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Abstract  25 

Although the cystic fibrosis (CF) lung microbiome has been characterized in several studies, little is 26 

still known about the functions harboured by those bacteria, and how they change with disease 27 

status and antibiotic treatment. The aim of this study was to investigate the taxonomic and 28 

functional temporal dynamics of airways microbiome in a cohort of CF patients. Multiple sputum 29 

samples were collected over 15 months from 22 patients with chronic P. aeruginosa infection, for a 30 

total of 79 samples. DNA extracted from samples was subjected to shotgun metagenomic 31 

sequencing allowing either strain-level taxonomic profiling and assessment of the functional 32 

metagenomic repertoire.  High inter-patient taxonomic heterogeneity was found with short-term 33 

compositional changes during exacerbations and following antibiotic treatment. Each patient 34 

exhibited distinct sputum microbial communities at the taxonomic level, and strain-specific 35 

colonization of traditional CF pathogens, including P. aeruginosa, and emerging pathogens. Sputum 36 

microbiome was found to be extraordinarily resilient following antibiotic treatment, with rapid 37 

recovery of taxa and metagenome-associated gene functions. In particular, a large core set of genes, 38 

including antibiotic resistance genes, were shared across patients despite observed differences in 39 

clinical status or antibiotic treatment, and constantly detected in the lung microbiome of all subjects 40 

independently from known antibiotic exposure, suggesting an overall microbiome-associated 41 

functions stability despite taxonomic fluctuations of the communities.  42 

IMPORTANCE While the dynamics of CF sputum microbial composition were highly patient-43 

specific, the overall sputum metagenome composition was stable, showing a high resilience along 44 

time and antibiotic exposure. The high degree of redundancy in the CF lung microbiome could 45 

testifies ecological aspects connected to the disease that were never considered so far, as the large 46 

core-set of genes shared between patients despite observed differences in clinical status or antibiotic 47 
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treatment. Investigations on the actual functionality (e.g. by metatranscriptomics) of the identified 48 

core-set of genes could provide clues on genetic function of the microbiome to be targeted in future 49 

therapeutic treatments.  50 

 51 

Key words: cystic fibrosis; lung microbiome; longitudinal studies; metagenome composition; 52 

antibiotic resistance genes  53 

 54 

Introduction  55 

Bacterial lung infections reduce life expectancy in most individuals with cystic fibrosis (CF) (1). 56 

Sputum bacterial loads remain equally high both during periods of clinical stability and during 57 

pulmonary exacerbations (2), the latter of which contribute to the irreversible decline of lung 58 

function. Though much is known about microbes that cause respiratory infections in CF (3), how 59 

microbes contribute to exacerbations is still poorly understood. In the past years, studies employing 60 

DNA-based analyses of the airway microbiota of CF patients have reported somewhat discordant 61 

results. Indeed, while some studies showed a largely stable airway microbiota during clinical change 62 

and antibiotic treatment (4), other did not, suggesting changes the involvement of some microbial 63 

taxa in exacerbation (5, 6). Most of these used 16S rRNA gene sequencing, yielding the identities 64 

and relative abundances of the taxa present (i.e., the microbiota), but without providing any strain-65 

level or functional (meaning based on functional genes) information (i.e., the metagenome) (7). 66 

These latter characteristics are particularly relevant for studying host-microbiome interactions. 67 

Indeed, defining the dynamics of individual microbial strains provides important information 68 

regarding how specific sub-lineages of pathogens persist and relate to clinical change. On the other 69 

hand, studying the microbial genetic repertoire, e.g. antibiotic resistance and virulence-related 70 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 27, 2020. ; https://doi.org/10.1101/609057doi: bioRxiv preprint 

https://doi.org/10.1101/609057


4 
 

genes, with respect to clinical status or treatment can identify mechanisms of microbial persistence 71 

and pathogenesis (8–10). Until now, few longitudinal studies, with a limited number of patients, 72 

focusing only on CF airway microbiota have been performed (11–13). Moreover, studies on the 73 

complete CF microbiome (microbiota and metagenome) are few and on a limited number of patients 74 

