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Abstract 

Humans and many non-human animals have the “number sense,” an ability to estimate 

the number of items in a set without counting. This innate sense of number is 

hypothesized to provide a foundation for more complex numerical and mathematical 

concepts. Here I investigated whether we also share the number sense with a deep 

convolutional neural network (DCNN) trained for object recognition. These in silico 

networks have revolutionized machine learning over the last seven years, allowing 

computers to reach human-level performance on object recognition tasks for the first 

time. Their architecture is based on the structure of mammalian visual cortex, and after 

they are trained, they provide a highly predictive model of responses in primate visual 

cortex, suggesting deep homologies. I found that the DCNN demonstrates three key 

hallmarks of the number sense. First, some of the units comprising the DCNN 

(analogous to neurons) are numerosity-selective in that their activity varies with the 

number but not the size or spacing of elements in a visual array. Second, DCNN 

discrimination of numerosities very closely follows the empirically validated 

psychometric functions describing human and animal performance on an ordinal 

comparison task. Third, numerosities are properly ordered in the representational space 

of the DCNN. Because the DCNN was not trained to enumerate, I conclude that the 

number sense is an emergent property of the network, the result of some combination 

of the network architecture and the constraint to develop the complex representational 

structure necessary for object recognition. By analogy I conclude that the number sense 

in animals was not necessarily the result of direct selective pressure to enumerate but 

might have “come for free” with the evolution of a complex visual system that evolved to 

identify objects and scenes in the real world. 
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Introduction 

There is strong evidence for the nonverbal capacity to approximately enumerate the 

number of items in a visual array in adults, infants, and nonhuman animals (Merritt, 

DeWind, & Brannon, 2012). There has been some discussion of the evolutionary origins 

of the number sense in the literature. One hypothesis is that the number sense evolved 

to represent number because it was advantages to organisms (Dehaene, 2001). 

Several researchers have speculated that the number sense may have evolved to 

improve foraging efficiency (e.g., Barth, Kanwisher, & Spelke, 2003; Gallistel & Gelman, 

2000; Piazza & Izard, 2009). For example, if you must go the effort of climbing a tree, it 

is advantageous to be able to see which tree has more ripe fruits. Another hypothesis is 

that enumeration evolved for facilitating social interactions. For example, when deciding 

when to engage or back down in an altercation between groups it would be advantages 

to know how large your group is compared to the opponents (McComb, Packer, & 

Pusey, 1994). Alternatively, individuals from flocking, herding, or schooling species may 

gain a reproductive advantage by joining larger groups of conspecifics (Agrillo, Dadda, 

Serena, & Bisazza, 2008). 

Evolutionary hypotheses for the origins of psychological traits are notoriously difficult to 

test. Here I propose a novel source of evidence from in silico experiments examining 

artificial neural networks. Neural networks are a class of machine learning algorithms 

that are inspired by the structure of the nervous system and have the benefit of 

biological plausibility. Unlike a real brain, the factors shaping their representations of 

stimuli are known and under experimental control. So, if a particular representational 

structure, such as the number sense, can be observed in a neural network that has 

been optimized for other purposes, such as object recognition, we can conclude that the 

representational structure does not require direct natural selection to emerge. 

Critical for this inference is the biological relevance of the neural network architecture, 

and neural networks have several commonalities with real brains. Most importantly, 

neural networks have units analogous to biological neurons, which have activation 

levels analogous to spike rates. The activation of one unit affects the activation of 

another via weighted connections analogous to a biological synapse. The networks are 

usually initialized with random synaptic weights, which are refined via a training 

process. The training process does not have a clear biological analogue, because 

biological systems do not start with randomly weighted synapses. Thus, the training 

combines the action of evolutionary refinement with learning over development to 

produce a completed “adult” network. Deep convolutional neural networks (DCNNs) are 

even more biologically relevant incorporating two other aspects of mammalian visual 

cortex, iterative retinotopy and convolution. Retinotopy is preserved across several 

layers of the DCNN analogous to the iteration of the retinotopic map across V1, V2, and 

higher layers of mammalian visual cortex. Convolution mirrors the finding that similar 

feature detectors (e.g., an oriented Gabor wavelet filter) are found with different local 

receptive fields effectively tiling the retinotopic map within a layer. Although the inputs, 
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architecture, and training algorithm of these networks are known, the activations of the 

units in response to novel stimuli are an emergent property requiring empirical 

investigation. 

