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Abstract 20 

Background 21 

Although the cystic fibrosis (CF) lung microbiome has been taxonomically defined, little is still 22 

known about the overall gene content and functional profiles of the resident microbiome and how it 23 

changes in relation with patient’s disease status. The aim of this study was to investigate the 24 

taxonomic and functional temporal dynamics of airways microbiome in CF patients with chronic 25 

Pseudomonas aeruginosa infection. A shotgun metagenomic approach was used, to target the entire 26 

genomic repertoire of the microbial community and allow strain-level profiling.   27 

Results 28 

A cohort of 22 patients with moderate-severe lung disease carrying the ΔF508 mutation was enrolled 29 

and followed over 15 months. The taxonomic composition, metabolic repertoire and antibiotic 30 

resistance gene content of lung microbiome was investigated by time-resolved shotgun 31 

metagenomics. A high inter-patient taxonomic heterogeneity was found with short-term 32 

compositional changes during period of exacerbation and following antibiotic treatment. Each 33 

patient represented a unique environment showing distinct communities at the taxonomic level and 34 

high patient-specific colonization by both main and emerging CF pathogens. The extraordinary 35 

resilience of the CF microbiome was found even from a functional perspective. All samples showed 36 

a core set of antibiotic resistance genes with a limited influence of antibiotic intake.  37 

Conclusions 38 

 The main outcomes from this study indicate a patient-specific temporal dynamic of the microbiome 39 

and a high functional resilience following exacerbation and antibiotic treatment. 40 
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Background 41 

Cystic Fibrosis (CF) is the most common lethal autosomal recessive disease in Caucasians, caused 42 

by mutations in the gene coding for cystic fibrosis transmembrane conductance regulator (CFTR) 43 

channel [1]. Disruption of chloride anion transport, one of the key underlying features of CF, leads 44 

to altered physiological conditions at epithelial surfaces. In the airways, CFTR mutations result in a 45 

dehydrated viscous mucus that compromises mucociliary clearance and predisposes CF patients to 46 

repeated cycles of airway infection, mucous impaction, and bronchiectasis resulting in the majority 47 

of morbidity and mortality in the patient population [2]. In particular, bacterial lung infections 48 

reduce life expectancy in most CF patients [3]. The affected individuals consistently maintain high 49 

bacterial loads in their airways also during periods of clinical stability that are punctuated by 50 

episodes of pulmonary exacerbation [4]. Such periodic episodes of acute pulmonary exacerbation 51 

strongly contribute to the irreversible decline of lung function. Though much is known about the 52 

composition of the microbial infections in CF (for a recent review see [5]), the factors leading to 53 

such exacerbations are still poorly understood. In the past years, studies employing DNA-based 54 

analyses of the airway microbiota of CF patients have shown somewhat discordant results. Indeed, 55 

some authors report a largely stable airway microbiota through periods of exacerbation and 56 

antibiotic treatment [6], while other indicate of a high inter-patients variability [5,7–9], but also 57 

suggested the possibility to identify some microbial taxa as biomarker of exacerbation [10], as well 58 

as a role of rare species in exacerbation [11]. Most of these works are targeted metagenomic surveys 59 

performed on a variable number of patients and focusing on the 16S rRNA gene sequence. 60 

However, this approach offers limited possibilities to infer strain-level and functional (meaning 61 

based on functional genes) insights [12]. These two last points are particularly relevant when host-62 

microbiome interactions are studied. Indeed, the overall genetic repertoire of the microbiome (i.e. 63 
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the entire set of genes in all the genomes of the community members) is the main responsible of the 64 

interaction with the host [13]. Recently, the functional interactions among members of a bacterial 65 

community have stirred the attention of investigators for relating microbiome functionality to 66 

human-microbe interaction [14] and as a perspective for understanding the airway microbiome 67 

dynamics in CF [15]. In several human diseases where the microbial infection is an important factor, 68 

such as CF, single patients harbor genomically different strains, which ultimately may lead to 69 

explain individual differences in clinical outcomes [16–18]. Until now, few longitudinal studies, 70 

with a limited number of patients, on CF airway microbiota have been performed [19,20]. 71 

Moreover, studies on CF microbiome are few and on a limited number of patients [9,21–23] or 72 

specific metabolic functions [24]. Moving away from taxonomic inventories towards a better 73 

understanding of the CF microbiome genes opens a new avenue for the identification of the 74 

microbial gene repertoire associated with CF lung disease. An ecological perspective on 75 

multispecies and multi-strain colonization of CF airways will permit to understand the role of 76 

polymicrobial dynamics in lung disease progression [25] and provide the clinicians with new 77 

biomarkers of CF progression and targets for antibiotic therapy. 78 

In this work. we tried to fill the gap of knowledge about the temporal dynamics of the airway 79 

microbiome in CF, paying special attention to the episodes of exacerbation, by using a shotgun 80 

metagenomic approach [26], that is targeting the entire genomic repertoire of the microbial 81 

community, down to the strain level [27,28]. A cohort of 22 patients with moderate-severe lung 82 

disease, grouped according to different genotypes (homozygote and heterozygote for ΔF508 83 

mutation), and chronically infected with Pseudomonas aeruginosa, was selected and followed over 84 