(13–16) or focused on specific metabolic functions (17).  In this work, we studied the temporal 75 

dynamics of CF sputum microbiomes, focusing on patients with moderate-severe lung disease, 76 

chronically infected by Pseudomonas aeruginosa. In a previous work (18), chronic infection with P. 77 

aeruginosa has been found to be associated with dysbiosis in the lungs of patients with CF. The 78 

authors suggested that the dominance of one species remodels the lung microbiota and may promote 79 

severity of CF lung disease. A more detailed taxonomic and functional analysis could help 80 

elucidating the mechanisms leading to chronic infection with P. aeruginosa and the microbial 81 

factors that contribute to the global changes of their lung microbiome. In the present study, a 82 

shotgun metagenomic approach was used (19) to detect the entire sputum microbial genomic 83 

repertoire down to the strain level (20, 21). A cohort of 22 patients with moderate-severe lung 84 

disease, grouped according to homozygosity versus heterozygosity for ΔF508 (also known as 85 

F508del) in the CFTR gene and chronically infected with P. aeruginosa, was selected and followed 86 

over 15 months during which 8 patients underwent exacerbation events. We aimed to determine the 87 

composition of sputum microbiomes for these patients when longitudinally sampled during periods 88 

of stability and exacerbation, defining the relationship between clinical status, sputum microbial 89 

metabolic gene repertoire, and the antibiotic-resistance (AR) gene composition of sputum bacterial 90 

community, providing a previously unknown, high-resolution view of CF sputum microbiome 91 

dynamics.  92 

 93 
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Results 94 

Patients and sampling 95 

Twenty-two patients with CF were enrolled (15 females and seven males) who had moderate-severe 96 

lung disease (30 < %FEV1 < 70) and were chronically infected by P. aeruginosa, according to the 97 

Leeds criteria (22). During the study period, patients were treated with maintenance antibiotics 98 

(aerosol) and only a subset (n = 8) received clinical additional antibiotics (oral or/and intravenous) 99 

for a pulmonary exacerbation (CFPE) (Table 1 and supplementary materials Table S1). Among the 100 

22 subjects, 8 were diagnosed with exacerbations during the study period. In total, 79 sputum 101 

samples were collected and analyzed using shotgun metagenomic sequencing. 102 

 103 

Airway microbiomes are taxonomically distinct and show patient-specific strain colonization 104 

The overall taxonomic representation of the microbiomes from the 79 samples is reported in Fig. 1a 105 

and 1b, whereas a summary of obtained reads per sample was reported in supplementary materials 106 

Table S2. Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria were the most represented 107 

phyla. A high relative abundance of the “classical” CF bacterial signatures (taxa), such as 108 

Staphylococcus aureus and Pseudomonas aeruginosa, and non-traditional CF taxa, such as Rothia 109 

mucilaginosa, and Prevotella melaninogenica (all present in the top-10 species within each phylum, 110 

Fig. 1b), was found. These species, indeed, represent the 49% of all detected taxa as reported in 111 

supplementary materials Table S3. 112 

Although principal coordinates analysis showed that subjects did not cluster based on treatment 113 

events and/or genotype (Fig. 2a), the PERMANOVA analysis (Table 2) reported a significant effect 114 

of both factors. The R2 values, namely the proportion of variance explained by the factor considered, 115 

were very low (Table 2, R2 = 0.03 for both factors, p-values < 0.05) probably due to intra-patient 116 
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heterogeneity. CFTR genotype did not influence the effect of antibiotic treatment (viz. exacerbation) 117 

on sputum microbiota, nor vice versa (p-value > 0.05, treatment-genotype interaction effect). 118 

Subject effect was predominant with an R2 value of 0.52. A high fraction (more than 50%) of the 119 

total variance can be thus explained by inter-subject variation. Neither FEV1 nor time showed any 120 

significant relationship with taxonomy or functional profile (Table 2).  121 

We then performed a strain-level analysis of the sputum microbiomes. This analysis demonstrated, 122 

in samples from the same patient but at different time points, that bacterial lineages were in general, 123 

closely related and tightly clustered together, confirming a patient-specific bacterial colonization 124 

