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Abstract 
On January 2014 approximately 10,000 gallons of crude 4-Methylcyclohexanemethanol (MCHM) and 
propylene glycol phenol ether (PPH) were accidentally released into the Elk River, West Virginia, 
contaminating the tap water of around 300,000 residents. Crude MCHM is an industrial chemical used 
as flotation reagent to clean coal. At the time of the spill, MCHM's toxicological data were limited, an 
issue that have been addressed by different studies focused on understanding the immediate and long-
term effects of MCHM on human health and the environment. Using S. cerevisiae as a model organism 
we study the effect of acute exposition to crude MCHM on metabolism. Yeasts were treated with 
MCHM 3.9 mM in YPD for 30 minutes. Polar and lipid metabolites were extracted from cells by a 
chloroform-methanol-water mixture. The extracts were then analyzed by direct injection ESI-MS and 
by GC-MS. The metabolomics analysis was complemented with flux balance analysis simulations done 
with genome-scale metabolic network models (GSMNM) of MCHM treated vs non-treated control. We 
integrated the effect of MCHM on yeast gene expression from RNA-Seq data within these GSMNM. 
181 and 66 metabolites were identified by the ESI-MS and GC-MS procedures, respectively. From 
these 38 and 34 relevant metabolites were selected from ESI-MS and GC-MS respectively, for 72 
unique compounds. MCHM induced amino acid accumulation, via its effects on amino acid 
metabolism, as well as a potential impairment of ribosome biogenesis. MCHM affects phospholipid 
biosynthesis and decrease the levels of ergosterol, with a potential impact in the biophysical properties 
of yeast cellular membranes. The FBA simulations were able to reproduce the deleterious effect of 
MCHM on cell’s growth and suggest that the effect of MCHM on ubiquinol:ferricytochrome c 
reductase reaction, caused by the under-expression of CYT1 gene, could be the driven force behind the 
observed effect on yeast metabolism and growth. 
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1 Introduction 
On January 2014 approximately 10,000 gallons of crude 4-Methylcyclohexanemethanol (MCHM) and 
propylene glycol phenol ether were accidentally released into the Elk River, West Virginia, 
contaminating the tap water of around 300,000 residents (Cooper, 2014)�. Crude MCHM is an 
industrial chemical used as flotation reagent to clean coal (Christie et al., 1989)�. More than 300 
people in the affected area visited emergency departments with reports of symptoms potentially related 
to the spill, including mild skin, gastrointestinal and respiratory symptoms that were resolved with no 
or minimal treatment (Thomasson et al., 2017)�. At the time of the spill, MCHM's toxicological data 
were limited, an issue that have been addressed by different studies focused on understanding the 
immediate and long-term effects of MCHM on human health and the environment (Weidhaas et al., 
2016)�. 

MCHM is considered a moderate-to-strong dermal irritant, causes fetal malformations in rats when 
orally exposed to 400 mg/kg/day (“Eastman Crude MCHM Studies,” 1990). The highest concentration 
of MCHM detected in tap water was 0.0294 mM (Whelton et al., 2015)�. Crude MCHM is not a 
dermal irritant to humans at the concentrations in the water reported after the spill (Monnot et al., 
2017)�. In the evaluation of different cell lines, HEK-293, HepG2, H9c2 and GT1-7 only the highest 
dose of MCHM (1 mM) elicited a statistically significant decrease in cell viability, when compared to 
the control (1% DMSO) (Han et al., 2017)�. MCHM induced DNA damage-related biomarkers in 
human A549 cells, indicating that it is related to genotoxicity (Lan et al., 2015)�. MCHM affected 
larval visual motor response in an acute developmental toxicity assay with zebrafish embryos 
(Horzmann et al., 2017)�. MCHM mainly induced chemical stress related to transmembrane transport 
activity and oxidative stress in yeast (Lan et al., 2015)�. 

The budding yeast Saccharomyces cerevisiae is one of the most intensively investigated, well-
consolidated and widely used eukaryotic model organism. Its use has allowed the gain of insights in 
basic cellular mechanisms such as cell cycle progression, DNA replication, vesicular trafficking, 
protein turnover, longevity and cell death (Denoth Lippuner et al., 2014)� or even more complex 
process like neurodegenaretive disorders (Fruhmann et al., 2017). Being among the first components of 
the biota to be exposed to environmental pollutants, bacteria and fungi are common model organisms 
for eco-toxicological assessments (Braconi et al., 2016)�. A number of features makes S. cerevisiae an 
ideal model for functional toxicological studies, such as: being unicellular, the ease of genetic 
manipulation, availability of a huge repertoire of dedicated experimental tools, protocols, software and 
databases, a high degree of functional conservation with more complex eukaryotes, among others 
(Braconi et al., 2016)�. The effect of tens of pesticides have been studied in S. cerevisiae by a battery 
of omics approaches, including transcriptomics, chemogenomics, proteomics and metabolomics 
(reviewed in (Braconi et al., 2016)�). 

Focused on the analysis of the whole repertoires of endogenous or exogenous metabolites that are 
present in a biological system at a given time point metabolomics serves as a link between genotype 
and phenotype (Aliferis and Chrysayi-Tokousbalides, 2011; Ibáñez et al., 2013). Metabolomics is an 
extremely useful tool in the analysis of the metabolic modifications induced by potentially toxic 
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compounds (Nicholson et al., 2002)�. These studies include the effect different fungicides (Queiroz et 
al., 2012), Cu2+ exposure (Farrés et al., 2016)��, tolerance to representative inhibitors (Wang et al., 
2015)�, ethanol tolerance (Kim et al., 2016; Ohta et al., 2016), among others. 

Flux balance analysis (FBA) (Fell and Small, 1986; Savinell and Palsson, 1992; Varma et al., 1993; 
Varma and Palsson, 1993) with genome-scale metabolic network models (GSMNM) allows the 
simulation of the metabolism at a systemic level, for the understanding of diverse phenomena and 
making predictions (Yilmaz and Walhout, 2017)�. There are more than twenty genome-scale metabolic 
network models reconstructed for S. cerevisiae to date (Heavner and Price, 2015)�. The consensus 
yeast metabolic network stands out with 14 compartments, more than 3700 reactions, >2500 
metabolites and >1100 genes (Heavner et al., 2013)�. 

The accuracy of FBA predictions can be improved by the integration of experimental data (Yilmaz and 
Walhout, 2017)�. Several methods have been developed to this end, allowing the integration of 
transcriptomics data: such as E-Flux (Colijn et al., 2009)�, omFBA (Guo and Feng, 2016)� and 
transcriptional regulated flux balance analysis (TRFBA) (Motamedian et al., 2017)�; proteomics data: 
GECKO (a method that enhances a genome-scale metabolic models to account for enzymes as part of 
reactions) (Sánchez et al., 2017)�; and metabolomics data: unsteady-state flux balance analysis 
(uFBA) (Bordbar et al., 2017)�. 

In the present work we study the effect of MCHM on metabolism using yeast as a model organism, 
combining metabolomics tools with FBA simulations on genome-scale metabolic network models of 
yeast constrained by RNA-Seq data. 

2 Materials and Methods 

2.1 MCHM treatment 
Wildtype yeast from the S288c background (BY4741 strain his3, ura3, leu2, met15) (Brachmann et al., 
1998)� were grown in YPD to exponential phase (OD 0.4 – 0.6) then treated with crude 4-
Methylcyclohexanemethanol (crude MCHM provided directly from Eastman Chemical) 3.9 mM for 30 
minutes or left untreated. Six independent biological replicates were done per treated and untreated 
group. After 30 minutes 5 optical units of cells were collected, washed with deionized water, flash 
frozen in liquid nitrogen and stored at -80oC for extraction within the next 24 hours. 