15 months during which 8 patients underwent exacerbation events. This offered the opportunity to 85 

investigate the taxonomic and functional dynamics of the overall microbiome.  86 

 87 
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Results 88 

Population and sampling 89 

Twenty-two patients with CF were enrolled for a total of 15 females and seven males. The patients 90 

were chosen from a larger cohort of patients with moderate-severe lung disease (30 < %FEV1 < 70) 91 

and chronically infected by Pseudomonas aeruginosa. During the study period, they were treated 92 

with maintenance antibiotics (aerosol) and only a subset (n = 8) received clinical intervention in 93 

form of supplementary antibiotics (oral or/and intravenous) for a pulmonary exacerbation (CFPE) 94 

(Table 1 and supplementary materials Table S1). The bacterial microbiome was investigated on 95 

sputum samples obtained every 3-4 months from 22 individuals along a survey of 15 months. 96 

Within the 22 subjects monitored, 8 underwent episodes of exacerbations, which provided the 97 

opportunity to explore the microbiomes composition along the events. In total, 79 samples from 98 

these 22 subjects were collected and analyzed by a whole metagenomic sequencing approach. 99 

Airway microbiomes are taxonomically distinct and show patient-specific strain colonization 100 

The overall taxonomic representation of the microbiomes from the 79 samples is reported in Fig. 1a 101 

and 1b, whereas a summary of obtained reads per sample was reported in supplementary materials 102 

Table S2. Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria were the most represented 103 

phyla. A massive presence of the “classical” CF bacterial signatures (taxa), such as Staphylococcus 104 

aureus and Pseudomonas aeruginosa, and non-traditional CF taxa, such as Rothia mucilaginosa, 105 

and Prevotella melaninogenica (all present in the top-10 species within each phylum, Fig. 1b), was 106 

found. These species, indeed, represent the 49% of all detected taxa as reported in supplementary 107 

materials Table S3. 108 
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109 

Figure 1: Taxonomic distribution in patients enrolled in the study. a) The taxonomic110 

distribution of all species detected using MetaPhlAn2 was reported in each row of the matrix111 

whereas columns represent samples collected during the study. Colors from dark blue to red were112 

used to report “copies per million” (CPM) values as obtained from HUMAnN2 with black reporting113 

a CPM value of zero. The plot was divided according to patient status: BL, baseline; TR, treatment;114 

RC, recovery. Species were ordered according to their mean abundance and grouped according to115 

their Phylum. b) The mean abundance value of the top-ten species (if available) detected within each116 

Phylum was reported together with the standard error. 117 

Although samples can be hardly clustered based on treatment events and/or genotype (Fig. 2a), the118 

PERMANOVA analysis (Table 2) reported a significant effect of both factors. However, the R2119 

values, namely the proportion of variance explained by the factor considered, were very low (0.03120 

for both factors). We cannot exclude that the heterogeneity of patients (especially concerning age)121 

could have limited the statistical power of the analysis. The interaction effect between treatment122 

events and genotype was not significant (p-value > 0.05), meaning that different genotypes did not123 

influence the lung microbiome during treatment (viz. exacerbation) events and vice versa. The124 

predominant effect observed was the subject effect, reporting a R2 value of 0.52, indicating that a125 
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high fraction (more than 50%) of the total variance can be explained by subject (patient)126 

individuality. Both FEV1 and time did not show any significant effect (Table 2).  127 

128 

Figure 2: Ordination analyses based on a) taxonomic assignments and b) pathway distribution129 

detected with MetaPhlAn2 and HUMAnN2, respectively. Ordination analyses were conducted130 

using the Bray-Curtis dissimilarity index and ordered following the principle coordinate131 

decomposition method (PCoA). The percentage of variance explained by each coordinate was132 

reported between round brackets. Homozygote and heterozygote refer to ΔF508 mutation of CFTR133 

gene. BL, baseline; TR, treatment; RC, recovery. 134 

With the aim to evaluate the relevance of subject (patient) individuality, a strain-level analysis was135 

conducted. Results obtained revealed that strain genotypes inferred from metagenomic data are136 

highly patient-specific for many bacterial species. Indeed, samples (i.e. strains) from the same137 

patients are very closely related and tightly clustered, confirming a high patient-specific colonization138 

by strains of the above-mentioned species (Fig. 3 and supplementary materials Fig. S1).  139 
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 140 