(Fig. 3 and supplementary materials Fig. S1). 125 

Alpha diversity analyses were consistent with the results above. Bacterial diversity measures 126 

(Shannon and inverse Simpson indices) varied according to clinical status, genotype, and subject 127 

(Fig. 4a, supplementary materials Fig. S2 and Table S4). Samples collected during clinical 128 

treatments exhibited lower microbial diversity than samples collected at either baseline or recovery 129 

visits, highlighting the role of clinical treatments in perturbing CF lung communities (supplementary 130 

materials Table S5). 131 

 132 

Airway microbiomes are functionally consistent and show subject-specific distribution 133 

patterns 134 

The results of functional metagenomic analyses were consistent with the taxonomic findings 135 

described above. Exacerbation events and patient genotype significantly impacted pathway 136 

distribution (Table 2, R2 values of 0.04 and 0.03 respectively, p-values < 0.05), though with less an 137 

effect than that of subject (R2 = 0.48). The sample distribution according to the ordination analysis 138 

(PCoA) was very heterogeneous with no sharp differences according to genotypes or exacerbation 139 

events. Alpha diversity dropped significantly in samples collected during exacerbation events, but 140 
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the drop was significant only considering the inverse Simpson index (p-value = 0.036, Fig. 4b and 141 

supplementary materials Table S4). Overall, the pathway distribution was more consistent with 142 

respect to the taxonomic one, with biosynthetic pathways being the most represented functional 143 

category (Fig. 5, supplementary materials Fig. S2 and Table S5). Pathways were mainly detected in 144 

members of the phyla Firmicutes and Proteobacteria, followed by Bacteroidetes and Actinobacteria. 145 

Even if these results confirmed the results from the analysis of the taxonomic distribution, metabolic 146 

pathways showed a more consistent distribution across samples. Indeed, the beta-diversity analysis 147 

on both taxonomic and functional distribution showed a lower similarity based on taxonomy in 148 

respect with pathways (Supplementary materials Table S6, Fig. 6a and 6b). These results were 149 

additionally confirmed by the differential abundance analysis. For contrasts made within each 150 

genotype, only 40 pathways reported significant differences across exacerbation statuses (p-values < 151 

0.05 and |log(fold-change)| > 5) all in the homozygote group (Supplementary materials Fig. S3 and 152 

Table S7), whereas, considering all samples together, no pathway was found to be more abundant in 153 

one condition in respect with another (data not shown). These results confirmed the extraordinary 154 

resilience of the CF microbiome evident at the taxonomic level is also exhibited from a functional 155 

perspective, indicating that neither clinical change nor antibiotic treatments are accompanied by 156 

changes in sputum microbial functions; for example, antibiotics do not appear to select for or against 157 

specific functions. To test this specifically, we focused on known antibiotic resistance genes. 158 

 159 

Antibiotic resistance genes through exacerbation events and treatments 160 

Similar to the pathway analysis reported above, antibiotic resistance genes (ARG) were inspected in 161 

relation to treatment events. Only six genes were found to be affected by an exacerbation condition, 162 

all regarding samples from patients heterozygous for ΔF508 whereas, as found for metabolic 163 
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pathways, no gene was significantly impacted in terms of abundance by antibiotic treatment when 164 

considering all samples at once (supplementary materials Fig. S4 and Table S8). A similar approach 165 

was used to inspect the effect of antibiotic treatment on ARG distribution. ARG were inspected in 166 

relation to the antibiotic treatments reported in supplementary materials Table S1. The class of each 167 

antibiotic was correlated to the presence (and the abundance) of genes that may, in principle, confer 168 

resistance to antibiotics from the corresponding class. Differential abundance analyses were 169 

performed for each classes of antibiotics that was used in this study and results obtained were 170 

reported in supplementary materials Fig. S5 and Table S9. Only 11 genes were found to be affected 171 

by antibiotic intake in different ways. Indeed, 8 out of 11 reported a reduction of abundance during 172 

the treatment whereas the remaining 3 reported an increased abundance in respect with antibiotic 173 

intake. Results obtained confirmed the high resilience of the gene composition of CF lung 174 

microbiome. The relationship between presence of ARGs with antibiotic treatment was also 175 

explored. Results showed a large group of ARGs present in most of the samples and that the 176 

antibiotic treatment used in each sample was mirrored by the representation of the ARG classes 177 