2.2 Metabolites extraction 
Lipid and polar metabolites were extracted with a 1:2:0.8 mixture of chloroform: MeOH: H2O, 
following a modified version of a published protocol (Bourque and Titorenko, 2009)�. HPLC grade 
chloroform and methanol were from Sigma-Aldrich. All the steps were done using glassware, to avoid 
polymers contamination. The extractions were performed in 15 mL Kimble™ Kontes™ KIMAX™ 
Reusable High Strength Centrifuge Tubes from Fisher Scientific. Half of the original protocol volume 
values were used. For extractions headed to GC-MS analysis 50 µL of ribitol internal standard (10 
mg/mL) were added. 3 mL of the polar and 3 mL of the lipid phase were collected per sample. The 
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polar phase were dried in SpeedVac (ThermoFisher Scientific). The lipid phase was dried overnight in a 
fume hood. For ESI-MS experiments, but not for GC-MS, the dried polar phases were re-suspended in 

500 μL of MeOH and the lipid phases were re-suspended in 500 µL 1:1 chloroform: MeOH. All 
extracts were stored at -20 oC for analysis within 48 hours. 

2.3 ESI-MS 
Samples were analyzed by direct injection of the resuspended extracts in a Thermo Fisher Scientific Q-
Exactive, with an ESI (electrospray ion source), using positive and negative modes. For polar 
compounds in positive mode the injection speed was 10 µL/min, the scan range was 50 – 750 m/z, no 
fragmentation, 140,000 resolution, 1 microscan, AGC target 5*105, maximum injection time of 100, 
sheath gas flow rate of 10, aux gas flow rate of 2, no sweep gas flow, spray voltage 3.60 kV, capillary 
temperature of 320oC, S-lens RF level 30.0. For polar compounds in negative mode most parameters 
remain the same, except for spray voltage: 3.20 kV, capillary temperature: 300 oC, S-lens RF level: 
25.0. For lipid compounds in positive mode the following parameters were modified; scan range: 150.0 
– 2,000.0 m/z, sheath gas flow rate: 15, aux gas flow rate: 11, spray voltage: 3.50, capillary 
temperature: 300oC, S-lens RF level: 25.0. For lipid compounds in negative mode the previous 
parameters were kept, except for the spray voltage, which was set to 3.20 kV. 

50 scans were obtained per sample and later averaged with Thermo Scientific Xcalibur 2.1 SP1. 
Averaged spectra in positive and negative mode were processed for polar and lipid fractions, separately,  
with xcms 3.2.0 (Smith et al., 2006)�. Peaks were identified within each spectrum using the mass spec 
wavelet method from the MassSpecWavelet 1.46.0 R package (Du et al., 2006)�. Peaks were grouped 
with the Mzclust method, followed by groupChromPeaks. All features were plotted to be visually 
inspected. The intensity values of each feature in each sample was obtained with the featureValue 
method as the integrated signal area for each representative peak per sample. The feature intensity and 
feature definition tables were saved as CSV files. Features were identified via MetaboSearch 1.2 (Zhou 
et al., 2012)�, with the list comprising the average mz values for each feature as a query, with 5 ppm of 
error, positive or negative mode and using the four online databases available as options in the 
program: HMDB, Metlin, MMCD and LipidMaps. After the feature identification, feature intensity 
tables (keeping only identified features) coming from the same biological replicate (both positive and 
negative modes from polar and lipid fractions) were merged as a single intensity table. 

Six biological replicates per group for MCHM treated and untreated controls were used. The 
experiment were repeated twice with consistent results. These biological replicates are not the same 
used in GC-MS experiments. 

2.4 GC-MS 
50 µL of Methyl heptadecanoate 2 mg/mL was added as internal standard to each lipid sample before 
derivatization. Lipid and polar fractions were derivatized with BSTFA (DATTA et al., 2012)� and 
MSTFA (Xue et al., 2015)�, respectively. For BSTFA derivatization dried extracts were treated with 
200 μL N,O-bis(trimethylsilyl)trifluoroacetamide with 1% of trimethylchlorosilane at 75 °C for 30 min. 
For MSTFA derivatization dried extracts were treated with 50 μL methoxyamine hydrochloride (40 
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mg/ml in pyridine) for 90 min at 37 °C, then with 100 μL MSTFA + 1% TMCS at 50 °C for 20 min. 
Derivatized samples were analyzed using a GC-MS (Trace 1310 GC, Thermo Fisher Scientific, 
Waltham, MA, USA) coupled to a MS detector system (ISQ QD, Thermo Fisher Scientific, Waltham, 
MA, USA) and an autosampler (Triplus RSH, Thermo Fisher Scientific, Waltham, MA). A capillary 
column (Rxi-5Sil MS, Restek, Bellefonte, PA, USA; 30 m × 0.25 mm × 0.25 µm capillary column 
w/10 m Integra-Guard Column) was used to detect polar metabolites. For water-soluble metabolite 
analysis, after an initial temperature hold at 80 °C for 2 min, the oven temperature was increased to 330 
°C at 15 °C min-1 and held for 5 min. For lipid-soluble metabolite analysis, after an initial temperature 
hold at 150 °C for 1 min, the oven temperature was increased to 320 °C at 12 °C min-1 and held for 7 
min. Injector and detector temperatures were set at 250 °C and 250 °C, respectively. An aliquot of 1 μL 
was injected with the split ratio of 70:1. The helium carrier gas was kept at a constant flow rate of 1.2 
mL min-1. The mass spectrometer was operated in positive electron impact mode (EI) at 70.0 eV 
ionization energy at m/z 40-500 scan range. 

Peak identification and grouping, and feature intensities calculation were performed with Thermo 
Scientific™ Chromeleon™ (Version 7.2, Thermo Fisher Scientific, Waltham, MA, USA). Features 
were identified against a locally characterized set of central metabolites (targeted metabolomics), when 
possible. Other features were identified querying NIST database (untargeted metabolomics). Feature 
intensity tables were saved as CSV files, keeping only the identified features. 

Features intensities from lipid and polar fractions were normalized against its corresponding internal 
standards (methyl heptadecanoate for lipid and ribitol for polar fractions) and then the ones coming 
from the same biological replicate (both lipid and polar fractions) were merged as a single intensity 
table. 

Six biological replicates per group for MCHM treatment and untreated controls were used. The 
experiment was repeated three times with consistent results. These biological replicates are not the 
same used in ESI-MS experiments. 

2.5 Metabolomics data processing 
Feature intensity tables from ESI-MS and GC-MS were processed with MetaboAnalyst 4.0 (Chong et 
al., 2018)�. Missing intensity values were replaced by half of the minimum positive value in the 
original data. Up to 5% of the features with near-constant intensity values among the samples were 
filtered out. Samples were normalized by sum and data scaled by Pareto scaling. Samples are compared 
by univariated analysis (t-test and fold change) and multivariate analysis: Partial Least Squares 
Discriminant Analysis (PLS-DA), Sparse Partial Least Squares - Discriminant Analysis (sPLS-DA), 
Empirical Bayesian Analysis of Microarray (EBAM), Random Forest classification and Significance 
Analysis of Microarray (SAM), as implemented in MetaboAnalyst 4.0. Relevant metabolites were 
chosen among those that changes significantly due to the treatment and the relevant metabolites from 
the multivariate analysis. 

The Pathway Analysis were performed with MetaboAnalyst 4.0 using the name of the relevant 
compounds from the ESI-MS and GC-MS combined. The Saccharomyces cerevisiae pathway library 
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was used, as well as the hypergeometric test for the over representation analysis and relative-
betweenness centrality for the pathway topology analysis. 

Some pathways are represented as Escher maps (King et al., 2015)� with the thick and color of the 
edges as a function of the respective MCHM treated vs untreated control flux ratio values. 

