotation. For ~77% of the quantified genes, the same ORF 

was consistently identified as the major translated ORF in all the assayed cell lines (Figure 4b). For ORFs 

in non-coding RNAs, we detect a more cell-specific pattern of major ORF usage. However, a few dozen 

non-coding genes displayed translation of the same major ORF: one such example is GAS5, where the 

translation of an ORF terminating at a PTC (Figure 3c) is consistently detected across the assayed cell lines 

(Figure 4c). 

As expected, genes translated in all cell lines showed overall higher Ribo-seq signal. However, we did not 

observe a clear dependence between number of distinct major ORFs across cell lines and overall gene 

translation (Supplementary Figure 5). Two or more distinct major ORFs were identified in 18% and 4.7% 

of genes, representing candidate major ORF switching events across cell lines (Figure 4b). At a closer look, 

we observed that genes translating multiple major ORFs also displayed a more complex mixture of 

translated ORFs. Consequently, translation of the major ORF for those genes accounted for a lower 

percentage of total gene translation (Figure 4b, lower panel).  

ORF diversity is created by different mechanisms: differences in alternative splicing of internal coding 

exons (Supplementary Figure 6), alternative transcriptional start sites (Supplementary Figure 7), or 

alternative usage of last exons (Figure 4d). Genes exhibiting translation of multiple major ORFs showed 

an enrichment for GO categories like GTPase regulator (Supplementary Figure 8), a category also enriched 

in genes expressing multiple transcript isoforms across human tissues26, thus likely representing the result 

of transcript heterogeneity across cell lines. However, in ~40% of the cases, distinct major ORFs translated 

across cell lines showed a low degree of overlap (Figure 4e) despite coming from the same genes, unlikely 

to result from differences in local alternative splicing events. Such a low overlap reflected the presence of 

alternative usage of small ORFs (Figure 4f), such as uORFs, which can represent the major gene translation 

product of a gene (Figure 4g, Supplementary Figure 9).  

Taken together, these translation estimates indicate that the presence of one (or multiple) dominant ORFs 

agree across multiple cell lines for the majority of genes. For around 20% of the translated genes, 
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however, highly translated small ORFs and/or several isoforms expressed at sustained levels create a 

substantial level of complexity in protein synthesis, for which multiple ORFs can represent the majority of 

the gene translational output. 

 

 

Agreement between protein abundance and synthesis estimates depends on proteome coverage 

and transcriptome complexity 

 

Ribo-seq reflects the density of active 80S ribosomes and thus ongoing protein production, but the signal 

at a specific locus may represent both elongating or stalled ribosomes. We therefore examined whether 

the relative abundance of different translated ORFs would agree between Ribo-seq and proteomics data. 

We estimated proteome-wide steady-state protein abundance using published deep mass spectrometry 

data27,28 for the same cell lines outlined above (Figure 4a). We detected between 7,000 and 8,000 proteins 

per cell line (Supplementary Figure 10, Supplementary Data 2, Methods), and performed label-free 

quantification using the signal from unique peptides only. To estimate the ability of both techniques in 

quantifying protein synthesis/abundance, we divided proteins based on the number of exon or junction 

features covered by Ribo-seq (with >=1 read mapping, i.e. independent of the exact number of mapping 

reads), and by the number of detected unique peptides (independent of their intensity). In cases where 0 

- 3 unique peptides were detected, the correlation (in log space) between HEK293 SaTAnn-derived 

estimates of translation (P_sites_pNpM) and steady-state protein abundance (iBAQ) ranged from 0.57 to 

0.60 (Figure 5a). However, for proteins having >9 uniquely mapping peptides and >8 covered features 

(n>1900) the correlation between SaTAnn estimates of translation and protein abundance reached the 

value of ~0.87. The same phenomenon was observed for all the assayed cell lines (Figure 5b). A clear 

dependency on the number of unique peptides was also observed when correlating iBAQ values with 

transcript abundance estimates from RNA-seq, albeit to a lower extent (Supplementary Figure 11).  

When comparing the fraction of total gene translation to the fraction of total gene protein abundance for 

the few dozen genes with multiple detected protein isoforms, we observed a correlation of 0.4. Here, only 

few proteins harbored >9 uniquely mapping peptides (Figure 5c), thus limiting our ability in reliably 

estimating their abundance (Figure 5a). We observed lower correlations when skipping the ORF-specific 

scaling step during translation quantification, highlighting the importance of accounting for the presence 

of multiple translated ORFs per gene (Figure 5d). In only one out of the six cell lines, the correlations did 

not improve, likely as result of few detected peptides (Jurkat, Supplementary Figure 12). Taken together, 
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these results show a good agreement of splice-aware ORF-centric quantification estimates with steady-

state protein abundance, when enough signal is available to perform such a correlative analysis. 