(Supplementary materials Fig. S6 and Fig. S7). 178 

Discussion 179 

Longitudinal studies provide important information on the stability and dynamics of microbial 180 

ecosystems (23). Here, we investigated the temporal dynamics of the CF sputum microbiome using 181 

shotgun metagenomics, including both periods of stability and respiratory exacerbations. The 182 

sputum microbiomes of CF patients were highly patient-specific and were substantially impacted 183 

both by the host and its lifestyle, suggesting the host has one of the most important determinants of 184 

sputum microbiome composition. Indeed, there was less variation within the same individual at 185 

different time points than between different individuals at the same time point, proving some degree 186 
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of temporal stability of an individual’s sputum microbiome, as indicated by the lack of a time effect 187 

on the taxonomic distribution of microbiomes. The predominant taxa detected in sputa of CF 188 

patients exhibited extraordinary resilience, as demonstrated by the presence of the same strains of 189 

several species during the entire study period. While similar conclusions have been drawn from 190 

previous studies using both culture and 16S rRNA gene profiling, these studies failed to report a 191 

comprehensive, taxonomy-wide view of strain dynamics due to the limitations of these approaches 192 

(4, 6, 24). Carmody and colleagues showed a relatively stable sputum community that was often 193 

altered during period of exacerbation even in the absence of viral infection or antibiotic only in a 194 

small group of patients (5). A similar result was shown in the work from Fodor and colleagues (4) 195 

where, though occasional short-term compositional changes in the airway microbiota were found, 196 

the main taxonomic signatures of CF disease were highly stable. Even in other pulmonary diseases, 197 

such as non-cystic fibrosis bronchiectasis, respiratory sample bacterial communities showed a 198 

conserved structure for long period of time, as showed in the work by Cox and colleagues where 199 

patients were followed for a six-month period (24). In our study a notable exception was found for 200 

Rothia mucilaginosa. In fact, in contrast with other studies where this species was rarely identified 201 

(25–27), in our samples it was detected in high relative abundance. This finding may suggest a 202 

potential involvement of R. mucilaginosa in CF microbiome dynamics and pathogenicity, which 203 

deserves further attention. 204 

Antibiotic exposure did not result in durable, persistent changes in sputum microbiota; the main taxa 205 

linked to CF infection were still present even after aggressive antibiotic treatment. From a 206 

taxonomic perspective, samples coming from the same patient clustered together, highlighting the 207 

role of the host in bacterial strain selection during the baseline but even during (and after) 208 

exacerbation events. Strain selection can be indeed influenced by a number of environmental factors 209 

(such as pH level and/or availability of nutrients) that are specific of the lung of a given host and 210 
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cannot be determined a-priori. Despite this patient-specific colonization, sputum taxonomic 211 

composition differed significantly from one subject to another even when sampled at the same time. 212 

Conversely, microbial functional genetic pathways were more homogeneous across patients. This 213 

high conservation could indicate common features of the CF lung environment itself, such as mucus 214 

composition, nutrient availability, and oxygen levels, which can be broadly similar across patients 215 

with a similar clinical status. Such interpretation is  consistent with the concept that the function of a 216 

biotic community is more conserved than the presence of single members due to functional 217 

redundancy of different microbial taxa (28). In fact, though the overall sputum microbiome in our 218 

study population included large set of microorganisms, the main functions detected are similar 219 

across all patients. From this point of view the airway microbiome can be considered as performing 220 

a similar “ecosystem service”, irrespective of the taxonomy present as pointed out by various 221 

authors in other environments (28, 29). The finding that CFTR genotypes relate with different 222 

representation in some pathways, may suggest that the airways microbiome is influenced by the type 223 