2.6 Transcriptomics 
A fraction of previously reported data was used, including only the samples with wildtype S288c (S96 
lys5) cells in YPD treated or not with MCHM (Pupo et al., 2019)� . The RNA-seq of S96 was carried 
out on hot phenol extracted RNA (Rong-Mullins et al., 2017)�. The raw data is accessible at 
ttps://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108873, containing count data generated via 
Rsubread and the differential expression data generated via DESeq2. MA plot and KEGG Pathway 
Enrichment Analysis were done with R packages ggpubr and clusterProfiler (Yu et al., 2012)�, 
respectively. 

2.7 Flux Balance Anaylsis 
For our FBA simulations we used the consensus genome-scale metabolic model of Saccharomyces 
cerevisiae, yeastGEM, version 8.3.0 (Kerkhoven et al., 2018)�. The simulations were performed with 
the COBRApy python package (Ebrahim et al., 2013)�, using yeastGEM definition of growth as the 
objective function to be maximized. 

The upper bounds of reactions from yeastGEM were modified in correspondence with gene expression 
of related genes from our RNA-Seq data. For this integration of RNA-Seq and FBA we adapted the E-
Flux method developed by Colijn et al. (Colijn et al., 2009)�. Briefly, every reaction is associate with a 
set of genes which products (enzymes or transporters) make the reaction possible. In the simplest case 
only one gene or none at all are associated, meaning that the enzyme catalyzing the reaction is a single 
poly-peptide entity or that the reaction is spontaneous, respectively. When the enzymes are heteromeric 
the gene coding for the different subunits are associated by an “AND” keyword, and the maximum 
reaction flux is driven by the gene with the lowest expression of the set. When the reaction can be 
driven by more than one protein the corresponding gene (gene sets) are associated by the “OR” 
keyword, and the maximum reaction flux is a function of the sum of the corresponding gene (gene sets) 
expressions. If there is no expression value for a given gene the average expression of the 
corresponding experimental group is used instead. 

The resulting upper reaction bounds were normalized between zero and 1000 (the default upper bound 
in the yeastGEM model). Two models came out as the result of this procedure, one for MCHM treated 
yeast and one for the untreated control. 

Default solutions are determined for each model using the optimize method from COBRApy and with 
the default yeastGEM media. Phenotype phase plane of Growth vs D-Glucose exchange was calculated 
with the production_envelope method and the corresponding graphics generated with ggpubr. 
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Upper bounds of selected reactions were manually modified to test for the importance of such reactions 
in growth. 

All fluxes are in mmol/(gDW*hour). 

3 Results 

3.1 MCHM affects yeast metabolism 
To assess how MCHM treatment affects metabolism, 181 and 66 metabolites were identified by the 
ESI-MS and GC-MS procedures, respectively. There is almost no overlap between both set of 
compounds, as only eight metabolites were detected by both procedures: adenosine, citric acid, L-
proline, myristic, palmitic, palmitoleic and stearic acids and uridine. A total of 238 metabolites were 
consistently detected by our combined analysis, comprising 15 out of the 20 standard amino acids and 
51 variants of phospholipids, among other lipid and polar compounds (Supplemental Table 1). 

Features from the MS spectra were detected, grouped, identified and their intensities calculated as 
described in Materials and Methods. Intensities were normalized to facilitate multivariate analysis (see 
Materials and Methods, Supplemental Figure 1 and 2). The 25 metabolites that change most 
significantly due to MCHM treatment per experiment type, as detected in ESI-MS and GC-MS, are 
shown in Figure 1. Biological replicates per group are consistent, clustered in the heatmaps (Figure 1). 
The concentration of some metabolites are increased due to the MCHM treatment, including nine 
amino acids (N, V, A, D, T, G, Y, S, Q), TCA cycle intermediates (citric and malic acids), glutathione 
and inosine (Figure 1), while the levels of other are decreased, such as: phospholipids and phosphatidic 
acids, ergosterol, L-ornithine, urea, uracil and myo-inositol. 

In order to assess the proper differentiation of the MCHM treated vs untreated control groups and to 
test the relevancy of significant metabolites by an alternative way we performed a Partial Least Squares 
Discriminant Analysis (PLS-DA, Figure 2). The MCHM treated and untreated control groups can be 
clearly separated in both ESI-MS and GC-MS experiments (Figure 2 A and B). This group separation 
was confirmed with Orthogonal-Orthogonal Projections to Latent Structures Discriminant Analysis 
(OPLS-DA, Supplemental Figure 3) and Sparse Partial Least Squares - Discriminant Analysis (sPLS-
DA, Supplemental Figure 4 A, B), showing that such separation reflects the effect of MCHM treatment 
and is independent of specificities in the implementation of the Partial Least Squares Discriminant 
Analysis methodology. PLS-DA allows finding out the metabolites responsible for the separation of the 
groups. Compounds with VIP (variable importance in projection) scores for the first component greater 
than 1 were selected as relevant metabolites with PLS-DA (Figure 2 C and D). A total of 34 and 15 
compounds were found relevant by PLS-DA in ESI-MS and GC-Ms experiments, respectively. From 
these some were not previously shown in the 25th most significant (Figure 1) such as: 2-
isopropylmalate and acetylcarnitine. The list of relevant metabolites was consolidated with the selected 
metabolites from sPLS-DA (Supplemental Figure 4 C and D), and the significant features identified by 
Random Forest (Supplemental Figure 5), Empirical Bayesian Analysis of Microarray (EBAM, 
Supplemental Figure 6) and Significance Analysis of Microarray (SAM, Supplemental Figure 7). 
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Metabolites being significant in most of the statistical analysis were selected as relevant metabolites, 
which concentrations change due to MCHM treatment (Figure 3). There are 38 and 34 relevant 
metabolites from ESI-MS and GC-MS respectively, for 72 unique compounds. From these the levels of 
40 are reduced and the levels of 32 are increased due to MCHM treatment. In addition to the 
metabolites mentioned above, relevant metabolites include fatty acids, branched fatty acid esters, d-
glucose, AMP, guanosine, four new amino acids (R, E, K, and P, for a total of 13 out of 20 standard 
amino acids), 3-methylthiopropyl acetate, pyroglutamic acid, lactic acid, among others. 

These relevant metabolites were used as input for a pathway analysis (Figure 4), which combine 
pathway enrichment with pathway topology analysis. Six metabolic pathways are both statistically 
significant and with impact (Figure 4). Relevant amino acids dominated this analysis, as three of the 
pathways are the metabolism of amino acids (including A, D, E, R, P, G, S and T), the aminoacil t-RNA 
biosynthesis reactions has them as reactants, and the nitrogen metabolism has L-glutamate, L-
glutamine and 2-oxoglutarate as intermediaries. The other relevant pathway is the glutathione 
metabolism, being the levels of glutathione, a critical redox agent, increased due to MCHM treatment. 

3.2 Effect of MCHM on gene expression 
We used a data set generated previously by our laboratory and available from 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108873 (Pupo et al., 2019)�. For this 
analysis we kept only the data regarding wild type S288c strain in YPD, treated or not with MCHM by 
90 minutes. 

From gene expression measurements for 3946 genes, 87 were up-regulated and 30 down-regulated due 
to MCHM treatment (Figure 5A, Supplemental Table 2) potentially affecting 18 metabolic pathways 
(Figure 5B). No pathway enrichment was found from the down-regulated genes. 

Seven down-regulated genes are involved in ribosome biogenesis: SDA1 and RRP1, involved in 60S 
ribosome biogenesis (Babbio et al., 2004; Horsey et al., 2004). ESF1, its depletion causes severely 
decreased 18S rRNA levels (Peng, 2004)�. BFR2, involved in pre-18S rRNA processing and 
component of 90S preribosomes (Pérez-Fernández et al., 2007)�. MRD1, required for production of 
18S rRNA and small ribosomal subunit (Jin et al., 2002)�. NOP4, constituent of 66S pre-ribosomal 
particles and critical for large ribosomal subunit biogenesis and processing and maturation of 27S pre-
rRNA (Sun et al., 1994)�. NOP7, component of several pre-ribosomal particles (Miles et al., 2005)�. 
Loss of Sda1 function causes cells to arrest in G1 before Start and to remain uniformly as unbudded 
cells that do not increase significantly in size (Buscemi et al., 2000; Zimmerman and Kellogg, 2001)�. 