 

Discussion 

 

Only a fraction of known, annotated gene transcript structures are expressed in a specific context, and 

only a fraction of those structures are exported to the cytoplasm and eventually translated into functional 

proteins. This observation inspired us to devise a simple strategy to identify the subset of translated 

isoforms from Ribo-seq data, by discarding a substantial fraction of transcript structures with no support. 

The marked nuclear localization of annotated but discarded RNAs (Figure 2a) indicates that these 

structures are not present at translating ribosomes, i.e. that they are not expressed in the assayed 

condition or that they represent pre-mRNA intermediates which are either rapidly degraded or retained 

in the nucleus. Our strategy therefore resulted in a markedly improved mapping of Ribo-seq exonic and 

junction reads to their possible transcripts of origin (Figure 1d), allowing for ORF-specific translation 

estimates. However, optimally deconvolving the mixture of multiple transcript isoforms can be 

challenging for many genes, especially in the absence of coverage or unique transcript features allowing 

us to estimate ORF usage. The rapidly increasing availability of complete isoform sequence data based on 

long-read sequencing29 will soon make this a common starting point, even for model systems without 

extensively curated annotation.  

While polysome profiling experiments (Figure 2d) and label-free quantification of the protein product 

(Figure 5b) support the Ribo-seq estimates of relative ORF translation levels, we believe that additional 

efforts can improve ORF-specific quantification of translation. The quantification of isoform expression is 

a well-studied problem in RNA-seq, with popular methods applying iterative methods (such as the 

expectation-maximization algorithm) to resolve the mixture resulting from multiple isoforms16,30,31. An 

accurate approach will however have to address the issue of variable Ribo-seq coverage along the ORFs, 

which reflects the complex dynamics of translation. Its exact causes, including the experimental biases, 

codon composition or RNA structural features32, remain to be understood. Our approach also uses a 

simplified definition of ORFs that requires a canonical start codon and does not account for overlapping 

frames. It is still an open question how to correctly define the precise boundaries of translated elements 

that account for non-canonical start codons and signals from overlapping frames, such as from upstream 

ORFs33 or complex gene structures in compact genomes such as found in viruses and organelles. 
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Our strategy enabled us to detect thousands of lowly translated ORFs in isoforms of protein coding genes 

annotated as non-coding, consistent with current models for mRNA surveillance such as NMD (Figure 3). 

Similarly, we observed that many detected ORFs in non-coding RNAs show high degradation profiles at 

their stop codons, especially pronounced in snoRNA host genes (Figure 3d). This well-known phenomenon 

is therefore important to consider when addressing the protein-coding ability of transcripts based on 

ribosome occupancy. In turn, the ability to identify NMD target candidates can provide an advantageous 

starting point for further research into defining the features of co-translational mRNA surveillance and its 

links to protein quality control34.  

Expanding our analysis across multiple cell lines allowed us to assess the complexity of translation per 

gene for both coding and non-coding genes (Figure 4b). We found the majority of genes to be translating 

the same major ORF (including highly translated ORFs in non-coding RNAs, Figure 4c), but we detected 

distinct ORFs used for the major translation product in different cell lines in thousands of genes. These 

genes showed an overall more complex pattern of transcript expression, with sustained translation of 

many protein-coding transcripts, thus suggesting a cautionary note when trying to define translation 

coupled to clear isoform switching events. In this context, the presence of highly translated small ORFs 

even in protein-coding genes (Supplementary Figure 9), which may play gene regulatory roles rather than 

expand the proteome, adds further complexity. Unfortunately, the limited amount of data at hand (often 

without replicate information) and the heterogeneity of protocols adopted by different labs, poses 

challenges to precisely quantify the contribution of different mechanisms, such alternative TSS usage, 

alternative splicing, or translation regulatory phenomena (such as differential uORF translation), in 

promoting diversity (or lack thereof) in protein synthesis. 

Despite these potential limitations, we observed a substantial agreement between our estimates of 

translation and steady-state protein abundance. The level of agreement between mRNAs and proteins 

has been subject to intense debate35; our results indicate that for thousands of genes, shotgun proteomics 

experiments and sequencing of ribosome-occupied RNA fragments do show excellent agreement, albeit 

with expected dependencies on the reliability with which we detect and quantify the levels of translation 

and protein abundance (Figure 5a). An increasing availability of Ribo-seq and proteomics data in a single 

controlled environment will improve our understanding of this relationship and help to pinpoint 

interesting cases in which this correlation deviates from expectation. The current scarcity of matching 

data, however, limits our ability to validate the translation of multiple protein isoforms per gene, as most 

detected peptides are shared between different isoforms (Supplementary Figure 12). Yet, the currently 

observed agreement between translation and protein abundance at the protein isoform level provides a 
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promising starting point for the investigation of isoform-specific protein production. A recent study 

demonstrated how protein isoforms engage with distinct protein-protein interaction networks, with such 

interactions being as different as the ones involving proteins from different genes36. With both 

proteomics37,38 and transcriptomics39 techniques rapidly advancing at a fast pace, our study demonstrates 

the unique advantage of ribosome profiling  in characterizing and quantifying cytoplasmic gene expression 

programs, at the interface between RNA and protein. 
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Methods 

 

SaTAnn - Transcript/ORF filtering 

 

Gene models from the GTF annotation are flattened to obtain coordinates about exonic bins or junctions, 

together with the set of transcripts they map to. Next, P-sites positions and junction reads are mapped to 

such features, to obtain positive (with at least one read count) or negative features (with no reads). 