of CFTR alteration. However, this hypothesis deserves further attention to clarify a putative role of 224 

microbial pathways with respect to CFTR genotype and viceversa. Despite a clear effect of 225 

antibiotic treatment during (and after) exacerbation periods, the community structure is always 226 

recovered with the main pathogenic taxa emerging again. This effect is confirmed by the correlation 227 

of ARG distribution and antibiotic intake. Patients subjected to a given antibiotic treatment did not 228 

seem to select bacteria resistant to the antibiotic used but the detection of a particular mechanism 229 

seems to be distributed in almost all patients regardless of the treatment. An evidence of functional 230 

stability of the lung microbiota was previously reported in other works not concerning CF disease 231 

(30, 31). Both works focused their attention on the gut microbiome of obese and healthy individuals 232 

(human and mouse) reporting a considerable metabolic redundancy. This high degree of redundancy 233 

in the gut microbiome supported a more ecological view where subjects can be considered to some 234 
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extent as different ecological niches, inhabited by unique collections of microbial phylotypes, but 235 

sharing the same set of genes. This concept can be applied to our cohort of patients, whose  lung 236 

microbiome was taxonomically variable over time and among individuals (tough all chronically 237 

infected by the same species, P. aeruginosa), but where it was possible to identify a core set of 238 

metabolic-related gene features. This functional conservation may thus be needed by the whole 239 

community and patients can be seen as multiple micro-environments inhabited by a peculiar set of 240 

strains, which share the same functions. Investigations on the actual functionality (e.g. by 241 

metatranscriptomics) of the identified core-set of genes could provide clues on genetic function of 242 

the microbiome to be targeted in future therapeutic treatments (10). Additionally, the observed 243 

relations of pathway representation with CFTR genotype, though needing to be validated in larger 244 

studies, could offer possible opportunities for treating patients by targeting some CFTR genotype-245 

related microbial metabolism. In conclusion, the temporal dynamics of the sputum microbiome in 246 

the largest cohort of patients with CF revealed analysed so far, showed patient-specific signatures of 247 

the airway microbiome at strain-level, lack of variation in the microbiome across pulmonary 248 

exacerbations, and a core set of antibiotic resistance genes that did not vary by antibiotic intake.  249 

Materials and Methods  250 

Ethics Statement 251 

The study was approved by the Ethics Committees of Children's Hospital and Research Institute 252 

Bambino Gesù (Rome, Italy), Cystic Fibrosis Center, Anna Meyer Children’s University Hospital 253 

(Florence, Italy) and G. Gaslini Institute (University of Genoa, Genoa, Italy) [Prot. N. 681 CM of 254 

November 2, 2012; Prot. N. 85 of February 27, 2014; Prot. N. FCC 2012 Partner 4-IGG of 255 

September 18, 2012]. All participants provided written informed consent before the enrollment in 256 

the study. All sputum specimens were produced voluntarily. All procedures were performed in 257 
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agreement with the “Guidelines of the European Convention on Human Rights and Biomedicine for 258 

Research in Children” and the Ethics Committee of the three CF Centers involved. All measures 259 

were obtained and processed ensuring patient data protection and confidentiality. 260 

 261 

Characteristics of enrolled patients  262 

Twenty-two adolescents and adults with moderate-severe lung disease and carrying the ΔF508 263 

mutation were enrolled in the study between October 2014 and March 2015 (Table 1). The inclusion 264 

criteria are described in detail in the supplementary methods. Clinical status at the time of collection 265 

was designated as baseline (BL), when clinically stable and at their clinical and physiological 266 

baseline, on treatment (TR), at exacerbation-associated antibiotic treatments, and at recovery (RC), 267 

upon completion of antibiotic treatment. Subjects were treated according to current standards of care 268 

with periodical microbiological controls (32) with at least four microbiological controls per year (2). 269 

At each visit, clinical data collection and microbiological status (colonizing pathogens with 270 

available cultivation protocols) were performed according to the European CF Society standards of 271 

care (33). Forced expiratory volume in 1 second as a percentage of predicted (%FEV1) is a key 272 

outcome of monitoring lung function in CF (34). FEV1 values were measured according to the 273 