Among the rest of down-regulated genes there are two that codes for cell wall mannoproteins (CWP1 
and TIR1) and three involved in iron and zinc transport and homeostasis (FTR1, ZRT1 and IZH1). 

The up-regulated gene set is enriched in genes coding for enzymes of the amino acid biosynthesis 
pathways (28 out of 87) (Figure 5B, Supplemental Table 2): ARG1, ARG5,6, ARG7, CPA1, CPA2, 
ASN1, GDH1, HIS4, HIS5, HOM2, HOM3, LEU1, LEU2, LEU4, LYS1, LYS2, LYS12, MET5, MET6, 
MET17, MET22, TRP2, TRP5, TMT1, ARO1, ARO3, ADE3 and THR4. These gene products participate 
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in the biosynthesis of the amino acids: D, R, N, E, H, M, T, L, K, C, W, Y and F. Other three genes: 
CAR1, MET3 and MET14 are involved in R and M metabolism. ARO8, coding for the aromatic 
aminotransferase I, is also up-regulated and its expression is regulated by general control of amino acid 
biosynthesis (Iraqui et al., 1998)�. 

Five genes, which protein products abundance increases in response to DNA replication stress, are up-
regulated due to MCHM treatment: AHA1, ENO1, GRE2, PDR3 and PDR16. Other stress response 
related genes are also up-regulated: CMK2, ICT1, TPO1, ENB1, SNQ2 and QDR3. 

It is of note that genes coding for six mitochondrial enzymes (MAE1, BAT1, ILV6, IDP1, GCV2 and 
LYS12) and three mitochondrial transporters (GGC1, OAC1 and ODC2) are up-regulated. From these, 
MAE1 codes for the mitochondrial malic enzyme which catalyzes the decarboxylation of malate to 
pyruvate (in addition to its key role in sugar metabolism, pyruvate is a precursor for synthesis of 
several amino acids); BAT1 and ILV6 products are involved in branched-chain amino acid biosynthesis 
and ODC2 codes the 2-oxodicarboxylate transporter, which exports 2-oxoglutarate and 2-oxoadipate 
from the mitochondrial matrix to the cytosol for use in glutamate biosynthesis and in lysine 
metabolism. 

3.3 Modeling MCHM effect on yeast metabolism by Flux Balance 
Analysis 
Using the expression data and the gene rules from the yeastGEM model (version 8.3.0) upper bounds 
were calculated for 2504 reactions of the model. Two new metabolic models were created from the 
original yeastGEM model, named control and treated, with the upper bounds of their reaction fluxes 
calculated from the corresponding gene expression data (as explained in Materials and Methods), and 
using as the objective function the maximization of growth. A summary of the result of FBA 
simulations with these models are shown in Tables 1 and 2. All the input and output fluxes are shown, 
with the involved metabolites, the calculated flux rates and their ranges. Flux ranges were calculated by 
Flux Variability Analysis with a fraction to optimum of 1. The objective function flux is shown. The 
growth was predicted to decrease due to the MCHM treatment, from a flux of 0.0704 to 0.0591 
mmol/(gDW*hour) (Tables 1 and 2). The flux ratio of growth between treated and control was ~0.839. 
So, MCHM treatment decreased yeast growth, consistent with the experimental results (Pupo et al., 
2019)�.  

Table 1: FAB solution for the control model. [e] indicates extracellular compartment. All fluxes are in 
mmol/(gDW*hour). 

IN FLUXES  OUT FLUXES OBJECTIVES 

Name Flux Range Name Flux Range Name Flux 

oxygen [e] 1.91 [1.91, 1.91] H2O [e] 2.82 [2.23, 2.82] growth 0.0704 

phosphate [e] 1.2 [0.0178, 1.2] formate [e] 1.74 [1.74, 1.74]   

D-glucose [e] 1 [1, 1] carbon 
dioxide [e] 

1.35 [1.35, 1.35]   

ammonium  0.388 [0.388, 0.388] diphosphate 0.59 [0, 0.59]   
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[e] [e] 

sulphate [e] 0.00538 0.00538, 
0.00538] 

H+ [e] 0.302 [0.302, 1.06]   

   ethanol [e] 0.17 [0.17, 0.17]   

Table 2: FAB solution for the treated model. [e] indicates extracellular compartment. All fluxes are in 
mmol/(gDW*hour). 

IN FLUXES  OUT FLUXES OBJECTIVES 

Name Flux Range Name Flux Range Name Flux 

oxygen [e] 1.4 [1.4, 1.4] H2O [e] 1.93 [1.77, 1.93] growth 0.0591 

D-glucose [e] 1 [1, 1] carbon 
dioxide [e] 

1.45 [1.45, 1.45]   

phosphate [e] 0.345 [0.015, 0.345] formate [e] 1.25 [1.25, 1.25]   

ammonium  
[e] 

0.325 [0.325, 0.325] ethanol [e] 0.57 [0.57, 0.57]   

sulphate [e] 0.00451 [0.00451, 
0.00451] 

H+ [e] 0.212 [0.212, 1.38]   

   diphosphate 
[e] 

0.165 [0, 0.165]   

Our FBA simulations predict that the effect of MCHM on growth is diminished when the concentration 
of D-Glucose in the medium is decreased (Figure 6). There is a level of D-Glucose in the medium (~0.5 
mmol/(gDW*hour)) from which the growth of the MCHM treated and control models are the same. 

We then focused in the six significant pathways from the pathway analysis (Figure 4), to analyze the 
flux ratios between the FBA solutions of the treated vs the control models. The Escher maps 
representations (King et al., 2015)� of alanine, aspartate and glutamate metabolism, glutathione 
metabolism, glycine, serine and threonine metabolism, arginine and proline metabolism, nitrogen 
metabolism and the aminoacil t-RNA biosynthesis are shown in Supplemental Figures 8 – 13. As in any 
metabolic map the nodes are the metabolites and the edges connecting them are the reactions, with 
arrow heads indicating the reaction direction and labeled by the corresponding enzyme or transporter. 
The ratio of the fluxes passing throughout the respective reactions in the MCHM treated vs untreated 
control models are shown next to the enzyme names, and the color and width of the edges are scaled in 
function of such ratio values. All the relevant pathways have fluxes affected due to the treatment, fluxes 
that involved some relevant metabolites from the metabolomics studies. Only two reactions of 
glutathione metabolism are relevant in the solutions of these FBA simulations, both involved in the 
inter-conversion between glutathione and glutathione disulfide (Supplemental Figure 9). No flux goes 
through the other reactions in the pathway. A similar situation is present in nitrogen metabolism 
pathway, with flux passing only through glutamine synthetase and bicarbonate formation reactions 
(Supplemental Figure 12). In the rest of the analyzed pathways most of the reactions are active (with 
non-zero net fluxes) (Supplemental Figure 8, 10, 11 and 13). The fluxes of most reactions are decreased 
in the MCHM treated model vs the control (flux ratios < 1). There are many reactions which flux ratio 
(treatment/control) is the same ratio of the growth, the value 0.839. The extreme case is Aminoacil t-
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RNA biosynthesis (Supplemental Figure 13), where all the reactions have this flux ratio. These 
reactions having the same treated/control flux ratio as the treated/control growth ratio indicates that 
they are linked to the growth but does not ensure that any of these reactions is actually limiting it. 