In addition to the noted similarities in architecture and function, there is also significant 

empirical evidence that the representational structure of DCNNs is very similar to the 

representational structure of the primate brain (Kriegeskorte, 2015). DCNNs explain 

significant variance in the response of neurons in macaque inferior temporal (IT) cortex 

(Yamins et al., 2014). Remarkably, DCNNs explain more variance in IT than any 

previously proposed model and approach the noise limit of how much variance can be 

explained in response to images of objects (Cadieu et al., 2014). There is also an 

interesting homology between the hierarchy of retinotopic maps in DCNNs and in 

mammalian visual cortex. The earlier layers of DCNNs have greater representational 

structure in common with early layers of visual cortex, and the later layers have more in 

common with higher levels of visual cortex (Khaligh-Razavi & Kriegeskorte, 2014). 

Although most studies of DCNN-brain homology focus on the similarity with IT, there is 

also evidence that the highest layers of DCNNs, those with the most abstract 

representations, also explain significant representational structure in the intraparietal 

and superior parietal regions in humans (Cichy, Khosla, Pantazis, Torralba, & Oliva, 

2016). These parietal regions are similar to the areas that have been shown to encode 

numerosity in topographic maps across the cortical surface (Harvey, Klein, Petridou, & 

Dumoulin, 2013).  

I identified three hallmarks of the number sense that could potentially be identified in the 

DCNN. The first is numerosity-selective neurons, which have been recorded in the 

dorsal-prefrontal cortex and the intraparietal sulcus (IPS) of monkeys (Nieder & Miller, 

2004; Roitman, Brannon, & Platt, 2007; Viswanathan & Nieder, 2013) and in the medial 

temporal area in humans (Kutter, Bostroem, Elger, Mormann, & Nieder, 2018). Indirect 

evidence of numerosity-selective neurons in human IPS has been found using 

functional MRI techniques (Eger et al., 2009; Harvey et al., 2013; Piazza, Izard, Pinel, 

Le Bihan, & Dehaene, 2004). Numerosity-selective neurons have the unique property of 

modulating their activity depending on the number of objects observed by the subject 

but are relatively invariant to changes in non-numerical visual features such as the size 

of the items or their location within the array. These neurons are thought to form the 

neurobiological instantiation of the number sense (Nieder, 2016).  

A second hallmark of the number sense is ratio dependence: the difficulty in comparing 

the numerosity of two sets of objects is related to the ratio of the number of items in 

each (Cantlon & Brannon, 2006). Furthermore, the shape of the ratio effect is well 

described by cumulative log-normal distribution with a single free parameter for the 

slope, w (Piazza et al., 2010, 2004). 

A third hallmark of the number sense is ordinality. We know that five is not four and five 

is not six, and we also know that five is between four and six. Animal experiments have 

demonstrated that monkeys trained to choose the larger numerosity on sets with 1-4 
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items can generalize to ordering sets with 5-9 items (Brannon & Terrace, 1998). This 

generalization also extends to larger values (Cantlon & Brannon, 2006), and monkeys 

do not readily learn non-sequential orders of numerosities (Brannon & Terrace, 2000).  

Here I explored the representations of a previously trained DCNN (Krizhevsky, 

Sutskever, & Hinton, 2012). I showed the network thousands of dot array images and 

recorded the responses of the virtual neurons or units, testing for the three hallmarks of 

the number sense. I reasoned that if these hallmarks were present in an artificial neural 

network that had no optimization to represent numerosity for its own sake, we might 

infer that evolution of the biological number sense may be an emergent property and 

not the result of direct selection. 