Figure 3: Strain-level phylogenetic trees of the main CF pathogens detected in the study.141 

Phylogenetic trees obtained through StrainPhlAn pipeline were reported for the main pathogenic142 

signatures of CF disease: a) Pseudomonas aeruginosa; b) Staphylococcus aureus; c) Rothia143 

mucilaginosa; d) Prevotella melaninogenica. Points at the end of each clade are colored according144 

to patients so that two points with the same color, in the same tree, represent the same species in two145 

different time points, for the same patient. 146 

Alpha diversity analysis confirmed the overall picture of results mentioned above. Different values147 

of bacterial diversity were found according to clinical status, genotypes, and subjects (Fig. 4a,148 

supplementary materials Fig. S2 and Table S4). Samples collected during clinical treatments149 

reported a lower biodiversity than samples collected during normal visits, highlighting the role of150 

clinical treatments in perturbing CF lung communities as confirmed by the Tukey’s post hoc test151 

(supplementary materials Table S5). 152 
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 153 

Figure 4: Differences across exacerbation events. The effect of an exacerbation event on alpha154 

diversity was inspected using both the Shannon index and the inverse Simpson index. Diversity155 

indexes were computed for both a) taxonomic signature and b) metabolic pathways. BL, baseline;156 

TR, treatment; RC, recovery. Each box shows the “interquartile range” (IQR) that is the differences157 

between the third and the first quartile of data (the 75th and the 25th percentile). Horizontal bars are158 

medians whereas whiskers represent the minimum and maximum values defined as Q1 – (1.5 x159 

IQR) and Q3 + (1.5 x IQR), respectively. Observations that fell outside minimum and maximum160 

values were defined as outliers and reported using white points. 161 

Airway microbiomes are functionally consistent and show subject-specific distribution 162 

patterns 163 

Similar results as those reported above were obtained considering the pathway distribution. Indeed164 

the PERMANOVA analysis (Table 2) confirmed the effect of exacerbation events and genotypes in165 

shaping the pathway distribution of CF lung microbiome (R2 values of 0.04 and 0.03 respectively)166 

though less marked than the subject-specific effect (R2 = 0.48). The sample distribution according to167 

the ordination analysis (PCoA) was very heterogeneous with no sharp differences according to168 
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genotypes or exacerbation events. Even here, alpha diversity analyses reported a significant drop of 169 

diversity in samples collected during exacerbation events, but the drop was significant only 170 

considering the inverse Simpson index (Fig. 4b and supplementary materials Table S4). Overall, the 171 

pathway distribution was more consistent with respect to the taxonomic one, with biosynthetic 172 

pathways being the most represented functional category (Fig. 5, supplementary materials Fig. S2 173 

and Table S5). Pathways were mainly detected in members of Firmicutes and Proteobacteria phyla, 174 

though Bacteroidetes and Actinobacteria were quite well represented. Even if these results 175 

confirmed the results from the analysis of the taxonomic distribution, metabolic pathways showed a 176 

more consistent distribution across samples. Indeed, the beta-diversity analysis on both taxonomic 177 

and functional distribution showed a lower similarity based on taxonomy in respect with pathways 178 

(Supplementary materials Table S6, Fig. 6a and 6b). These results were additionally confirmed by 179 

the differential abundance analysis. For contrasts made within each genotype, only 40 pathways 180 

reported significant differences across exacerbation statuses (p-values < 0.05 and |log(fold-change)| 181 

> 5) all in the homozygote group (Supplementary materials Fig. S3 and Table S7), whereas, 182 

considering all samples together, no pathway was found to be more abundant in one condition in 183 

respect with another (data not shown). These results confirmed the extraordinary resilience of the 184 

CF microbiome even from a functional perspective. 185 
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186 

Figure 5: Pathway distribution according to exacerbation events. The pathway distribution was187 

reported for each sample (columns) and for each pathway detected (rows). Colors from dark blue to188 

red were used to report “copies per million” (CPM) values as obtained from HUMAnN2 with black189 

reporting a CPM value of zero. On the left, the percentage of taxa in which each pathway was190 

detected was reported using different colors. The main colors correspond to the Phylum whereas the191 

different shades correspond to the genus detected (if available). BL, baseline; TR, treatment; RC,192 

recovery. 193 
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194 

Figure 6: Beta diversity analysis on both taxonomic and functional distribution. a) Hierarchical195 

clustering based on UPGMA method. Clustering was performed on both pathway distribution (the196 

upped triangle) and taxonomic composition of samples (lower triangle). The Bray-Curtis distance197 

was used to compute distances between samples, but it was transformed into similarity value by198 

subtracting 1 before plotting. Thus, red colors represent high similarity values whereas blue colors199 

represent low similarity values. The shape of the points on each tip of trees refers to the hospital200 

whereas the colors refer to the exacerbation events. b) Results of Tukey’s post hoc test on beta201 

diversity values across patient genotypes and exacerbation events. Contrasts were computed even to202 

test differences between taxonomic distribution and pathways with taxa reporting higher level of203 

beta diversity. Homozygote and heterozygote refer to ΔF508 mutation of CFTR gene. BL, baseline;204 