American Thoracic Society and European Respiratory Society standards (32). CFTR genotype, sex, 274 

age, and antibiotic treatment for each patient were reported in (Table 1 and supplementary materials 275 

Table S1). During serial sampling, data (antibiotic usage and spirometry) were collected. A total of 276 

79 sputum sample were collected and DNA extraction were performed as reported in supplementary 277 

methods. 278 

 279 
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Bioinformatic analyses 280 

Sequence quality was ensured by trimming reads using StreamingTrim 1.0 (35), with a quality 281 

cutoff of 20. Bowtie2 (36) was used to screen out human-derived sequences from metagenomic data 282 

with the latest version of the human genome available in the NCBI database (GRCh38) as reference. 283 

Sequences displaying a concordant alignment (mate pair that aligns with the expected relative mate 284 

orientation and with the expected range of distances between mates) against the human genomes 285 

were then removed from all subsequent analyses. Metabolic and regulatory patterns were estimated 286 

using HUMAnN2 (37) and considering only those pathways with a coverage value ≥ 80%, whereas 287 

the taxonomic microbial community composition was assessed using MetaPhlAn2 (38). Reads were 288 

assembled into contigs using the metaSPAdes microbial assembler (39) with automatic k-mer length 289 

selection. To establish an airway microbiome gene catalog (7) we first removed contigs smaller than 290 

500bp and then used prodigal in Anonymous mode (40), as suggested by the author of the tool, to 291 

predict open reading frames (ORFs). Translated protein sequences obtained from assembled contigs 292 

were classified using eggNOG mapper against the bactNOG database (41). Each protein was 293 

classified according to its best hit with an e-value lower than 0.001 as suggested in (42). The CARD 294 

database (43) was used in combination to the Resistance Gene Identifier (RGI, version 4.0.3) to 295 

inspect the distribution of antibiotic resistance gene (AR genes). Genes predicted within each 296 

metagenome were quantified using the number of reads that mapped against metagenomic contigs 297 

obtained for each sample. Reads were mapped back to contigs using Bowtie2 (36) and the number 298 

of reads mapping each ORF was obtained with the bedtools command “multicov” (version 2.26.0). 299 

To quantify gene content across different samples, genes were collapsed using the bestOG given by 300 

eggNOG mapper by summing together the number of reads that mapped genes with the same 301 

annotation. The same approach was used to quantify AR genes predicted with RGI but this time the 302 

unique identifier provided by CARD was used to collapse counts. 303 
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Strain characterization was performed using StrainPhlAn (20). Sequence variants for each organism 304 

detected were assessed against the MetaPhlAn2 (38) marker genes and a tree has been generated 305 

including all samples in which the organism was found at least in one time point. Since all 306 

organisms detected had at least one reference genome available in the RefSeq database, the most 307 

recent version of their genome was downloaded and added to the tree. 308 
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Tables  485 

TABLE 1  486 

Characteristics of patients enrolled in the study 487 

 488 

ID, study id; Hospital, hospital in which patient has been enrolled [OPBG=Children's Hospital and Research 489 

Institute Bambino Gesù (Rome, Italy); Gaslini=G. Gaslini Institute (University of Genoa, Genoa, Italy); 490 

Meyer=Cystic Fibrosis Center, Anna Meyer Children’s University Hospital (Florence, Italy)]; Genotype, 491 

CFTR genotype; Gender, gender; Age, enrollment’s age; n, number of samples collected; EX, yes if an 492 

exacerbation event has occurred during the study (no otherwise)  (2); FEV1, mean value of forced expiratory 493 

volume in 1 second plus/minus the standard error on the mean; heterozygote and homozygote refers to ΔF508 494 

genotype; %FEV1 status: S = with a rate decline lower than 1.5%, SD = with a rate decline higher than 5%  495 