Results 

The Krizhevsky et al. (2012) DCNN consists of five convolutional layers followed by 

three fully connected layers. I recorded the responses in each layer to 5,590 images of 

between 4 and 64 white dots on a black field (Figure 1). The stimuli evenly sampled a 

three dimensional stimulus space developed previously (DeWind, Adams, Platt, & 

Brannon, 2015), with systematic variation of the size and spacing of the array elements 

controlling for multiple non-numerical visual features. I tested for the effect of the 

number, size, and spacing of the array elements on the activation of all units in the 

network. Previous studies recording from neurons have used a p-value threshold to 

define numerosity-selective units (e.g., Nieder & Miller, 2004; Roitman et al., 2007; 

Viswanathan & Nieder, 2013). However, given the large number of samples and lack of 

experimental noise in the simulation, the p-value threshold was too sensitive (Figure 

S1), and so I followed Stoianov & Zorzi (2012) by defining a numerosity-selective unit as 

one for which numerosity explained at least 10% of the variance in the validation data 

set and size and spacing did not explain more than 1% variance. Magnitude-sensitive 

units were defined as those for which the combination of numerosity, size, and spacing 

explained at least 10% of variance. Units that fell into neither group were classified as 

non-magnitude-sensitive. For brevity, I have plotted layer-level analysis results for 

Layers 1, 4, and 7 to give a representative look at how coding evolves through the 

hierarchy of the DCNN; summary statistics are given for all layers. 
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Figure 1. Example stimuli. The stimuli spanned a three-dimensional stimulus space varying the number, 

size, and spacing of array elements orthogonally. The smallest and largest size (bottom and top), the 

densest and sparsest spacing (left and right within each panel), and greatest and least numerosity (left 

and right panel) of the primary stimulus set are shown. 

Very little variance was explained by numerosity, size, or spacing in Layer 1, but in each 

subsequent convolutional layer more variance was explained (Figure 2A, first row). 

Variance explained peaked and plateaued in the three fully connected layers with an 

average of 41% variance explained by numerosity and an additional 22% explained by 

element size and spacing in Layer 7 (Figure 2B top). In the fully connected layers 

almost every unit was sensitive to some combination of numerosity, size, and spacing 

(Figure 2A, first row; Figure 2B, middle). Apart from Layer 1, which only had two 

numerosity-selective units, the other layers consisted of 1.7% - 4.1% numerosity-

selective units  (Figure 2B, bottom), a prevalence that is on the same order of 

magnitude as some previous neural findings in monkeys (Viswanathan & Nieder, 2013), 

although is lower than other reports (Nieder & Miller, 2004; Roitman et al., 2007). This 

may reflect a true difference between the DCNN and the mammalian brain, or it may 

reflect overestimation in monkey studies as a result of failure to detect small effects of 

non-numerical visual features on inherently noisy neuronal firing rates combined with a 

reliance on p-values for neuronal classification. Fully connected layers averaged slightly 

higher prevalence of numerosity-selective units than the convolutional layers, but there 

was no clear pattern of increasing prevalence after Layer 1. For example, Layer 4 and 

Layer 7 both consisted of 2.6% numerosity-selective units. Thus, although the variance 

explained by numerosity rose dramatically across the layers, the variance explained by 

size and spacing also rose, and the proportion of numerosity-selective units was 

relatively flat. Figure S2 plots the activations of example numerosity-selective units.  
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Figure 2. Numerosity explains a large portion of variance in DCNN responses and numerosity-

selective units exist in all layers. (A) Layer specific analyses for Layers 1, 4, and 7 (columns). The first 

row plots the predictive accuracy of the number model plotted against the predictive accuracy of the size 

and of the spacing models for 1,000 randomly selected units from each layer. The color of the units 

denotes how they were classified based on variance explained. The second row is a histogram of the 

numerosities that elicited maximum activation from the numerosity-selective neurons. The third row plots 

the average response of all the numerosity-selective units in each layer that were monotonically 

increasing and monotonically decreasing (in Layer 1 there were only two numerosity selective units and 

both were monotonically increasing). The black lines are the average across all images, and the colored 

lines are averages within the subsets of images in which numerosity varied while a non-numerical visual 

feature was held constant. These visual features were total area (red), item area (orange), field area 

(green), sparsity (blue), scale (purple), and coverage (yellow). Activations were z-scored within unit before 

averaging. (B) Summary statistics for all layers. Top plot shows the mean variance explained in unit 

activation in each layer by the number, size and spacing models. The middle plot shows the proportion of 

each layer comprised of magnitude-sensitive units, and the bottom plot shows the proportion comprised 

of numerosity-selective units. 

Previous research has found numerosity-selective neurons of two types: tuned (Nieder 

& Miller, 2004) and monotonic (Roitman et al., 2007). Tuned neurons have a normal-

distributed activation profile across numerosities with a peak at a preferred numerosity, 

whereas monotonic neurons steadily increase or decrease activity across numerosities. 