TR, treatment; RC, recovery. Boxplot were computed as described in Figure 4 legend. 205 

 206 

Antibiotic resistance genes through exacerbation events and treatments 207 

Similar to the pathway analysis reported above, antibiotic resistance genes (ARG) were inspected in208 

relation to treatment events. Only six genes were found to be affected by an exacerbation condition209 
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all regarding samples form ΔF508 heterozygote patients whereas, as found for metabolic pathways, 210 

no gene was significantly impacted by antibiotic treatment when considering all samples at once 211 

(supplementary materials Fig. S4 and Table S8). A similar approach was used to inspect the effect 212 

of antibiotic treatment on ARG distribution. ARG were inspected in relation to the antibiotic 213 

treatments reported in supplementary materials Table S1. The class of each antibiotic was correlated 214 

to the presence (and the abundance) of genes that may, in principle, confer resistance to antibiotics 215 

from the corresponding class. Differential abundance analyses were performed for each classes of 216 

antibiotics that was used in this study and results obtained were reported in supplementary materials 217 

Fig. S5 and Table S9. Only 11 genes were found to be affected by antibiotic intake in different 218 

ways. Indeed, 8 out of 11 reported a reduction of abundance during the treatment whereas the 219 

remaining 3 reported an increased abundance in respect with antibiotic intake. Results obtained 220 

confirmed the high resilience of the gene composition of CF lung microbiome. The presence of 221 

ARGs coupled with antibiotic intake was also explored. Results showed that the antibiotic resistance 222 

classes of each gene corresponded to the antibiotic treatment used in each sample reporting a big 223 

block of ARGs that were present in most of the sample considered (Supplementary materials Fig. S6 224 

and Fig. S7). 225 

Discussions 226 

Longitudinal studies allow to provide important clues on stability and dynamics of microbial 227 

ecosystems [29]. As all biotic communities, microbial communities tend to evolve towards a stable 228 

composition, either in natural environment and in association with host (as human-associated 229 

microbiomes). Changes in the community can be triggered by external conditions, as changes in 230 

host physiology (e.g. inflammation status) and/or other perturbations (e.g. antibiotic treatment). 231 

Indeed, perturbation studies help to probe community dynamics and resilience and possibly discover 232 
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new findings for accessing ways for modifying the microbiome [30,31]. Although patients with CF 233 

experiments repeated episodes of pulmonary exacerbations during their lives, a broadly accepted 234 

definition of these events is still missing [4]. Here, we have investigated the temporal dynamics of 235 

CF airway microbiome by using shotgun metagenomics posing attention on exacerbation events 236 

which usually bring to an acute decrease in lung function and an increase in respiratory symptoms 237 

(such as: increased cough, sputum production, and shortness of breath). Key questions were i) what 238 

was the composition and stability of the lung microbiome in patients with CF when longitudinally 239 

sampled at stable and exacerbation events; and ii) if the clinical status influenced the metabolic 240 

repertoire and the AR gene composition of lung bacterial community. Our results describe a unique 241 

examination of the dynamic of the lung microbiome in patients with moderate-severe lung disease 242 

carrying the ΔF508 mutation of CFTR gene and containing clinical measurements over a 15-month 243 

period.,  244 

The lung microbiome of CF patients seems to be a highly patient-specific environment which can be 245 

directly conditioned by the host and its habits. Indeed, there was less variation within the same 246 

individual at different time points than between different individuals at the same time point, proving 247 

some degree of temporal stability of an individual’s lung microbiome. This last point agrees with the 248 

lack of a time effect on the taxonomic distribution of microbiome. The predominant taxa that 249 

colonized the lung of CF patients showed an extraordinary resilience, as witnessed by the presence 250 

of the same strains during the whole period of infection. These results agree with previous 251 

observations based on 16S rRNA gene profiling, though these studies failed to report a strain-252 

specific overview of the whole dynamic due to the limitations intrinsic to the approach [6,8,11]. 253 