(44). 496 

 497 

ID Hospital Genotype Gender FEV1 
status 

Age n EX %FEV1 

B01 OPBG ΔF508/2183AA->G M S 27 5 yes 37.0 ± 1.70 
B02 OPBG ΔF508/N1303K F SD 26 3 no 54.7 ± 3.48 
B03 OPBG ΔF508/4016insT F S 30 4 no 55.0 ± 1.08 
B06 OPBG ΔF508/ΔF508 F SD 21 4 no 60.2 ± 3.42 
G10 Gaslini ΔF508/ΔF508 M S 51 4 no 54.0 ± 3.08 
G24 Gaslini ΔF508/ΔF508 F S 49 3 yes NA ± NA 
G28 Gaslini ΔF508/ΔF508 F NA 38 2 no 42.5 ± 1.50 
G30 Gaslini ΔF508/ΔF508 F S 50 1 no 54 
G31 Gaslini G1244E/G42X F SD 53 2 no 41.5 ± 1.50 
G34 Gaslini ΔF508/ΔF508 F S 39 1 no 47 
M05 Meyer ΔF508/ΔF508 M SD 32 4 no 34.8 ± 0.85 
M19 Meyer ΔF508/ΔF508 M S 24 4 no 44.0 ± 2.04 
M21 Meyer ΔF508/N1303K M SD 27 4 yes 51.5 ± 4.35 
M22 Meyer ΔF508/2789+5G->A F S 29 5 yes 50.4 ± 1.03 
M23 Meyer ΔF508/G542X F S 30 4 yes 37.0 ± 1.47 
M24 Meyer ΔF508/ΔF508 M S 32 4 no 35.2 ± 0.85 
M25 Meyer ΔF508/296+1G->T F SD 41 4 no 42.5 ± 2.02 
M26 Meyer ΔF508/3849+10 F SD 49 5 yes 39.6 ± 1.94 
M28 Meyer ΔF508/N1303K M S 23 4 no 39.0 ± 1.08 
M29 Meyer ΔF508/G542X F S 12 4 no 43.5 ± 3.75 
M31 Meyer ΔF508/ΔF508 F SD 11 3 yes 32.7 ± 4.41 
M33 Meyer ΔF508/G85E F SD 13 5 yes 35.4 ± 5.78 
Total: 
22 

Gaslini:6 
Meyer:12 
OPBG:4 

Heterozygote :47 
Homozygote :29 

Other:2 

F:15 
M:7 

S:12 
SD:9 

32.1 ± 2.73 79 no:14 
yes:8 

43.5 ± 1.09 
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TABLE 2  498 

Permutational multivariate analysis of variance on both taxonomic distribution and metabolic pathways  499 

The permutational multivariate analysis of variance (PERMANOVA) analysis based on taxonomic distribution 500 
was reported in the upper part of the table whereas the analysis based on metabolic pathways was reported at the 501 
bottom. Df, degrees of freedom; SumOfSqs, sum of squares; R2, r-squared statistic (reported as proportion); F, 502 
F-statistic; Pr(>F), p-value associated to the F-statistic. Significant effects, namely those reporting a p-value 503 
lower than 0.05, were reported in bold.  504 

 Df 
SumOf 

Sqs R2 F Pr(>F) 

TAXONOMY      
Status 2 0.68 0.03 1.91 0.0300 

Genotype 1 0.77 0.03 4.30 0.0020 

Subject 18 11.97 0.52 3.74 0.0010 

FEV1 value 1 0.27 0.01 1.53 0.1349 

Days 1 0.28 0.01 1.58 0.1229 

Status:Genotype 1 0.11 0.01 0.64 0.7642 

Residual 49 8.72 0.38 - - 

      
PATHWAY      

Status 2 0.20 0.04 2.37 0.0220 

Genotype 1 0.14 0.03 3.42 0.0080 

Subject 18 2.43 0.48 3.20 0.0010 

FEV1 value 1 0.09 0.02 2.14 0.0989 

Days 1 0.05 0.01 1.26 0.2458 

Status:Genotype 1 0.08 0.02 1.96 0.1169 

Residual 49 2.07 0.41 - - 
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Figure legends 505 