I plotted a histogram of the numerosity that caused peak mean activation in each 

numerosity-selective unit (Figure 2A, middle row). Most units responded maximally to 

either the largest or smallest numerosity displayed, consistent with monotonic coding, 

although some neurons responded maximally to intermediate numerosities consistent 

with tuned coding.  
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Many previous studies demonstrating tuned representations of neurons in monkeys 

were conducted using arrays with 1-5 items (e.g., Nieder & Miller, 2004). I generated a 

second stimulus set consisting of numerosities 1-5 to explore whether units that were 

maximally activated by four items in the primary stimulus set were actually tuned to 

smaller numerosities. Across both stimulus sets and all layers 29% of numerosity-

selective units were tuned and 71% were monotonic (responding maximally to 1 or 64; 

Figure S3). Above Layer 1, which had too few numerosity-neurons to be relevant, there 

was no discernable pattern by which the proportion of types changed across the DCNN 

hierarchy (Figure S3B). 

Many non-numerical visual features may vary with the number of items in a visual array. 

It is not possible to orthogonalize all of them to numerosity simultaneously in a single 

stimulus set, however, within subsets of the images a particular non-numerical visual 

feature was fixed while numerosity varied over its entire range. To demonstrate that 

numerosity and not one of the non-numerical visual features was driving changes in 

activation the numerosity-selective units, I plotted the mean activation within a layer to 

each stimulus control subset, as well as to the entire stimulus set (Figure 2A, bottom 

row). Regardless of which non-numerical feature was held constant these units 

responded consistently to changes in numerosity, confirming that they were indeed 

numerosity-selective. 

To examine the “behavior” of the DCNN number sense a support vector machine (SVM) 

linear classifier was trained to estimate numerosity from the activations of all units in 

each layer. The classifier was trained to discriminate each pair of numerosities and 

tested on held-out validation data. Figure 3A (first row) shows the classifier accuracy on 

all pair-wise combinations of numerosity. Classifier performance goes from close to 

chance performance in Layer 1 to highly accurate in the fully connected layers. Figure 

3A (second row) shows the same accuracy data averaged within pairs of similar 

numerical ratio. In animals and humans, the function relating the logarithm of the 

numerical ratio to the accuracy of discrimination closely follows a cumulative normal 

curve with a single free parameter, w, (proportional to the reciprocal of the slope). The w 

term denotes the acuity of the number sense with smaller w indicating better 

performance (Piazza et al., 2004). I fit this psychometric function to the classifier 

accuracy in each layer (Figure 3A, second row). The w failed to converge to a finite 

positive value in Layer 1, because there was a slight negative trend across numerical 

ratio. In the other convolutional layers the best fit w was very large by behavioral 

standards, however, in the fully connected layers the w jumped to human-like levels 

(Figure 3B, top). The behavioral model was a very poor fit to the accuracy data in the 

convolutional layers, because there was not a clearly defined monotonic effect of 

numerical ratio on classification performance. However, the model was an almost 

perfect fit in the fully connected layers (Figure 3B, bottom). The classifier performance 

was so good in the fully connected layers that most of the ratios tested were close to 

ceiling. To get a more precise estimate of w and to be sure that the high degree of 

model fit was not due to a simple ceiling effect, I calculated DCNN activations to another 
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stimulus set with more difficult ratios that had been used in a human behavioral 

experiment (DeWind et al., 2015). The w term was in the range of human performance 

and that the psychometric function fit almost perfectly (Figure S4).  

 

Figure 3. Human-like performance emerges through the DCNN hierarchy. (A) The first row plots 

heat-maps of SVM classifier accuracy for all pair-wise comparisons of numerosity. The second row shows 

the same data averaged over similar ratios. The line indicates the fit psychometric function and w 

indicates the fit value of the single free parameter. (B) The top plot shows the w for each layer. The 

bottom plot shows the signed r2 of the fit of the psychometric function. The r2 can be negative if the 

residual sum of squared error is greater than the sum of squared error of the mean. 