Carmody and colleagues showed a relatively stable lung community that may be altered during 254 

period of exacerbation even in the absence of viral infection or antibiotic only in a small group of 255 

patients [10]. Even in other pulmonary diseases, such as non-cystic fibrosis bronchiectasis, lung 256 
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bacterial communities showed a conserved structure for long period of time, as showed in the work 257 

by Cox and colleagues where patients were followed for a six-month period [8]. A similar result was 258 

shown in the work from Fodor and colleagues [6] where, though occasional short-term 259 

compositional changes in the airway microbiota were found, the main taxonomic signatures of CF 260 

disease were highly stable. A notable exception was found for Rothia mucilaginosa. In fact, in 261 

contrast with other studies where it was rarely identified [15,32,33], in our samples it was detected 262 

in high relative abundance. This finding may suggest a potential involvement of Rothia 263 

mucilaginosa in CF microbiome dynamics and pathogenicity, which deserves further attention. 264 

The antibiotic treatment used did not seem to alter this micro-environment for long period of time 265 

since most of the main taxa linked to CF infection are still present even after exacerbation events 266 

that are usually handled by a massive amount of antibiotic. From a taxonomic perspective, samples 267 

coming from the same patient clustered together highlighting the role of the host in bacterial strain 268 

selection during the baseline but even during (and after) exacerbation events. Despite this patient-269 

specific colonization, the taxonomic composition was very different from one subject to another 270 

event if sampled at the same time point. 271 

On the other hand, pathways reported a more homogeneous distribution across patients. This high 272 

conservation could be related to the characteristic of the lung environment itself, such as mucus 273 

compositions, nutrient availability, and oxygen levels, which can be broadly similar across patients 274 

with a similar clinical status. This, is in line with the finding that the function of a biotic community 275 

is more conserved than the presence of single members [34]. In fact, though the lung microbiome in 276 

our study was populated with a relatively large set of microorganisms, the main functions detected 277 

are similar across all patients. From this point of view the airway microbiome can be considered as 278 

performing a similar “ecosystem service”, irrespective of the taxonomy present as pointed out by 279 

various authors in other environments [34–36]. The finding that CFTR genotypes a different 280 
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representation in some pathways, may suggest that the airways microbiome is influenced by the type 281 

of CFTR alteration. However, this hypothesis deserves further attention to clarify the specific role of 282 

microbial pathways with respect to CFTR genotype. Pathogenic bacteria, such as Pseudomonas 283 

aeruginosa, need to colonize human tissues to grow and in this sense, even pathway that could be 284 

related to a worsening of clinical conditions or that could be targeted by antibiotic molecules will be 285 

part of this core set of functions. Despite a clear effect of antibiotic treatment during (and after) 286 

exacerbation periods, the community structure is always recovered with the main pathogenic taxa 287 

emerging again. This effect is confirmed by the correlation of ARG distribution and antibiotic 288 

intake. Patients subjected to a given antibiotic treatment did not seem to select bacteria resistant to 289 

the antibiotic used but the detection of a particular mechanism seems to be distributed in almost all 290 

patients regardless of the treatment. An evidence of functional stability of the lung microbiota was 291 

previously reported in other works not concerning CF disease [37,38]. Both works focused their 292 

attention on the gut microbiome of obese and healthy individuals (human and mouse) reporting a 293 

considerable metabolic redundancy. This high degree of redundancy in the gut microbiome supports 294 

a more ecological view where subjects can be considered as different ecological niches all inhabited 295 

by unique collections of microbial phylotypes but all sharing the same set of genes. This concept can 296 

be extended to the lung microbiome where it is possible to define a core set of features only at the 297 

level of metabolic functions. This functional conservation may thus be needed by the whole 298 

community and patients can be seen as multiple micro-environments inhabited by a peculiar set of 299 

strains, which share the same functions. This work represents a step forward toward a patient-300 

specific interpretation of CF microbiology [39]. 301 

Conclusions 302 

In summary, the temporal dynamics of the airway microbiome in a large cohort of patients with CF 303 

revealed patient-specific signatures of the airway microbiome at strain-level profiling, the lack of 304 
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variation in the microbiome across pulmonary exacerbations, and a core set of antibiotic resistance 305 

genes that did not vary by antibiotic intake. The main conclusion of the present study is that the 306 

management of chronic CF infection may be improved by a more patient-specific personalization of 307 

clinical care and treatment. Longitudinal studies of CF airway microbiota will permit to tailor 308 

therapeutic interventions and select antibiotic therapies based on the composition and relative 309 

abundance of antibiotic resistance genes within the respiratory microbiome.  310 

Methods 311 

Demographic and clinical characteristics of enrolled patients 312 

Twenty-two adolescents and adults with CF were enrolled in the study between October 2014 and 313 

March 2015 (Table 1). The study subjects were selected based on eligibility criteria that included all 314 

of the following: (i) a diagnosis of CF, i.e., a sweat test showing sweat Cl > 60 mmol/l and two 315 

known CFTR mutations causing the disease with pancreatic insufficiency (elastase< 5 μg/g/feces) 316 