Internal features are then defined as features contained between the coordinates of the first (most 

upstream) and last (most downstream) positive features.  

The filtering procedure is then applied: initially, an empty vector of positive features explained by the 

selected transcripts is created, and it is updated at each selection step. After creating the empty vector, 

the list of annotated transcripts is analyzed, applying the following rules for each transcript 𝑇𝑥#: 

1) 𝑇𝑥#  contains an unexplained positive feature: 

𝑇𝑥#	is selected and each previously selected 𝑇𝑥%	is re-analyzed:  

If all the positive features of 𝑇𝑥%	are also contained in 𝑇𝑥#, 𝑇𝑥%  is discarded. 

2) 𝑇𝑥#  does not contain an unexplained positive feature: 

𝑇𝑥#  is initially selected, but it is compared with each previously selected structure 𝑇𝑥%. Two 

possible scenarios are evaluated: 

i) All the positive features of 𝑇𝑥#	are also contained in 𝑇𝑥%: 

if 𝑇𝑥%  has more positive features than 𝑇𝑥#, or fewer negative internal features than 𝑇𝑥#, 

𝑇𝑥#  is discarded 

ii) All the positive features of 𝑇𝑥%	are also contained in 𝑇𝑥#: 

If 𝑇𝑥#	has fewer negative internal features than 𝑇𝑥#, 𝑇𝑥%	is discarded. 

 

This greedy strategy reduces the number of transcripts that is necessary to explain all the positive features 

(features with reads), trying to minimize the presence of negative features (features with no reads). We 

select ORFs following the same rules, this time using exonic bins and splice junctions derived from the 

ORF structures. 
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SaTAnn - ORF finding 

As in the RiboTaper13 method, only ATG is considered as potential start codon, and the p-value for the 

multitaper method applied to the candidate ORF P-sites track must be below 0.05. To select ORFs with 

in-frame P-sites and account for local off-frame effects, we require the average signal on each covered 

codon to be >50% in frame. The same strategy is used to select the start codon for each ORF, requiring 

>50% average in-frame codon signal between each candidate ATG and the next. 

 

SaTAnn - ORF quantification 

After the ORF finding step, ORF filtering and quantification is subsequently performed, using the length-

normalized Ribo-seq coverage 𝐶𝑜𝑣 on each ORF feature. 

𝐶𝑜𝑣 =
#𝑟𝑒𝑎𝑑𝑠
𝑙𝑒𝑛𝑔𝑡ℎ  

 

P-sites positions are used to calculate coverage on exonic regions, while spliced reads for junctions. 

Length is set to 60nt for junctions, according to the possible nucleotide space covered by a spliced read 

of ~30nt.  

A feature 𝐹 can be unique to one ORF or shared between multiple ORFs. For each ORF, we calculate the 

average coverage on unique features 𝐴𝑣𝐶𝑜𝑣𝑈𝑛, using the coverage 𝐶𝑜𝑣89 on each of the unique 

features 𝐹9. 

	

𝐴𝑣𝐶𝑜𝑣𝑈𝑛 =
∑ 𝐶𝑜𝑣89#89
;

#𝐹9
 

 

The same calculation is performed for all features 𝐹𝑎𝑙𝑙 mapping to the ORF 

𝐴𝑣𝐶𝑜𝑣𝐴𝑙𝑙 =
∑ <=>?@AA
#?@AA
B

#8@AA
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A scaling factor 𝐶CD8	(with a minimum value of 0 and a maximum of 1) is calculated, for each ORF, using 

the ratio between 𝐴𝑣𝐶𝑜𝑣𝑈𝑛 and 𝐴𝑣𝐶𝑜𝑣𝐴𝑙𝑙. Such scaling factor represents the fraction of Ribo-seq 

signal that can be attributed to the ORF. 