To ensure that the SVM classifier was discriminating on the basis of numerosity as 

opposed to another visual feature that was correlated with numerosity, the classifier was 

tested on the subsets of the stimuli that controlled for different non-numerical visual 

features (Figure S5). In Layer 1 performance was close to chance across all subsets. In 

Layer 4 performance was above chance in every condition, but accuracy varied across 

conditions indicating that the classifier was using a combination of numerosity and other 

visual features, notably sparsity. In Layer 7 performance was very high and there was 

almost no difference in accuracy across conditions, indicating that the classifier was 

correctly categorizing images based on numerosity. 

Previous work has expanded on the Piazza et al. (2004) psychometric function to allow 

for the simultaneous assessment of numerical acuity and the influences on non-

numerical visual features in an ordinal comparison task (DeWind et al., 2015). In short, 

a multi-dimensional cumulative normal curve is fit choice performance over the 

logarithm of the numerical ratio, the size ratio, and the spacing ratio. The coefficient 

estimates (βNum, βSize, and βSpacing) indicate which of the visual features in our control 

conditions influenced choices in an ordinal comparison task. I fit this model to the SVM 

pair-wise stimulus classifications in each layer and compared the results to 20 human 
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participants’ choice data collected and reported previously (DeWind et al., 2015) (Figure 

S6). Layer 1 was largely unaffected by any stimulus feature and the other convolutional 

layers were influenced by numerosity and sparsity by approximately equal degree. The 

three fully connected layers performed unbiased numerosity comparisons (unaffected 

by the size or spacing of the elements), and Layers 7 and 8 were within the human 

distribution of performance.  

The pair-wise classification of numerosities demonstrates that the DCNN represents 

differences in array element number. However, it is unclear if this representation is only 

categorical, in the same sense that the network might differentiate a dog from a cat, or if 

it is ordinal in the sense that all numerosities are represented along a single dimension 

in their proper order. To explore this question quantitatively, another SVM classifier was 

trained to classify numbers as greater or less than sixteen. The classifier was trained on 

numerosities 4, 6, 10, 25, 40, and 64 and the numerosities 5, 8, 13, 20, 32, and 51 were 

held out for testing. Classification performance on held out data was above chance in all 

layers, demonstrating generalization to novel numerosities and some degree of 

ordinality (Figure S7). 

Finally, I explored the ordinality qualitatively by plotting the first two principle 

components of the unit-by-image matrix of activations for each layer (Figure 4). Layer 1 

lacks a discernible pattern across numerosities. Layer 4 has a clear progression, but the 

larger numerosities become more diffuse and curve through the space, making linear 

classification more difficult. By Layer 7 a relatively linear “mental number line” emerges. 

 

Figure 4. The “mental number line” emerges across the DCNN hierarchy. The first two principle 

component scores from the unit-by-image matrix of activations in response to all images in the primary 

stimulus set (n = 5,590) color coded by numerosity. Numerosity means plotted in larger markers with 

black edges. 

Discussion 

The DCNN tested here was trained for object recognition and was never explicitly 

optimized for enumeration (Krizhevsky et al., 2012). Nevertheless, I demonstrated that 

the network has an emergent sense of number remarkably similar to the biological 
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number sense characterized in humans and non-human animals. The DCNN number 

sense must be the result of some combination of the network architecture and the 

constraint to develop the complex representational structure necessary for object 

recognition. The network architecture is inspired by the mammalian visual system, and 

empirical research has demonstrated deep homologies between the DCNN and primate 

visual cortex (Kriegeskorte, 2015). Thus, I conclude that it is plausible and perhaps 

probable that the biological number sense was not directly optimized by natural 

selection to enumerate but rather “came for free” with the evolution of a complex visual 

system that evolved to identify objects and scenes in the real world. 

A spandrel is an architectural term for the triangles created by the meeting of two 

arches or an arch and a wall. In their influential paper Gould and Lewontin (1979) 

rhetorically ask the purpose of a spandrel and conclude that it has no purpose but rather 

is a byproduct of arches, which have the critical purpose of supporting walls and roofs 

over openings. By analogy, they argue that many phenotypes that have been 

hypothesized to be adaptations to the environment may be byproducts of some other 

adaptive pressure or the result of a constraint imposed by the overall structure or 

development of the organism (the “body plan” or “baupläne”). One interpretation of the 

findings presented here is as evidence that the number sense is an evolutionary 

spandrel: complex visual recognition constitutes the arch, and the number sense is a 

byproduct. However, another interpretation is that the number sense constitutes a 

subsection of the arch itself; object recognition may be improved by virtue of 

numerosity-selective neurons, and enumeration – perhaps of sub-components of the 

objects themselves – is an important component of the algorithm for object recognition 

instantiated by the DCNN. Interventional experiments manipulating the activations of the 

DCNN may help clarify these possibilities. More generally, it is useful to consider both 

the adaptive and non-adaptive explanations of cognitive traits, and DCNNs can provide 

a novel avenue for exploring the evolutionary causes of neural representations. 