[40], (ii) aged more than six years, i.e., between 11 and 55 years, (iii) chronically infected with 317 

Pseudomonas aeruginosa according to the Leeds criteria [41] and iv) decline in %FEV1 in the 318 

previous three years before enrollment by measuring the difference between the best %FEV1 319 

registered within the previous year and the best %FEV1 registered two-years before specimen 320 

collection, following the criteria previously reported [42]. Patients were excluded if they were 321 

chronically infected with Burkholderia cepacia complex. Using these criteria, 22 patients with 322 

moderate-severe lung disease and carrying the ΔF508 mutation were included in the study for a total 323 

of 79 shotgun metagenomic samples. The cohort was enrolled in three Italian Hospital, namely: 324 

Bambino Gesù Children's Hospital (Rome, Italy), G. Gaslini Children's Hospital (Genoa, Italy) and 325 

Meyer Children's Hospital (Florence, Italy). Clinical status at the time of collection was 326 

designated as baseline (BL), when clinically stable and at their clinical and physiological baseline, 327 
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on treatment (TR), at exacerbation-associated antibiotic treatments, and at recovery (RC), upon 328 

completion of antibiotic treatment. Subjects were treated according to current standards of care with 329 

periodical microbiological controls [43] with at least four microbiological controls per year [4]. At 330 

each visit, clinical data collection and microbiological status (colonizing pathogens with available 331 

cultivation protocols) were performed according to the European CF Society standards of care [44]. 332 

Forced expiratory volume in 1 second as a percentage of predicted (%FEV1) is a key outcome of 333 

monitoring lung function in CF [45]. FEV1 values were measured according to the American 334 

Thoracic Society and European Respiratory Society standards [43]. CFTR genotype, sex, age, and 335 

antibiotic treatment for each patient were reported in (Table 1 and supplementary materials Table 336 

S1). During serial sampling, data (antibiotic usage and spirometry) were collected. 337 

Sample collection, processing, DNA extraction and sequencing 338 

Sputum samples were obtained by spontaneous expectoration at baseline, exacerbation-associated 339 

antibiotic treatments and recovery status. Sampled were processed according to standard methods as 340 

previously described [13,46]. Bacterial respiratory pathogens were identified using the conventional 341 

techniques reported in the Guidelines, as previously described [46,47]. The number of samples, 342 

microbiological status at sampling and samplings following exacerbation events are reported in 343 

Table 1. Sputum samples were washed in 5 ml PBS and then centrifuged (3,800 g) for 15 minutes. 344 

Resulting pellets were resuspended in 5-10 ml DNAse buffer (10 mM Tris-HCl pH 7.5; 2.5 mM 345 

MgCl2; 0.5 mM CaCl2, pH 6.5) with 7.5 ul of DNAse I (2000 Units/ml) per 1 ml of sample 346 

(15U/ml final), incubated for 2 hours at 37C, and washed twice by pelleting at 3,800 g for 15 347 

minutes and resuspending in 10 ml SE buffer (75 mM NaCl, 25 mM EDTA, pH 7.5). Pellets were 348 

then resuspended in 0.5 ml lysis buffer (20 mM Tris-HCl pH 8.0; 2 mM EDTA pH 8.0; 1% (v/v) 349 

Triton; 20 mg/ml Lysozyme final concentration), incubated for 30 minutes at 37C before extracting 350 
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DNA with the MoBio Powersoil DNA extraction kit as per manufacturer's instructions. Libraries 351 

were prepared with Nextera XT kit (Illumina) Sequencing was performed on an Illumina HiSeq2500 352 

apparatus (Illumina). Raw sequence data reported in this study have been deposited in the NCBI 353 

“Sequence Read Archive” (SRA) under the project accession PRJNA516870. 354 

Bioinformatic analyses 355 

Sequence quality was ensured by trimming reads using StreamingTrim 1.0 [48], with a quality 356 

cutoff of 20. Bowtie2 [49] was used to screen out human-derived sequences from metagenomic data 357 

with the latest version of the human genome available in the NCBI database (GRCh38) as reference. 358 