𝐶CD8 = 	
𝐴𝑣𝐶𝑜𝑣𝑈𝑛
𝐴𝑣𝐶𝑜𝑣𝐴𝑙𝑙 

 

When no unique feature is present in one ORF (all regions are shared with other ORFs), the coverage  

𝐶𝑜𝑣8FG%  on each feature	𝐹𝑎𝑑𝑗 attributed to that ORF is calculated subtracting the expected signal 

coming from other 𝑂𝑅𝐹8FG%  mapping to that feature, using their scaling factors. In such cases, the 

calculation of the adjusted coverage for each feature 𝐹𝑎𝑑𝑗 is as follows: 

𝐶𝑜𝑣8FG% =
#KLFGM?@NO
PLQRST?@NO

− #KLFGM?@NO
PLQRST?@NO

∗ 	∑ 𝐶CD8?@NO
#CD8FG%
CD8?@NO   

 

𝐴𝑣𝐶𝑜𝑣𝐴𝑑𝑗 =
∑ <=>?@NO
#?@NO
B

#8@NO
  

 

𝐶CD8 = 	
W><=>WG%
W><=>WPP

  

 

If no unique region is present in any detected ORF in the gene (all regions are shared among ORFs and 

no 𝐶CD8  value can be calculated), the scaling factor is calculated assuming uniform Ribo-seq coverage on 

each ORF. Coverage 𝐶𝑜𝑣8MT is now simply divided by the number of 𝑂𝑅𝐹8MT mapping to the feature 

𝐹𝑠ℎ. 

𝐶𝑜𝑣8MT =
#KLFGM?XY
PLQRST?XY

#𝑂𝑅𝐹8MTZ   

 

𝐴𝑣𝐶𝑜𝑣𝑆ℎ =
∑ <=>?XY
#?XY
B
#8MT

  

 

𝐶CD8 = 	
W><=>\T
W><=>WPP
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After the calculation of 𝐶CD8, the adjusted number of P-sites for each ORF (𝑃CD8) is calculated using the 

raw number of P-sites mapping to the ORF multiplied by the scaling factor, to obtain ORF-specific 

quantification estimates. 

𝑃CD8 = 𝑃𝑠𝑖𝑡𝑒𝑠 ∗ 𝐶CD8   

 

For each ORF of length 𝐿CD8, the scaled numbers of P-sites 𝑃CD8  is normalized over the entire set of 

detected ORFs #𝑅𝐹𝑁, to obtain TPM-like values, named P-sites per Nucleotide per Million 

(P_sites_pNpM), using this formula:  

𝑃_𝑠𝑖𝑡𝑒𝑠_𝑝𝑁𝑝𝑀CD8 =
def?
gef?

∗ ;hi

∑ jef?
kef?

#ef?
ef?

	  

 

Moreover, we calculated the contribution of each ORF to the overall translation output of a single gene. 

Such metric, named ORF_pct_P_sites (or percentage of gene translation), is calculated dividing 𝑃CD8  by 

the sum of 𝑃CD8  of all ORFs (#𝑂𝑅𝐹𝑔) detected in a gene. 

𝑂𝑅𝐹_𝑝𝑐𝑡_𝑃_𝑠𝑖𝑡𝑒𝑠CD8 =
𝑃CD8

∑ 𝑃CD8
#CD8R
CD8

 

 

Normalization by length is here not applied, as this metric wants to quantify the amount of translation 

per gene coming from each ORF. The ORF_pct_P_sites_pN metric indicates length-normalized 

ORF_pct_P_sites values (e.g. they can be high for a short highly translated ORF). 

After quantification, ORFs are subjected to a filtering step and quantification is performed again, until all 

ORFs are being retained. 

 

SaTAnn parameters used 

For all cell lines, SaTAnn was run using a cutoff of 2% of total gene translation. The set of identified ORFs 

in each cell line is available in Supplementary Data 1. 
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Ribosome profiling: 

Ribo-seq was performed as described previously13 and adapted for HepG2 and K562 cell lines. 5x10^6 

K562 suspension cells and two 80% confluent 10 cm TC dishes of adherent HepG2 cells (DSMZ #ACC-10 

and #ACC-180, respectively) were used. 

Adherent cells were washed with ice-cold PBS supplemented with 100 ug/ml cycloheximide (Sigma Aldrich 

#C4859) and immediately snap-frozen by immersing the dishes in liquid nitrogen. The dishes were then 

transferred to wet ice and 400 ul of lysis buffer (1X polysome buffer (20 mM Tris-Cl pH 7.4, 150 mM NaCl, 

5 mM MgCl2, with 1 mM DTT (Sigma Aldrich #43816) and 100 ug/ml cycloheximide added freshly; keep 

on ice), 1% (v/v) Triton X-100 (Calbiochem #648466), 25 U/ml TURBO DNase (Life Tech. #AM2238)) was 

immediately dripped onto the frozen cells. The cells and buffer were then scraped off and left to thaw on 

one side of the dish, mixing them using a pipet tip.  