In addition to inferences about evolution, the details of the DCNN findings have 

important implications for the refinement of computational models of the number sense. 

Previous models posit three hierarchically organized levels of processing: a 

normalization stage, a summation stage containing units that monotonically vary with 

numerosity, and a number-field stage containing units tuned to specific numerosities 

(Dehaene & Changeux, 1993; Verguts & Fias, 2004). Two predictions of these models 

are that numerosity-selectivity emerges late in cortical processing and that monotonic 

neurons precede tuned neurons in that processing. However, in the DCNN there are 

tuned and monotonic numerosity-selective units as early in the hierarchy as Layer 2. 

Layer 2 of the Krizhevsky et al. DCNN has the strongest representational similarity to 

early visual cortex of any layer (Khaligh-Razavi & Kriegeskorte, 2014; Kriegeskorte, 

2015). This suggests numerosity-selectivity may develop earlier in the visual stream 

than these models predict, and it does not depend on earlier stages of cortical 

processing. This is consistent with the recent empirical finding that numerosity is 

encoded in early visual cortex (DeWind, Park, Woldorff, & Brannon, 2018; Eger, Pinel, 
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Dehaene, & Kleinschmidt, 2015; Park, DeWind, Woldorff, & Brannon, 2016). Exactly 

how the well characterized receptive field properties of neurons in early visual cortex 

might give rise to numerosity-selectivity requires further investigation.  

Another novel insight from the DCNN is that numerosity-selective units – tuned or 

monotonic – were not sufficient to give rise to all the behavioral signatures of the 

number sense. Even though both the proportion of numerosity-selective units and the 

relative proportion of tuned to monotonic numerosity-selective units were relatively flat 

across the layers of the DCNN, there was a dramatic shift in population-level numerosity 

encoding between the convolutional and fully connected layers. This change was 

marked by a clearer ratio effect that extended across all ratios and numerosities, a 

higher overall classification accuracy very similar to human performance, and a shift 

from partial reliance on sparsity to total reliance on numerosity for classification.  

If the proportion and type of numerosity-selective units are not sufficient to generate the 

behavioral signatures of number sense, then what explains the emergence of the 

number sense in the later layers of the DCNN? One contributing factor is likely variance 

explained by numerosity. Although both the early and later layers of the DCNN had 

units that varied selectively with numerosity, units in the later layers varied much more 

with numerosity relative to their unexplained variance. Another factor is probably related 

to full connectedness of Layers 6, 7, and 8. Convolutional layers retain retinotopic 

organization, and the receptive fields of the units are spatially restricted. As a result, 

their representation of numerosity at the unit level is necessarily local. The individual 

units in the fully connected layers receive input from the entire image. This might be 

critical for the computational steps necessary for the emergence of the number sense, 

including the ability to ignore non-numerical local features such as sparsity. This is 

consistent with the finding that numerosity can be decoded from early visual cortical 

layers, but classification fails to generalize to changes in the presentation location of the 

stimuli (Eger et al., 2015). Thus, a robust representation of numerosity sufficient for all 

the behavioral signatures of the number sense may only be possible in regions of cortex 

that are responsive to visual stimuli, but not retinotopically organized. 