3.3.1 Limiting reaction in FBA models 
The reaction or reactions limiting the growth (limiting reactions) must be operating at the maximum 
allowed flux (upper bound value, calculated in function of the related gene expression levels) in the 
treated model. Two reactions operated at max flux in the model of the treatment (Table 3, last two 
rows). One of these, the ubiquinol:ferricytochrome c reductase, was also operating almost at maximum 
flux in the control model (Table 3, data row 3), and it is then the primary candidate to be the limiting 
reaction in our FBA simulations. Ubiquinol:ferricytochrome c reductase is part of oxidative 
phosphorylation pathway and contributes to the proton gradient formation through the mitochondrial 
membrane. 

Table 3: Reactions operating within 0.1 units of the maximum allowed flux. Compartments legend: c, 
cytoplasm; e, extracellular; m, mitochondria. All fluxes are in mmol/(gDW*hour). 

Id Name Flux Upper 
bound 

Compartment Model 

r_0226 ATP synthase 4.375 4.375 m, c Control 

r_0438 ferrocytochrome-c:oxygen oxidoreductase 6.930 6.930 m, c Control 

r_0439 ubiquinol:ferricytochrome c reductase 3.465 3.536 m, c Control 

r_0501 glycine cleavage system 0.449 0.449 m Control 

r_0506 glycine-cleavage complex (lipoylprotein) 0.423 0.449 m Control 

r_0507 glycine-cleavage complex (lipoylprotein) 0.423 0.449 m Control 

r_0508 glycine-cleavage complex (lipoylprotein) 0.423 0.449 m Control 

r_0773 NADH:ubiquinone oxidoreductase 0.730 0.730 m Control 

r_1250 putrescine excretion 0.539 0.539 e, c Control 

r_0439 ubiquinol:ferricytochrome c reductase 2.582 2.582 m, c Treated 

r_0569 inorganic diphosphatase 0.330 0.330 m Treated 

To test if ubiquinol:ferricytochrome c reductase was the limiting reaction we modified its upper bound 
in the control model to the one it has in the treated (Table 4, third data row vs first and second data 
row). The growth rate decreased from 0.0704 to 0.0597, which is practically the same growth of the 
treated model, 0.0591. As can be seen modifying the maximum allowed flux of this reaction alone is 
enough to mimic the effect of the treatment in the growth, confirming that 
ubiquinol:ferricytochrome c reductase is the limiting reaction in our FBA simulations. We tried to 
recover the control phenotype (growth of 0.0704, Table 4, first data row) by setting the 
ubiquinol:ferricytochrome c reductase upper bound in the treated model to the one it has in the control 
one (Table 4, fourth data row vs first data row). The growth increased (up to 0.0672), but not at the 
level of the control model (not even after setting the upper bound to a higher value of 10, when the 
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actual flux is lower than the set upper bound) (Table 4, data rows four and five). This means that in the 
treated model there are other reactions that become limiting when the maximum allowed flux through 
the ubiquinol:ferricytochrome c reductase is set higher. These reactions are the ATP synthase and the 
NADH:ubiquinone oxidoreductase, which are both operating at their maximum allowed flux in this 
condition (Table 5). 

Table 4: Effect of ubiquinol:ferricytochrome c reductase reaction on growth. The first two data rows 
show the upper bounds set for the reaction from the RNA-Seq data for the control and treated models, 
respectively, as well as the resulting actual fluxes and growth rates. The other three rows show the 
effect in the actual flux and in growth of modifying the upper bound values. All fluxes are in 
mmol/(gDW*hour). 

Id Name Model Upper 
bound 

Actual 
flux 

Growth 

r_0439 ubiquinol:ferricytochrome c reductase Control 3.536 3.465 0.0704 

Treated 2.582 2.582 0.0591 

Control 2.582 2.582 0.0597 

Treated 3.536 3.536 0.0672 

Treated 10.000 4.534 0.0688 

Table 5: Potential limiting reactions in the treated model when the upper bound for the  
ubiquinol:ferricytochrome c reductase reaction is set to the one it has in the control model. All fluxes 
are in mmol/(gDW*hour). 

Id Name Flux Upper 
bound 

Compartment Model 

r_0226 ATP synthase 4.034 4.034 m, c Treated 

r_0439 ubiquinol:ferricytochrome 
c reductase 

3.536 3.536 m, c Treated 

r_0773 NADH:ubiquinone 
oxidoreductase 

0.918 0.918 m Treated 

Then, we keep the upper bound of ubiquinol:ferricytochrome c reductase reaction in the treated model 
set to 3.536 (the value from the control model, Table 4 data row one) and set the upper bounds of the 
other two reactions from Table 5 to an arbitrary large value (10), one at a time, to see if the control 
growth phenotype can be recovered (Table 6). Increasing the upper bounds of 
ubiquinol:ferricytochrome c reductase together with NADH:ubiquinone oxidoreductase increased to 
growth to 0.0672, which is still lower than the control growth rate (0.0704). But, increasing the upper 
bound of ubiquinol:ferricytochrome c reductase reaction together with the ATP synthase does recover 
the control growth phenotype, actually slightly improving the growth (0.0756 vs 0.0704) (Table 6). 

Table 6: Recovering the growth phenotype in the treated model. All fluxes are in mmol/(gDW*hour). 

Id Name Model Upper 
bound 

Actual 
flux 

Growth 
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r_0439 ubiquinol:ferricytochrome c reductase Treated 3.536 3.536 0.0672 

r_0773 NADH:ubiquinone oxidoreductase 10.000 1.445 

r_0439 ubiquinol:ferricytochrome c reductase Treated 3.536 3.536 0.0756 

r_0226 ATP synthase 10.000 4.863 

These results confirm than in our models the ubiquinol:ferricytochrome c reductase is the limiting 
reaction. 

3.3.1.1 Limiting gene 
The gene reaction rule for ubiquinol:ferricytochrome c reductase in the yeastGEM model is: 

• (Q0105 and YBL045C and YDR529C and YEL024W and YEL039C and YFR033C and 
YGR183C and YHR001W__45__A and YJL166W and YOR065W and YPR191W) or (Q0105 
and YBL045C and YDR529C and YEL024W and YFR033C and YGR183C and 
YHR001W__45__A and YJL166W and YJR048W and YOR065W and YPR191W) 

This means that the protein responsible for carrying out the ubiquinol:ferricytochrome c reductase 
reaction is a multisubunit complex, with two possible quaternary structures, both conformed by   
polypeptides encoded by a set of 11 genes. The genes encoding for the components of the first 
quaternary structure are Q0105, YBL045C, YDR529C, YEL024W, YEL039C, YFR033C, YGR183C, 
YHR001W__45__A, YJL166W, YOR065W and YPR191W. The genes encoding for the second are 
Q0105, YBL045C, YDR529C, YEL024W, YFR033C, YGR183C, YHR001W__45__A, YJL166W, 
YJR048W, YOR065W and YPR191W. The maximum flux of a multisubunit complex will depend on 
the gene with the lowest average expression, which will be the limiting factor of the complex 
assembling. For both possible complex configurations, in both control and treatment conditions, 
YOR065W (CYT1) has the lowest average expression (Table 7). The expression level of CYT1 is 
limiting the maximum flux allowed through the ubiquinol:ferricytochrome c reductase reaction in our 
FBA simulations. We were able to reproduce the results showed in Tables 4 – 6, by modifying CYT1 
expression values used to build the control and treated models, instead of the derived reaction upper 
bound. 

Table 7: Gene average expression for components of the ubiquinol:ferricytochrome c reductase 
complex. The enzyme has two possible quaternary structures, labeled as complex configuration 1 and 2 
in this table. The presence of the genes in a given configuration is stated in the last column. 