Suspension cells were supplemented with 100 ug/ml cycloheximide, pelleted for 5 min at 300 g and 

washed with ice-cold PBS + 100 ug/ml cycloheximide. The washed cell pellet was immediately snap-frozen 

in liquid nitrogen. 400 ul of ice-cold lysis buffer was added, and the cells were put on wet ice to thaw, 

mixing them using a pipet tip.  

The cells were left to lyse for 10 min on ice, followed by 10x trituration through a 26-G needle. After 

centrifugation for 10 min at 20‘000g at 4°C the clarified supernatant was transferred to a pre-cooled tube 

on ice. For nuclease footprinting, 400 ul of lysate were supplemented with 1000 U of RNase I (Life Tech. 

#AM2295) and incubated in a thermomixer set to 23°C, shaking at 500 rpm for 45 min. Footprinting was 

stopped by adding 260 U of SUPERASE-In (Life Tech. #2696). 

To recover ribosomes two MicroSpin S-400 HR columns (GE Healthcare #27-5140-01) per 400 ul of sample 

were equilibrated with a total of 3 ml of polysome buffer. The columns were drained by spinning for 4 

min at 600 g, then the sample was applied and spun for 2 min at 600g. Three volumes of Trizol LS (Life 

Tech. #10296010) were added to the flow-through and RNA was extracted using the Direct-zol RNA Mini-

Prep kit (Zymo Research #R2052) as per the manufacturer’s instructions. RNA was quantified using the 

Qubit RNA Broad Range Assay (Life Tech. #Q10211). 

Ribosomal RNA was removed from 10 ug of footprinted RNA using the RiboZero Magnetic Gold kit 

(Illumina #MRZG12324) as per the manufacturer’s instructions. Footprinted RNA was precipitated from 

the supernatant (90 ul) using 1.5 ul of glycoblue (Life Tech. #9515), 9 ul of 3 M sodium acetate and 300 ul 
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of ethanol by incubation for 1h at -80°C and pelleted for 30 min at max. speed at 4°C. The RNA pellet was 

dissolved in 10 ul of RNase-free water. 

To recover the ribosome protected RNA fragments the sample was loaded onto two lanes of a 1 mm 17.5% 

Urea-PAGE gel along with 27 nt and 30 nt RNA markers. The gel was run in 1X TBE at 250 V for 80 min and 

stained for 3 min in 1X SYBR gold (Life Tech. #S11494) in 1X TBE. Sample bands between 27 nt and 30 nt 

were excised and crushed by spinning through a punctured tube. RNA was extracted by soaking the gel 

pieces in 400 ul of RNA extraction buffer (400 mM NaCl, 1 mM EDTA, 0.25% (wt/v) SDS) for 2 h, rotating 

at room temperature. The supernatant was supplemented with 1.5 ul of glycoblue and 500 ul of 

isopropanol and incubated on dry ice for 30 min, followed by pelleting of the RNA for 30 min at 20‘000 g 

at 4°C. The pellet was dissolved in 40 ul of water. 

To prepare the RNA sample for use in a smallRNA library preparation kit the sample was phosphorylated 

using 5 ul of 10X T4 PNK buffer and 1 ul of T4 PNK (NEB #M0201), 1 ul of SUPERASE-In, 2.5 ul of 10 mM 

ATP and 0.5 ul of 1% Triton X-100. After incubation for 1 h at 37°C RNA was precipitated and pelleted by 

adding 41 ul of water, 1.5 ul of glycoblue, 8 ul of 5M NaCl and 150 ul of isopropanol as described before. 

Libraries were prepared using the NEXTflex Small RNA-Seq Kit v3 (BiooScientific #5132-06) as per the 

manufacturer’s instructions and sequenced on an Illumina NextSeq500 machine with 13 libraries pooled 

at 1.8 pM using one High Output Kit v2 (Illumina #FC-404-2005) with 75 cycles single-end. 

 

Ribo-seq and RNA-seq data processing 

Ribo-seq reads were stripped of their adapters using cutadapt40. Randomized UMI sequences (where 

present) were removed, and reads were collapsed. Reads aligning to rRNA, snoRNAs and tRNA sequences 

were removed with Bowtie241. Unaligned reads were then mapped with STAR42 using the hg38 genome 

and the GENCODE 25 annotation in GTF format. For RNA-seq and Ribo-seq, a maximum of four and two 

mismatches was allowed, and multimapping of to up to 20 different positions was permitted. Alignments 

flagged as secondary alignments were filtered out, ensuring one mapping position per aligned read. P-

sites positions and junction reads were extracted using Ribo-seQC43 with default parameters. Statistics 

about the different Ribo-seq libraries are available as Supplementary Data 1. SaTAnn input files are 

available in Supplementary Data 1. Gviz was used to visualize data tracks and transcript annotation. 
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Polysome profiling: 

DEXSeq17 was run to detect differential exon usage between each of the polysome fraction and the 

cytoplasmic abundance. Transcripts were divided based on the translation levels of their translated ORF(s) 

and intersected with differential exons (FDR<0.01). Only genes with multiple translated transcripts were 

used. 