Sequences displaying a concordant alignment (mate pair that aligns with the expected relative mate 359 

orientation and with the expected range of distances between mates) against the human genomes 360 

were then removed from all subsequent analyses. Metabolic and regulatory patterns were estimated 361 

using HUMAnN2 [50] and considering only those pathways with a coverage value ≥ 80%, whereas 362 

the taxonomic microbial community composition was assessed using MetaPhlAn2 [51]. Reads were 363 

assembled into contigs using the metaSPAdes microbial assembler [52] with automatic k-mer length 364 

selection. To establish an airway microbiome gene catalog [12] we first removed contigs smaller 365 

than 500bp and then used prodigal in Anonymous mode [53], as suggested by the author of the tool, 366 

to predict open reading frames (ORFs). Translated protein sequences obtained from assembled 367 

contigs were classified using eggNOG mapper against the bactNOG database [54]. Each protein was 368 

classified according to its best hit with an e-value lower than 0.001 as suggested in [55]. The CARD 369 

database [56] was used in combination to the Resistance Gene Identifier (RGI, version 4.0.3) to 370 

inspect the distribution of antibiotic resistance gene (AR genes). Genes predicted within each 371 

metagenome were quantified using the number of reads that mapped against metagenomic contigs 372 

obtained for each sample. Reads were mapped back to contigs using Bowtie2 [49] and the number 373 
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of reads mapping each ORF was obtained with the bedtools command “multicov” (version 2.26.0). 374 

To quantify gene content across different samples, genes were collapsed using the bestOG given by 375 

eggNOG mapper by summing together the number of reads that mapped genes with the same 376 

annotation. The same approach was used to quantify AR genes predicted with RGI but this time the 377 

unique identifier provided by CARD was used to collapse counts. 378 

Strain characterization was performed using StrainPhlAn [27]. Sequence variants for each organism 379 

detected were assessed against the MetaPhlAn2 [51] marker genes and a tree has been generated 380 

including all samples in which the organism was found at least in one time point. One reference 381 

genome per organism was downloaded from the RefSeq database and added to the tree. 382 

Taxonomic classification of metagenomic contigs 383 

Assembled contigs were taxonomically classified using BLAST. First, all genomes available for 384 

each species detected with MetaPhlAn2 were downloaded from NCBI and used to build a database 385 

for each sample. All genomes reporting an identity higher than 90% and a coverage higher than 80% 386 

were collected and used for taxonomic classification. Contigs reporting hits with genomes coming 387 

from a single species were assigned to that species whereas contigs reporting hits from multiple 388 

species were flagged as unknown. 389 

Statistical analyses 390 

Statistical analyses were performed in R [57] version 3.4.4. The taxonomical and functional 391 

composition on lung microbiome was explored using permutational multivariate analysis of variance 392 

(PERMANOVA with 1000 permutations), ‘adonis2’ function of vegan package version 2.5-2; 393 

whereas differences in bacterial diversity were tested using analysis of covariance (ANCOVA), 394 

‘aov’ function. The model fitted for both analyses was: 395 
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X ~ Status + Genotype + Subject + FEV1 + days 396 

where, Exacerbation is the exacerbation event, Genotype is the CFTR genotype, Subject is the 397 

patient, FEV1 was the forced expiatory volume in 1 second, and days, was the number of days from 398 

the enrollment in the study. For the ANCOVA analyses Tukey's post hoc tests were performed to 399 

test for mean differences within each factor used to build the full model (excluding FEV1 value and 400 

days since they were not categorical variable). Ordination analyses were conducted on both taxa and 401 

pathways using the function ‘ordinate’ of the phyloseq package (version 1.23.1) with principle 402 

coordinate decomposition method (PCoA) and the Bray-Curtis dissimilarity index. The same index 403 

was used to inspect the distribution of samples and compare beta diversity level in bot taxonomic 404 

composition and pathways. 405 

To test for differentially distributed pathways and taxa across exacerbation events and genotypes we 406 

used a moderated t-test as implemented in the limma package [58], version 3.34.9. Data obtained 407 

with MetaPhlAn2 (taxonomic composition) and HUMAnN2 (pathway composition) were fitted into 408 

limma’s model using subjects as blocking variable. Since both software quantify biological units 409 

using relative counts (HUMAnN2 uses “copies per million” and MetaPhlAn2 uses percentages) we 410 

transformed this data into logarithmic values using the formula: log2(x + 0.1), where x are the 411 

relative counts. Obtained p-values were corrected using the Benjamini-Hochberg correction method. 412 

A similar approach has been used for antibiotic genes detect along assembled contigs. Here the 413 

number of reads that mapped onto each gene was used to estimate differentially abundant gene. 414 

Since the number of reads for each sample was variable (the ratio of the largest library size to the 415 

smallest was more than 10-fold) we used limma’s voom method [59] to fit our model, as suggested 416 

by the author of limma. 417 
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Tables 453 

Table 1. Characteristics of patients enrolled in the study. ID, study id; Hospital, hospital in 454 

which patient has been enrolled [OPBG=Children's Hospital and Research Institute Bambino Gesù 455 

(Rome, Italy); Gaslini=G. Gaslini Institute (University of Genoa, Genoa, Italy); Meyer=Cystic 456 