Gene id Gene Expression 
control 

Expression 
treated 

Complex 
configuration 

YBL045C COR1 134.50 122.91 1 and 2 

YOR065W CYT1 122.69 89.59 1 and 2 

YPR191W QCR2 133.78 138.20 1 and 2 

YFR033C QCR6 125.40 107.32 1 and 2 

YJL166W QCR8 317.91 552.80 1 and 2 

YEL024W RIP1 160.27 188.18 1 
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YJR048W CYC1 309.61 179.50 2 

YDR529C QCR7 407.45 555.42 2 

Average All genes without 
expression data 

472.26 448.02 1 and 2 

4 Discussion 
MCHM significantly affects amino acid metabolism, increasing the total intracellular concentration of 
12 out of 20 standard amino acids. As 28 genes coding for enzymes of the amino acid biosynthesis 
pathways are up-regulated due to MCHM treatment, the higher levels of such amino acids can be 
partially explained by their probable increased biosynthesis. The other contributing factor could be a 
reduced protein production, due to the deleterious effect of MCHM on ribosome biogenesis (down-
regulating seven critical genes of the process), leading to an amino acid accumulation. 

Cu2+ also increase the levels of some amino acids (L-glutamate, L-phenylalanine, L-leucine and L-
phenylalanine) and decrease the level of L-aspartate in S. cerevisiae (Farrés et al., 2016)�. From these 
only L-glutamate and L-aspartate variate in our analysis, both increasing their levels due to MCHM. 
The only amino acid which level was reduced after MCHM treatment was L-proline. In Saccharomyces 
cerevisiae, L-proline is a stress protectant, effective against oxidative stress under low pH conditions 
(Nugroho et al., 2016)�, protecting against representative inhibitors like furfural, acetic acid and 
phenol (Wang et al., 2015)� and contributing to ethanol tolerance (Ohta et al., 2016)�. It is of note that 
the other protective metabolite against representative inhibitors found by Wang et al (Wang et al., 
2015)�, myo-inositol, also has a lower level due to MCHM. It is also interesting the higher levels after 
MCHM treatment of glutathione, a critical protector against oxidative stress, in contrast to the 
previously reported oxidative stress in MCHM treated cells (Lan et al., 2015)�. On the other hand, the 
level of acetyl-L-carnitine, which protects yeast cells from apoptosis and aging and inhibits 
mitochondrial fission (Palermo et al., 2010)�, is increased due to MCHM. In despite of the 
contradictory levels of some previous metabolites, it is clear that yeast is responding to the stress 
caused by MCHM in our study, upregulating 11 genes related with stress response. From these genes, 
particularly from AHA1, ENO1, GRE2, PDR3 and PDR16, we can infer that MCHM is affecting DNA 
replication (Tkach et al., 2012)�. This is in correspondence with the previously described DNA 
damage effect (particularly double strand break) of MCHM in human cells (Lan et al., 2015)�. From 
the other stress-related upregulated genes: SNQ2 and QDR3 encode multidrug transporters involved in 
multidrug resistance (Rogers et al., 2001; Tenreiro et al., 2005); ENB1 encodes for an endosomal ferric 
enterobactin transporter, which is expressed under conditions of iron deprivation (Philpott et al., 
2002)�; TPO1 codes for a polyamine transporter which exports spermine and spermidine from the cell 
during oxidative stress, controlling the timing of expression of stress-responsive genes (Krüger et al., 
2013)�; ICT1 codes the lysophosphatidic acid acyltransferase responsible for enhanced phospholipid 
synthesis during organic solvent stress (Ghosh et al., 2008)�. 

We did not detect the effect of an enhanced phospholipid biosynthesis in our metabolomics analysis, by 
the contrary the levels of all phospholipids included in the relevant metabolites (one 
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phosphatidylethanolamine, three phosphatidylinositol, four phosphatidylserine plus two lyso-
phosphatidylethanolamine and four phosphatidic acid molecules) are decreased due to MCHM, while 
the levels of the remaining 37 detected phospholipids do not change. The reduced levels of these 
molecules of phosphatidylethanolamine, phosphatidylinositol and phosphatidylserine, together with the 
lower level of ergosterol in MCHM treated cells point toward a significant effect of MCHM in yeast 
cellular membranes, with potential effects on their biophysical properties, which could impact several 
cellular processes involving membranes. 

In our ESI-MS experiments four branched fatty acid esters of hydroxy fatty acids (FAHFAs) were 
identified as relevant metabolites, which levels were increased due to MCHM. Given that FAHFAs are 
a relatively new discovered class of endogenous mammalian lipids with anti-diabetic and anti-
inflammatory effects (Yore et al., 2014)�, it is possible that this four FAHFAs are just false positives 
and  unknown isobaric metabolites are the real relevant metabolites. These FAHFAS were identified 
with an error of no more than 1.14 dppm and a delta of 5.8e-4 m/z. To validate the presence of FAHFAs 
in yeast an additional experimental approach is required, with generation of MS/MS data and query 
against specialized libraries (Ma et al., 2015)�, but this is out the scope of the current study. 

The FBA simulations done with genome-scale metabolic network models (GSMNM) of MCHM treated 
vs non-treated control yeast were able to reproduce the deleterious effect of MCHM on cell’s growth. 
These GSMNM have integrated the gene expressions from the RNA-Seq data, as explained in 
Materials and Methods. The flux ratio through several reactions in the six significant pathways from 
the metabolomics analysis is linked to the simulated growth ratio in MCHM-treated vs untreated 
control models, but this does not indicate causality. The FBA simulations suggest a critical role to the 
ubiquinol:ferricytochrome c reductase as the enzyme catalyzing the limiting reaction which determine 
the reduced growth in MCHM. From this multisubunit complex CYT1 product is the component 
limiting the overall reaction flow, and the lower expression of CYT1 due to MCHM can explain the 
lower growth, at least in the FBA simulations. It is of note that the fold change of the expression levels 
of CYT1 is not big enough (logFC < 2) for the gene to came out as relevant from the RNA-Seq data, 
but the GSMNM created are very sensitive to its levels. This highlight the extra value of RNA-Seq data 
integration in FBA simulations, allowing to assess the impact of gene levels in whole cell functional 
environment, where apparently irrelevant genes can prove to be the driven force behind observed 
phenotypes. Transcription of CYT1 is positively controlled by oxygen in the presence of glucose, 
through the haem signal and mediated by the Hap1. It is additionally regulated by the HAP2/3/4 
complex which mediates gene activation mainly under glucose-free conditions. Basal transcription is 
partially effected by Cpf1, a centromere and promoter-binding factor (Oechsner et al., 1992)�. 

The other significant reaction that comes from the FBA analysis is the ATP synthase, which maximum 
allowed flux or upper bound is required to be increased together with the one of 
ubiquinol:ferricytochrome c reductase to rescue the control growth phenotype in the MCHM treated 
model. Combining flux balance analysis with in vitro measured enzyme specific activities it was 
determined that fermentation is more catalytically efficient than respiration (Nilsson and Nielsen, 
2016)�, producing more ATP per mass of required enzymes. In that study the enzyme F1F0-ATP 
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synthase was found to have flux control over respiration in the model, causing the Crabtree Effect 
(Nilsson and Nielsen, 2016)�. 

5 Conclusions 
MCHM produce amino acid accumulation in S. cerevisiae, affecting several amino acid related 
metabolic pathways and probably slowing down protein biosynthesis due to the downregulation of 
genes related to ribosome biogenesis. MCHM affects phospholipid biosynthesis, reducing the levels of 
different molecules of phosphatidylethanolamine, phosphatidylinositol and phosphatidylserine, which, 
in addition to lower levels of ergosterol, should affect cellular membranes composition and their 
biophysical properties. The FBA simulations suggest that the lower flow through 
ubiquinol:ferricytochrome c reductase reaction, caused by the MCHM-provoked under-expression of 
CYT1 gene, could be the driven force behind the observed effect on yeast metabolism and growth. 
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9 Figure legends 
Figure 1: Heatmaps with normalized expression of the 25 most significant metabolites from ESI-MS 
and GC-MS experiments. 