 

Nuclear-cytoplasmic comparison: 

DEXSeq17 was run to detect differential exon usage between the nuclear and the cytoplasmic fraction. 

Differential exons (FDR<0.01) were intersected with transcript structures and only exons uniquely 

mapping to one transcript group (e.g. discarded transcripts, selected transcripts etc…) were selected. 

 

5’end of endonucleolytic cuts: 

Bigwig files for the different libraries were obtained from the GEO accession GSE57433 and normalized 

by library size. Coordinates were lifted to hg38 and overlapped with SaTAnn-identified stop codon 

positions, for both NMD candidates and controls (“canonical” stop codons taken from the same genes). 

Stop codon regions of NMD candidates overlapping known CDS regions were removed. 

 

Merging SaTAnn result across cell lines: 

ORFs were considered to be distinct if they ended at different stop codons or could not be mapped to the 

same transcript. Enrichment for ORF categories at different level of overlap were calculated using 

normalized residuals from a chi-squared test. GO enrichment was performed using the topGO package. 

 

Proteomics database search: 

Raw data was downloaded using the PRIDE accession PXD002395. RAW data was searched using 

MaxQuant28 version 1.6.0.13, using Carbamidomethyl as fixed modification, and oxidation of Methionine 

and acetylation protein N-termini as variable modifications. Quantification was performed using only 

unique peptides. Matching between runs was enabled. We used a custom database to perform the 
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peptide search: SaTAnn-detected ORFs were merged in a unique database, choosing only ORFs explaining 

a minimum of 10% of gene translation in at least one cell line. The final protein database, consisting of 

roughly 44,500 entries, is available as Supplementary File 2, together with the XML file used to perform 

the MaxQuant search and the set of identified proteins. 

 

Comparison between protein abundance and translation estimates: 

iBAQ values for summed up for each replicate. P_sites_pNpM values were summed for all ORFs mapping 

to each protein group. ORF_pct_iBAQ values were obtained by dividing each iBAQ value for the total of 

iBAQ values mapping to each gene, discarding protein groups mapping to multiple genes. The same 

procedure was applied to P_sites_pNpM values to compare protein and translation estimates. Only 

proteins detected by Ribo-seq (or RNA-seq) and proteomics were used. Gene-level TPM values in 

Supplementary Figure 11 were calculated using kallisto30. 

 

Data availability 

SaTAnn is available at https://github.com/lcalviell/SaTAnn. Ribo-seq for HepG2 and K562 can be accessed 

at GEO under the accession number XXX. 

 

Author contributions 

Initial study conceived by L.C. and U.O. L.C. ideated and implemented the SaTAnn pipeline, with 

supervision from U.O. All analysis and visualization by L.C. Ribosome footprinting libraries in K562 and 

HepG2 performed by A.H. Manuscript was written by L.C. and U.O. with additional input by A.H. 

 

Acknowledgements 

L.C. thanks Stephen Floor (UCSF) for support during the preparation of this manuscript. 

 

Supplementary files 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 14, 2019. ; https://doi.org/10.1101/608794doi: bioRxiv preprint 

https://doi.org/10.1101/608794
http://creativecommons.org/licenses/by-nc/4.0/


 23 

 

Supplementary Table 1: Summary of Ribo-seq datasets analyzed in this study. 

 

Supplementary Data 1: Archive containing all P-sites positions and junction reads, together with the set 

of SaTAnn identified ORFs, for each cell line. 

 

Supplementary Data 2: Archive containing the set of identified proteins, including their Ribo-seq statistics, 

the XML file used for the MaxQuant run and the custom protein database. 
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Figure 1: The SaTAnn strategy to quantify translation on selected transcripts. a) The SaTAnn workflow; b) the
PHLEKM2 gene as an example: displayed tracks represent, from top to bottom: 1) complete annotation, 2) P-sites
positions, 3) junction reads, 4) discarded transcripts, 5) selected transcripts, 6) detected ORFs, 7) selected ORFs,
8) quantified ORFs and 9) ORF coverage (defined here using the fraction of gene translation). Colors for discarded
and selected transcripts indicate unique features with no signal (black); shared features with no signal (grey); unique
features with signal (red); and shared features with signal (pink). Colors for discarded and selected ORFs indicate
signal in shared features (blue heatmap) and signal in unique features (red heatmap). For the quantified ORFs,
the heatmap indicates ORF coverage values (0-100). Thick bars indicate CDS regions, as defined by the annotation
or by SaTAnn (de-novo). c) Number of selected transcripts per gene (x-axis) against number of genes (top), TPM
levels (middle), and % of annotated transcripts (bottom). d) Percentage of covered junctions (top), or covered exons
(bottom) mapping to a different number of structures using all transcripts, protein-coding transcripts only or selected
transcripts only. e) The number of detected ORFs (x-axis) is shown against number of genes and their TPM values
(left). On the right, the number of genes (y-axis) (and again their TPM values) are plotted against the contribution (in
percentages) of their major ORF. e) Aggregate plot of Ribo-seq coverage (normalized 0-1 per each region) and ORF
coverage (ORF pct P sites pN, Methods) over candidate alternative splice sites regions (left) as defined by SaTAnn.
No mixture indicates one ORF only, while other tracks indicate the presence of additional ORFs, divided by their
summed translation values. Explanatory scheme at the bottom, with blue representing the major ORF and red the
additional ORF(s). On the right, same plot for a different alternative splice sites conformation.