FIGURE 1  506 

Taxonomic distribution in patients enrolled in the study. a) The taxonomic distribution of all species 507 

detected using MetaPhlAn2 was reported in each row of the matrix whereas columns represent 508 

samples collected during the study. Colors from dark blue to red were used to report “copies per 509 

million” (CPM) values as obtained from HUMAnN2 with black reporting a CPM value of zero. The 510 

plot was divided according to patient status: BL, baseline; TR, treatment; RC, recovery. Species 511 

were ordered according to their mean abundance and grouped according to their Phylum. b) The 512 

mean abundance value of the top-ten species (if available) detected within each Phylum was 513 

reported together with the standard error. The relative abundance of taxa is reported (Abundance %). 514 

FIGURE 2  515 

Ordination analyses based on a) taxonomic assignments and b) pathway distribution detected with 516 

MetaPhlAn2 and HUMAnN2, respectively. Ordination analyses were conducted using the Bray-517 

Curtis dissimilarity index and ordered following the principle coordinate decomposition method 518 

(PCoA). The percentage of variance explained by each coordinate was reported between round 519 

brackets. Homozygote and heterozygote refer to ΔF508 mutation of CFTR gene. BL, baseline; TR, 520 

treatment; RC, recovery. 521 

FIGURE 3  522 

Strain-level phylogenetic trees of the main CF pathogens detected in the study. Phylogenetic trees 523 

obtained through StrainPhlAn pipeline were reported for the main pathogenic signatures of CF 524 

disease: a) Pseudomonas aeruginosa; b) Staphylococcus aureus; c) Rothia mucilaginosa; d) 525 

Prevotella melaninogenica. Points at the end of each clade are colored according to patients so that 526 

two points with the same color, in the same tree, represent the same species in two different time 527 

points, for the same patient. 528 

FIGURE 4 529 

Differences across exacerbation events. The effect of an exacerbation event on alpha diversity was 530 

inspected using both the Shannon index and the inverse Simpson index. Diversity indexes were 531 

computed for both a) taxonomic signature and b) metabolic pathways. BL, baseline; TR, treatment; 532 

RC, recovery. Each box shows the “interquartile range” (IQR) that is the differences between the 533 

third and the first quartile of data (the 75th and the 25th percentile). Horizontal bars are medians 534 

whereas whiskers represent the minimum and maximum values defined as Q1 – (1.5 x IQR) and Q3 535 
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+ (1.5 x IQR), respectively. Observations that fell outside minimum and maximum values were 536 

defined as outliers and reported using white points. 537 

FIGURE 5 538 

Pathway distribution according to exacerbation events. The pathway distribution was reported for 539 

each sample (columns) and for each pathway detected (rows). Colors from dark blue to red were 540 

used to report “copies per million” (CPM) values as obtained from HUMAnN2 with black reporting 541 

a CPM value of zero. On the left, the percentage of taxa in which each pathway was detected was 542 

reported using different colors. The main colors correspond to the Phylum whereas the different 543 

shades correspond to the genus detected (if available). BL, baseline; TR, treatment; RC, recovery. 544 

FIGURE 6 545 

Beta diversity analysis on both taxonomic and functional distribution. a) Hierarchical clustering 546 

based on UPGMA method. Clustering was performed on both pathway distribution (the upped 547 

triangle) and taxonomic composition of samples (lower triangle). The Bray-Curtis distance was used 548 

to compute distances between samples, but it was transformed into similarity value by subtracting 1 549 

before plotting. Thus, red colors represent high similarity values whereas blue colors represent low 550 

similarity values. The shape of the points on each tip of trees refers to the hospital whereas the 551 

colors refer to the exacerbation events. b) Results of Tukey’s post hoc test on beta diversity values 552 

across patient genotypes and exacerbation events. Contrasts were computed even to test differences 553 

between taxonomic distribution and pathways with taxa reporting higher level of beta diversity. 554 

Homozygote and heterozygote refer to ΔF508 mutation of CFTR gene. BL, baseline; TR, treatment; 555 

RC, recovery. Boxplot were computed as described in Figure 4 legend. 556 

  557 
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