Figure 2: Partial Least Squares Discriminant Analysis (PLS-DA). Scores plot between the first two 
components for A) ESI-MS and B) GC-MS respectively, with the 95 % confidence area shown and the 
explained variance shown in brackets in the corresponding axis labels. Important features identified by 
PLS-DA in C) ESI-MS and D) GC-MS experiments. The colored boxes on the right indicate the 
relative concentrations of the corresponding metabolite in each group under study. 
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Figure 3: Normalized intensity of relevant metabolites from ESI-MS (upper panel) and GC-MS (lower 
panel). 

Figure 4: Pathway Analysis using relevant metabolites from ESI-MS and GC-MS combined. The six 
pathways with impact greater than zero and p < 0.05 are labeled. 

Figure 5: RNA-Seq gene expression data, represented as an MA plot (A). KEGG Pathway Enrichment 
Analysis for diferentially expressed genes (B). No enrichment was found for down-regulated genes. 

Figure 6: The effect of MCHM on yeast growth is predicted to depend on the concentration of D-
Glucose in the medium. Phenotype phase plane of Growth vs D-Glucose exchange, from the FBA 
simulations with the control and treated models.  

 

10 References 
  

Aliferis, K.A., Chrysayi-Tokousbalides, M., 2011. Metabolomics in pesticide research and 
development: Review and future perspectives. Metabolomics 7, 35–53. 
https://doi.org/10.1007/s11306-010-0231-x 

Babbio, F., Farinacci, M., Saracino, F., Carbone, M.L.A., Privitera, E., 2004. Expression and 
localization studies of hSDA, the human ortholog of the yeast SDA1 gene. Cell Cycle 3, 486–90. 

Bordbar, A., Yurkovich, J.T., Paglia, G., Rolfsson, O., Sigurjónsson, Ó.E., Palsson, B.O., 2017. 
Elucidating dynamic metabolic physiology through network integration of quantitative time-
course metabolomics. Sci. Rep. 7, 46249. https://doi.org/10.1038/srep46249 

Bourque, S.D., Titorenko, V.I., 2009. A Quantitative Assessment of The Yeast Lipidome using 
Electrospray Ionization Mass Spectrometry. J. Vis. Exp. 1–3. https://doi.org/10.3791/1513 

Brachmann, C.B., Davies, A., Cost, G.J., Caputo, E., Li, J., Hieter, P., Boeke, J.D., 1998. Designer 
deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and 
plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115–32. 
https://doi.org/10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2 

Braconi, D., Bernardini, G., Santucci, A., 2016. Saccharomyces cerevisiae as a model in 
ecotoxicological studies: A post-genomics perspective. J. Proteomics 137, 19–34. 
https://doi.org/10.1016/j.jprot.2015.09.001 

Buscemi, G., Saracino, F., Masnada, D., Carbone, M.L., 2000. The Saccharomyces cerevisiae SDA1 
gene is required for actin cytoskeleton organization and cell cycle progression. J. Cell Sci. 113 ( Pt 
7), 1199–211. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 16, 2019. ; https://doi.org/10.1101/609800doi: bioRxiv preprint 

https://doi.org/10.1101/609800
http://creativecommons.org/licenses/by-nc-nd/4.0/


Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., Wishart, D.S., Xia, J., 2018. 
MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic 
Acids Res. 46, W486–W494. https://doi.org/10.1093/nar/gky310 

Christie, R.D., Gross, A.E., Fortin, R.J., 1989. Process for coal flotation using 4-methyl cyclohexane 
methanol frothers. US4915825A. 

Colijn, C., Brandes, A., Zucker, J., Lun, D.S., Weiner, B., Farhat, M.R., Cheng, T.Y., Moody, D.B., 
Murray, M., Galagan, J.E., 2009. Interpreting expression data with metabolic flux models: 
Predicting Mycobacterium tuberculosis mycolic acid production. PLoS Comput. Biol. 5. 
https://doi.org/10.1371/journal.pcbi.1000489 

Cooper, W.J., 2014. Responding to crisis: The West Virginia chemical spill. Environ. Sci. Technol. 48, 
3095. https://doi.org/10.1021/es500949g 

DATTA, A., Kamthan, A., Kamthan, M., Chakraborty, N., Chakraborty, S., Datta, A., 2012. A simple 
protocol for extraction, derivatization, and analysis of tomato leaf and fruit lipophilic metabolites 
using GC-MS. Protoc. Exch. https://doi.org/10.1038/protex.2012.061 

Denoth Lippuner, A., Julou, T., Barral, Y., 2014. Budding yeast as a model organism to study the effects 
of age. FEMS Microbiol. Rev. 38, 300–325. https://doi.org/10.1111/1574-6976.12060 

Du, P., Kibbe, W.A., Lin, S.M., 2006. Improved peak detection in mass spectrum by incorporating 
continuous wavelet transform-based pattern matching. Bioinformatics 22, 2059–65. 
https://doi.org/10.1093/bioinformatics/btl355 

Eastman Crude MCHM Studies [WWW Document], 1990. . Eastman Kodak Co. URL 
https://www.eastman.com/Pages/Eastman-Crude-MCHM-Studies.aspx (accessed 1.25.19). 

Ebrahim, A., Lerman, J.A., Palsson, B.O., Hyduke, D.R., 2013. COBRApy: COnstraints-Based 
Reconstruction and Analysis for Python. BMC Syst. Biol. 7. https://doi.org/10.1186/1752-0509-7-
74 

Farrés, M., Piña, B., Tauler, R., 2016. LC-MS based metabolomics and chemometrics study of the toxic 
effects of copper on Saccharomyces cerevisiae. Metallomics 8, 790–798. 
https://doi.org/10.1039/C6MT00021E 

Fell, D.A., Small, J.R., 1986. Fat synthesis in adipose tissue. An examination of stoichiometric 
constraints. Biochem. J. 238, 781–6. 

Fruhmann, G., Seynnaeve, D., Zheng, J., Ven, K., Molenberghs, S., Wilms, T., Liu, B., Winderickx, J., 
Franssens, V., 2017. Yeast buddies helping to unravel the complexity of neurodegenerative 
disorders, Mechanisms of Ageing and Development. Elsevier Ireland Ltd. 
https://doi.org/10.1016/j.mad.2016.05.002 

Ghosh, A.K., Ramakrishnan, G., Rajasekharan, R., 2008. YLR099C (ICT1) encodes a soluble acyl-
CoA-dependent lysophosphatidic acid acyltransferase responsible for enhanced phospholipid 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 16, 2019. ; https://doi.org/10.1101/609800doi: bioRxiv preprint 

https://doi.org/10.1101/609800
http://creativecommons.org/licenses/by-nc-nd/4.0/


synthesis on organic solvent stress in Saccharomyces cerevisiae. J. Biol. Chem. 283, 9768–9775. 
https://doi.org/10.1074/jbc.M708418200 

Guo, W., Feng, X., 2016. OM-FBA: Integrate transcriptomics data with flux balance analysis to 
decipher the cell metabolism. PLoS One 11, 1–20. https://doi.org/10.1371/journal.pone.0154188 

Han, A.A., Fabyanic, E.B., Miller, J. V., Prediger, M.S., Prince, N., Mouch, J.A., Boyd, J., 2017. In 
vitro cytotoxicity assessment of a West Virginia chemical spill mixture involving 4-
methylcyclohexanemethanol and propylene glycol phenyl ether. Environ. Monit. Assess. 189. 
https://doi.org/10.1007/s10661-017-5895-5 

Heavner, B.D., Price, N.D., 2015. Comparative Analysis of Yeast Metabolic Network Models 
Highlights Progress, Opportunities for Metabolic Reconstruction. PLoS Comput. Biol. 11, 1–26. 
https://doi.org/10.1371/journal.pcbi.1004530 