Fibrosis Center, Anna Meyer Children’s University Hospital (Florence, Italy)]; Genotype, CFTR 457 

genotype; Gender, gender; Age, enrollment’s age; n, number of samples collected; EX, yes if an 458 

exacerbation event has occurred during the study (no otherwise) [4]; FEV1, mean value of forced 459 

expiratory volume in 1 second plus/minus the standard error on the mean; heterozygote and 460 

homozygote refers to ΔF508 genotype; %FEV1 status: S = with a rate decline lower than 1.5%, SD 461 

= with a rate decline higher than 5% [42]. 462 

 463 

ID Hospital Genotype Gender FEV1 
status 

Age n EX %FEV1 

B01 OPBG ΔF508/2183AA-
>G 

M S 27 5 yes 37.0 ± 1.70 

B02 OPBG ΔF508/N1303K F SD 26 3 no 54.7 ± 3.48 
B03 OPBG ΔF508/4016insT F S 30 4 no 55.0 ± 1.08 
B06 OPBG ΔF508/ΔF508 F SD 21 4 no 60.2 ± 3.42 
G10 Gaslini ΔF508/ΔF508 M S 51 4 no 54.0 ± 3.08 
G24 Gaslini ΔF508/ΔF508 F S 49 3 yes NA ± NA 
G28 Gaslini ΔF508/ΔF508 F NA 38 2 no 42.5 ± 1.50 
G30 Gaslini ΔF508/ΔF508 F S 50 1 no 54 
G31 Gaslini G1244E/G42X F SD 53 2 no 41.5 ± 1.50 
G34 Gaslini ΔF508/ΔF508 F S 39 1 no 47 
M05 Meyer ΔF508/ΔF508 M SD 32 4 no 34.8 ± 0.85 
M19 Meyer ΔF508/ΔF508 M S 24 4 no 44.0 ± 2.04 
M21 Meyer ΔF508/N1303K M SD 27 4 yes 51.5 ± 4.35 
M22 Meyer ΔF508/2789+5G-

>A 
F S 29 5 yes 50.4 ± 1.03 

M23 Meyer ΔF508/G542X F S 30 4 yes 37.0 ± 1.47 
M24 Meyer ΔF508/ΔF508 M S 32 4 no 35.2 ± 0.85 
M25 Meyer ΔF508/296+1G-

>T 
F SD 41 4 no 42.5 ± 2.02 

M26 Meyer ΔF508/3849+10 F SD 49 5 yes 39.6 ± 1.94 
M28 Meyer ΔF508/N1303K M S 23 4 no 39.0 ± 1.08 
M29 Meyer ΔF508/G542X F S 12 4 no 43.5 ± 3.75 
M31 Meyer ΔF508/ΔF508 F SD 11 3 yes 32.7 ± 4.41 
M33 Meyer ΔF508/G85E F SD 13 5 yes 35.4 ± 5.78 

Total: 22 Gaslini:6 
Meyer:12 
OPBG:4 

Heterozygote :47 
Homozygote :29 

Other:2 

F:15 
M:7 

S:12 
SD:9 

32.1 ± 2.73 79 no:14 
yes:8 

43.5 ± 1.09 
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Table 2. Permutational multivariate analysis of variance (PERMANOVA) on both taxonomic 464 

distribution and metabolic pathways. The analysis based on taxonomic distribution was reported in 465 

the upper part of the table whereas the analysis based on metabolic pathways was reported at the 466 

bottom. Df, degrees of freedom; SumOfSqs, sum of squares; R2, r-squared statistic (reported as 467 

proportion); F, F-statistic; Pr(>F), p-value associated to the F-statistic. Significant effects, namely 468 

those reporting a p-value lower than 0.05, were reported in bold. 469 

 470 

  471 

 Df SumOfSqs R2 F Pr(>F) 
Taxonomy 

     
Status 2 0.68 0.03 1.91 0.0300 

Genotype 1 0.77 0.03 4.30 0.0020 

Sample 18 11.97 0.52 3.74 0.0010 

FEV1 value 1 0.27 0.01 1.53 0.1349 

Days 1 0.28 0.01 1.58 0.1229 

Status:Genotype 1 0.11 0.01 0.64 0.7642 

Residual 49 8.72 0.38 - - 

      
Pathway 

     
Status 2 0.20 0.04 2.37 0.0220 

Genotype 1 0.14 0.03 3.42 0.0080 

Sample 18 2.43 0.48 3.20 0.0010 

FEV1 value 1 0.09 0.02 2.14 0.0989 

Days 1 0.05 0.01 1.26 0.2458 

Status:Genotype 1 0.08 0.02 1.96 0.1169 

Residual 49 2.07 0.41 - - 
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