1

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 14, 2019. ; https://doi.org/10.1101/608794doi: bioRxiv preprint 

https://doi.org/10.1101/608794
http://creativecommons.org/licenses/by-nc/4.0/


c)

d)

b)a)

13521

439

3556

126
1237

10 388 220

2333
1470 928

●
●

●
●●●
●
●●●

●
●

●
●
●

●
●

●●●
●●●
●

●
●
●

●

●
●

●

●
●
●
●●●●

●

●

●●●●●

●

●

●

●●

●

●●

●

●

●●●
●

●

●

●

●

●●

●

●

●
●●

●

●●
●

●●
●

●●

●

●●
●

●
●●

●●

●
●

●

●
●●●

●

●

●

●
●●
●

●●

●

●

●●●

●
●
●●●●

●

●
●●
●

●
●●●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●●

●

●
●

●

●
●
●●
●

●

●

●

●

●
●
●
●
●●●
●

●

●

●●

●

●
●
●
●

●●

●

●

●

●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●
●

●●

●
●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●
●●
●
●
●●

●

●

●●
●
●

●
●●●●
●●
●

●

●
●●
●●●●
●
●

●
●
●
●●●
●●

●
●
●●●
●●
●●●●
●●●
●●●
●
●
●
●

●●●●
●
●●
●
●

●

●
●●
●

●●

●
●
●

●
●
●

●
●
●
●

●●●
●
●
●●●
●

●●●●●●

●

●

●

●
●●

● ●

●
●
●
●

●

●
●

●●

●●

●
●●●
●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●●
●
●
●

●

●
●
●

● ●

●●
●

●

●
●●

●●●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●
●●

●

●

●
●

●

●●
●

●● ●

●

●
●
●

●●

●●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●
●

●
●
●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●●●

●

●

●

●●●●●

●

●●●●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●●

●●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●●●

●

●

●●●●●●●

●

●●

●

●●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●●
●●

●

●●
●

●

●

●

●

●●

●●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

ORF_annotated N_truncation uORF other not_annotated

0

50
00

10
00

0
15

00
0

10
0

10
00

10
00

0

0

10

10
0

10
00

0

25

50

75

10
0

n
 o

f 
O

R
F

s
O

R
F

 le
n

g
th

 (
n

t)
P
−

s
ite

s
_

p
N

p
M

O
R

F
_

p
c
t_

P
−

s
ite

s

biotype protein_coding pseudogene non−coding isoform non−coding RNA

0.
0

0.
1

0.
2

0.
3

0.
4

−5 0 5
log2FC Nuc/Cyt

D
e

n
s
ity

all_Txs

discarded_Txs

all_selected_Txs

selected_Txs_noORF

selected_Txs_withORF

e)d)

−1
.0

−0
.5

0.
0

0.
5

80
S

po
ly
2

po
ly
3

po
ly
4

po
ly
5

po
ly
6

po
ly
7

po
ly
8

Polysome Fraction

lo
g

2
F

C
 t

o
 C

y
to

 (
a
ve

ra
g

e
)

ORF_pct_P_sites

2−5.33

5.33−12.9

12.9−27.6

27.6−56.2

56.2−85.9

85.9−98

poly8

poly2

−4 0 4

85.9−98 %

56.2−85.9 %

27.6−56.2 %

12.9−27.6 %

5.33−12.9 %

2−5.33 %

85.9−98 %

56.2−85.9 %

27.6−56.2 %

12.9−27.6 %

5.33−12.9 %

2−5.33 %

log2FC_to_Cytoplasm

O
R

F
_

p
c
t_

P
_

s
ite

s

18.09 mb

18.095 mb

18.1 mb

18.105 mb

0

60

Nucleus
RNA−seq

Txs

discarded

DRG2 (ENST00000395726.8)

DRG2 (ENST00000473213.1)

DRG2 (ENST00000482564.1)
DRG2 (ENST00000496428.6)

DRG2 (ENST00000577450.5)

DRG2 (ENST00000577771.5)

DRG2 (ENST00000578173.5)

DRG2 (ENST00000578767.5)