Conclusion 

Here I demonstrated that the number sense exists in a DCNN trained for object 

recognition. Because the network was not trained on enumeration, the number sense 

can be considered an emergent property of the network, the result of the optimization 

for object recognition and inherent architecture. The DCNN has many similarities to and 

empirically demonstrated homologies with the primate visual cortex, and so this finding 

serves as evidence that the biological number sense might similarly be an emergent 

property of the evolutionary optimization to generate a sufficiently robust representation 

of the world to guide behavior and of the cellular and physiological architecture of the 

brain. DCNNs offer a unique tool for testing evolutionary hypotheses of neural function 

and provide a uniquely transparent model system for testing computational theories of 

perception. 
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Method details 

Neural network 

The DCNN was a pretrained network designed to perform object recognition 

(Krizhevsky et al., 2012). The network is divided into eight layers. The first five are 

convolutional and the last three are fully connected. The units in the convolutional layers 

can be classified by their location in three dimensions. The first two describe their x and 

y coordinates related to the pixel locations of the image (or previous layer). The third 

describes the filter function that is convolved with the image (or previous layer). The 

analyses presented differentiated between units of different layers but did not 

differentiate for the x and y locations or filter channel. 

Stimulus features and general characteristics of the stimulus space 

There were three stimulus sets used in this manuscript, the 4-64 stimulus set, the 8-32 

stimulus set, and the 1-5 stimulus set. Unless otherwise specified, the analyses 

described in the Results section were performed on the 4-64 stimulus set. All three 

stimulus sets evenly sampled the three-dimensional stimulus space described 

previously (DeWind et al., 2015). Stimuli were generated using custom MATLAB scripts. 

Several visual features of the stimuli are referred to in the manuscript; they are 

rigorously defined here. Item area refers to the area of each dot in the array. Total area 

is the item area multiplied by the number of items. Field area refers to the area of the 

invisible circle (the “field”) within which the items were drawn. Sparsity is the field area 

divided by the number of items. Coverage is total area divided by the field area. Scale is 

item area multiplied by field area. In each stimulus set, all of these features varied over 

the same number of doublings (octaves) as number. For example, in the 4-64 stimulus 

set the smallest and largest numerosities differed by 16x; total area, item area, field 

area, sparsity, coverage, and scale also varied by 16x between their smallest and 

largest values. As a result, the analyses were equally likely to detect a change in 

network activation due to change in any of these features, and the tests were not biased 

towards detecting an effect of numerosity. 

To construct an array, the number of items, the item area, and the field area were 

specified. Items were randomly placed in the image such that they did not overlap with 

each other or the edge of the field. 

Two other features, size and spacing, were important to the overall construction of the 

stimulus sets. These features are designed to account for the non-independence of the 

other features, which results in the problem that not all features can be simultaneously 

orthogonalized to number. For example, because total area is equal to number 

multiplied by item area, these features are not independent. Although there are three 

features of interest, there are only two degrees of freedom. Size represents the single 

degree of freedom remaining after number is fixed. Intuitively, if the number of items is 

set and one increases or decreases the size of the items in the array, then the total area 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 16, 2019. ; https://doi.org/10.1101/609347doi: bioRxiv preprint 

https://doi.org/10.1101/609347
http://creativecommons.org/licenses/by-nc/4.0/


14 
 

and item area both vary together. Similarly, number, sparsity, and field area are not 

independent. Spacing represents the single degree of freedom remaining after number 

is fixed. Size is defined as the item area multiplied by the total area, and spacing is 

defined as the sparsity multiplied by the field area. These arbitrary seeming definitions 

are designed so that when log number, log size, and log spacing are orthogonal and 

vary by the same factor (e.g., 16x), then item area, total area, sparsity and field area will 

all be equally but only partially correlated with number and vary by the same factor. 

Coverage and scale will also vary by the same factor and will be orthogonal to number. 

These attributes of all three stimulus sets make them ideal for maximizing the power to 

detect effects of each stimulus feature on activation without biasing the test toward 

finding an effect of a particular stimulus feature over another. 

4-64 stimulus set 

Number, size and spacing were orthogonally varied over 13 levels covering 4 octaves 

(16x difference between smallest and largest values; Figure S8). The levels of 

numerosity were 4, 5, 6, 8, 10, 13, 16, 20, 25, 32, 40, 51, and 64. In order to reduce the 

number of stimuli, each level of number was sampled at every other level of size and 

spacing (and vice-versa). In the 3D stimulus space defined by number, size, and 

spacing, this resulted in two nested cubic grids of stimuli, one consisting of 73 and one 

of 63 stimuli, resulting in 559 unique locations. This sampling of the stimulus space is 

analogous to the way two nested rectangular grids of stars are arranged on the flag of 

the United States of America (6x5 + 5x4 = 50 stars). The levels of each feature are 

approximately evenly distributed along a log-scaled axis with slight deviation necessary 

for rounding. Ten images were generated at each stimulus space location resulting in 

5,590 total images. 