DRG2 (ENST00000579224.5)

DRG2 (ENST00000579601.5)

DRG2 (ENST00000580055.5)

DRG2 (ENST00000580929.5)

DRG2 (ENST00000582419.5)

DRG2 (ENST00000582528.5)

DRG2 (ENST00000584212.1)

0

150

Cytoplasm
RNA−seq

Txs
selected

DRG2 (ENST00000225729.7)

DRG2 (ENST00000467099.6)

DRG2 (ENST00000497744.1)

DRG2 (ENST00000582314.5)

DRG2 (ENST00000583162.1)

DRG2 (ENST00000583355.1)

0

30

P−sites

Ribo
Junctions

ORFs
discarded

DRG2 (ENST00000467099.6)

DRG2 (ENST00000497744.1)

DRG2 (ENST00000582314.5)

DRG2 (ENST00000583162.1)

DRG2 (ENST00000583355.1)

ORFs
quantified

DRG2 (ENST00000225729.7)

35 46
3

46
20

16
31

89
28

59

15 33 44

Figure 2: Quantification of translation on cytoplasmic mRNAs. a) Density of exonic fold changes for nuclear
and cytoplasmic RNA-seq for different transcript classes. Negative values indicate more cytoplasmic abundance,
while positive values indicate enrichment in the nucleus. b) The DGR2 locus as example: tracks represent, in
descending order: 1) Nuclear RNA-seq coverage, 2) discarded transcripts, 3) cytoplasmic RNA-seq coverage, 4) selected
transcripts, 5) P-sites positions, 6) junction reads, 7) discarded ORFs, 8) quantified ORFs. Color representation as
in Figure 1b. c) Overview of the SaTAnn-derived translatome. Number of ORFs, ORF length in nucleotides, length-
normalized quantification and % of gene translation are shown, stratified by ORF category and annotated biotype.
ORF annotated represents ORFs whose structure perfectly matches the annotated CDS; other represents additional
ORFs (e.g. nested ORFs, overlapping ORFs, dORFs), while not annotated represents ORFs in transcripts with
no CDS annotation. d) Average exonic fold changes with respect to cytoplasmic abundance (y-axis) for different
polysome fractions (x-axis) for ORFs exhibiting different levels of translation within the same genes. e) Density plot
of aforementioned exonic fold changes for two polysome fractions and for different ORF classes.
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Figure 3: de-novo annotation of NMD candidates. a) Schematic annotation of NMD candidates. b) Aggregate
profiles of 5’ fragments around stop codons of NMD candidates and controls from the same genes. c) Example of
a translated ORF in the GAS5 gene. d) Number of 5’ fragments observed in an XRN1 knockdown experiment
around stop codons (y-axis), versus the distance between stop codons and the last exon-exon junction (x-axis), for
different transcripts/ORF classes. Smoothing was carried out by a generalized additive model (gam in R, with default
parameters). The red vertical line indicates 50 nucleotides upstream of the last exon-exon junction.
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c)

a) Ribo-seq from different human cell lines:

Extract P-sites and junction reads

Run SaTAnn for each cell line

Compare the most translated (major)
ORF per gene
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Figure 4: Diversity in gene translation across cell lines. a) Workflow for the analysis of the different datasets. b)
Number of genes (top), average number of detected ORFs (middle) and average % of gene translation (bottom), for
each number of cell lines where the gene harbored a detected ORF. Colors indicate the gene biotype. Genes translating
one or more distinct major ORFs across cell lines are shown separately. c) Detected ORFs and Ribo-seq signal in
the GAS5 gene in K562 and Jurkat cells. d) Detected ORFs and Ribo-seq signal in the C5orf63 gene in HepG2 and
U2OS cells. e) Distribution of overlap between multiple major ORFs from the same gene. f) Length (in nucleotides)
of major ORFs with low and high overlap. g) Enrichment of different categories for major ORFs with high and low
degree of overlap.
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c)

d)

Merge SaTAnn calls 
from each cell line

Keep ORFs with >10%
of gene translation 
in at least 1 cell line

Create protein database
 (~44k entries)
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Figure 5: Agreement of protein synthesis with steady-state protein abundance estimates. a) Workflow of the pro-
teomics analysis (left). On the right, iBAQ values (y-axis) versus length-normalized translation quantification esti-
mates; proteins are split in multiple groups based on the number of detected unique peptides (proteomics) or unique
covered features (Ribo-seq). b) Correlation values (as in a) shown for all the assayed cell lines. c) % of gene protein
abundance (y-axis) plotted against % of gene translation (x-axis), with translation quantification performed with
(right) and without (left) adjusting for the presence of multiple ORFs. Size and color of each data point indicate
the number of unique peptides detected. d) Correlations from c) shown for the 6 cell lines. P-values derived from
Wilcoxon rank-sum test (one-sided).
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