8-32 stimulus set 

This stimulus set was used previously for a human behavioral experiment (DeWind et 

al., 2015). This set is very similar to the 4-64 stimulus set in that each feature varied 

over 13 levels, but in the 8-32 set only two octaves were sampled. As a result, each 

level was more closely spaced on the log scale feature axes, and the numerical ratios 

were closer. The numerosities sampled were 8, 9, 10, 11, 13, 14, 16, 18, 20, 23, 25, 29, 

and 32. There were 559 unique stimulus space locations sampled and ten images 

generated at each location resulting in 5,590 images. 

1-5 stimulus set 

This stimulus set sampled the numerosities 1, 2, 3, 4, and 5. Size and spacing were 

also sampled at 5 levels at approximately equal distances on a log scale (not evenly 

spaced). In this stimulus set, every size and spacing level was sampled at every 

numerosity level (and vice-versa). This resulted in 53 or 125 unique stimulus space 

locations. Ten images were generated at each location resulting in 1,250 images. 
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Quantification and statistics 

Activations 

Activations in response to the images were obtained using the Neural Network Toolbox 

(version 11) for MATLAB (version R2017b, Mathworks). The response of every unit to 

every image in the three stimulus sets was recorded. 

Unit classification  

For each unit I fit three regression models predicting activation, one for numerosity, 

size, and spacing. Each regression model used regressors dummy coding for all 13 

levels of the relevant feature. Models were fit to half the data and predictions were 

made for the held-out validation set. The correlation coefficient (Pearson’s r) between 

the vector of predicted activations and the vector of observed activations was calculated 

and squared with sign preserved. The p-values for these correlations are plotted in 

Figure S1. These values are plotted in Figure 2A (top row), and the means of these 

values in each layer are plotted in Figure 2B (top). Units were classified as numerosity-

selective if the number model R2 was greater than 0.1 and the size model R2 and 

spacing model R2 were both less than 0.01. Units were classified as magnitude-

sensitive if the sum of the three models’ R2 was greater than 0.1.  

Peak activation numerosity 

For each numerosity-selective unit, the peak activation numerosity was simply the 

numerosity that elicited the greatest mean activation (Figure 2A, middle row). In Figure 

S3A, units that had peak activation to 4 in the 4-64 stimulus set were re-classified as the 

peak activation the 1-5 stimulus set, unless the peak was at 5, in which case they were 

still classified as peaking at 4. Monotonic numerosity-selective units were defined as 

those with peak activations for 1 or 64. Tuned numerosity-selective units were defined 

as those with peak activations for any intermediate value (Figure S3B). 

Classifiers 

The dimensionality of the image-by-unit matrix of activations was reduced using PCA. 

The PCs accounting for 99% of the variance in activation were z-scored and used for 

classification. SVM classifiers (linear kernel) were trained on all pair-wise comparisons 

of numerosity using half the activation data (MATLAB Statistics and Machine Learning 

Toolbox version 2017b). The classifiers were then tested on the held-out validation 

activation data and accuracy was recorded.  

For the classification of stimuli in the stimulus-control-subsets (Figure S5), these same 

classifiers were tested on the stimulus-control-subset portions of the validation data 

separately. 

For the test of ordinality (Figure S7), a single classifier was trained to distinguish 

between stimuli with numerosity greater than 16 and less than 16 over portion of the 
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training set with numerosities 4, 6, 10, 25, 40, and 64. It was tested on the subset of the 

validation data with numerosities 5, 8, 13, 20, 32, and 51.  

Psychometric functions 

We fit two psychometric functions to the SVM classification data. The first was based on 

Piazza et al. (2004). A GLM with a single regressor (log2 of numerical ratio) was fit to 

the accuracy data using a binomial error distribution and a probit link function. The w 

term was defined as below: 

𝑤 =  
1

𝛽𝑁𝑢𝑚√2
   Eq. 1 

The second psychometric function was based on DeWind et al. (2015). A GLM was fit to 

the binary choice data with regressors for log2 of numerical ratio, log2 of size ratio, and 

log2 of spacing ratio. The error distribution was binomial and a probit link function was 

used. 
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