Heavner, B.D., Smallbone, K., Price, N.D., Walker, L.P., 2013. Version 6 of the consensus yeast 
metabolic network refines biochemical coverage and improves model performance. Database 
2013, 1–5. https://doi.org/10.1093/database/bat059 

Horsey, E.W., Jakovljevic, J., Miles, T.D., Harnpicharnchai, P., Woolford, J.L., JR., 2004. Role of the 
yeast Rrp1 protein in the dynamics of pre-ribosome maturation. RNA 10, 813–27. 
https://doi.org/10.1261/RNA.5255804 

Horzmann, K.A., de Perre, C., Lee, L.S., Whelton, A.J., Freeman, J.L., 2017. Comparative analytical 
and toxicological assessment of Methylcyclohexanemethanol (MCHM) mixtures associated with 
the Elk river chemical spill. Chemosphere 188, 599–607. 
https://doi.org/10.1016/j.chemosphere.2017.09.026 

Ibáñez, C., Simó, C., García-Cañas, V., Cifuentes, A., Castro-Puyana, M., 2013. Metabolomics, 
peptidomics and proteomics applications of capillary electrophoresis-mass spectrometry in 
Foodomics: A review. Anal. Chim. Acta 802, 1–13. https://doi.org/10.1016/j.aca.2013.07.042 

Iraqui, I., Vissers, S., Cartiaux, M., Urrestarazu, A., 1998. Characterisation of Saccharomyces 
cerevisiae ARO8 and ARO9 genes encoding aromatic aminotransferases I and II reveals a new 
aminotransferase subfamily. Mol. Gen. Genet. MGG 257, 238–248. 
https://doi.org/10.1007/s004380050644 

Jin, S.-B., Zhao, J., Bjork, P., Schmekel, K., Ljungdahl, P.O., Wieslander, L., 2002. Mrd1p is required 
for processing of pre-rRNA and for maintenance of steady-state levels of 40 S ribosomal subunits 
in yeast. J. Biol. Chem. 277, 18431–9. https://doi.org/10.1074/jbc.M112395200 

Kerkhoven, E.J., Li, F., Lu, H., Marcišauskas, S., Pfau, T., Sánchez, B.J., 2018. yeast-GEM: The 
consensus genome-scale metabolic model of Saccharomyces cerevisiae [WWW Document]. URL 
https://github.com/SysBioChalmers/yeast-GEM (accessed 11.27.18). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 16, 2019. ; https://doi.org/10.1101/609800doi: bioRxiv preprint 

https://doi.org/10.1101/609800
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kim, S., Kim, J., Song, J.H., Jung, Y.H., Choi, I.S., Choi, W., Park, Y.C., Seo, J.H., Kim, K.H., 2016. 
Elucidation of ethanol tolerance mechanisms in Saccharomyces cerevisiae by global metabolite 
profiling. Biotechnol. J. 11, 1221–1229. https://doi.org/10.1002/biot.201500613 

King, Z.A., Dräger, A., Ebrahim, A., Sonnenschein, N., Lewis, N.E., Palsson, B.O., 2015. Escher: A 
Web Application for Building, Sharing, and Embedding Data-Rich Visualizations of Biological 
Pathways. PLoS Comput. Biol. 11, 1–13. https://doi.org/10.1371/journal.pcbi.1004321 

Krüger, A., Vowinckel, J., Mülleder, M., Grote, P., Capuano, F., Bluemlein, K., Ralser, M., 2013. Tpo1-
mediated spermine and spermidine export controls cell cycle delay and times antioxidant protein 
expression during the oxidative stress response. EMBO Rep. 14, 1113–1119. 
https://doi.org/10.1038/embor.2013.165 

Lan, J., Hu, M., Gao, C., Alshawabkeh, A., Gu, A.Z., 2015. Toxicity assessment of 4-Methyl-1-
cyclohexanemethanol and its metabolites in response to a recent chemical spill in west virginia, 
USA. Environ. Sci. Technol. 49, 6284–6293. https://doi.org/10.1021/acs.est.5b00371 

Ma, Y., Kind, T., Vaniya, A., Gennity, I., Fahrmann, J.F., Fiehn, O., 2015. An in silico MS/MS library 
for automatic annotation of novel FAHFA lipids. J. Cheminform. 7, 2–6. 
https://doi.org/10.1186/s13321-015-0104-4 

Miles, T.D., Jakovljevic, J., Horsey, E.W., Harnpicharnchai, P., Tang, L., Woolford, J.L., 2005. Ytm1, 
Nop7, and Erb1 form a complex necessary for maturation of yeast 66S preribosomes. Mol. Cell. 
Biol. 25, 10419–32. https://doi.org/10.1128/MCB.25.23.10419-10432.2005 

Monnot, A.D., Novick, R.M., Paustenbach, D.J., 2017. Crude 4-methylcyclohexanemethanol (MCHM) 
did not cause skin irritation in humans in 48-h patch test. Cutan. Ocul. Toxicol. 0, 1–5. 
https://doi.org/10.1080/15569527.2017.1296854 

Motamedian, E., Mohammadi, M., Shojaosadati, S.A., Heydari, M., 2017. TRFBA: An algorithm to 
integrate genome-scale metabolic and transcriptional regulatory networks with incorporation of 
expression data. Bioinformatics 33, 1057–1063. https://doi.org/10.1093/bioinformatics/btw772 

Nicholson, J.K., Connelly, J., Lindon, J.C., Holmes, E., 2002. Metabonomics: A platform for studying 
drug toxicity and gene function. Nat. Rev. Drug Discov. 1, 153–161. 
https://doi.org/10.1038/nrd728 

Nilsson, A., Nielsen, J., 2016. Metabolic Trade-offs in Yeast are Caused by F1F0-ATP synthase. Sci. 
Rep. 6, 1–11. https://doi.org/10.1038/srep22264 

Nugroho, R.H., Yoshikawa, K., Matsuda, F., Shimizu, H., 2016. Positive effects of proline addition on 
the central metabolism of wild-type and lactic acid-producing Saccharomyces cerevisiae strains. 
Bioprocess Biosyst. Eng. 39, 1711–1716. https://doi.org/10.1007/s00449-016-1646-1 

Oechsner, U., Hermann, H., Zollner, A., Haid, A., Bandlow, W., 1992. Expression of yeast cytochrome 
c1 is controlled at the transcriptional level by glucose, oxygen and haem. Mol. Gen. Genet. 232, 
447–59. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 16, 2019. ; https://doi.org/10.1101/609800doi: bioRxiv preprint 

https://doi.org/10.1101/609800
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ohta, E., Nakayama, Y., Mukai, Y., Bamba, T., Fukusaki, E., 2016. Metabolomic approach for 
improving ethanol stress tolerance in Saccharomyces cerevisiae. J. Biosci. Bioeng. 121, 399–405. 
https://doi.org/10.1016/j.jbiosc.2015.08.006 

Palermo, V., Falcone, C., Calvani, M., Mazzoni, C., 2010. Acetyl-L-carnitine protects yeast cells from 
apoptosis and aging and inhibits mitochondrial fission. Aging Cell 9, 570–579. 
https://doi.org/10.1111/j.1474-9726.2010.00587.x 

Peng, W.-T., 2004. ESF1 is required for 18S rRNA synthesis in Saccharomyces cerevisiae. Nucleic 
Acids Res. 32, 1993–1999. https://doi.org/10.1093/nar/gkh518 

Pérez-Fernández, J., Román, A., De Las Rivas, J., Bustelo, X.R., Dosil, M., 2007. The 90S preribosome 
is a multimodular structure that is assembled through a hierarchical mechanism. Mol. Cell. Biol. 
27, 5414–29. https://doi.org/10.1128/MCB.00380-07 

Philpott, C.C., Protchenko, O., Kim, Y.W., Boretsky, Y., Shakoury-Elizeh, M., 2002. The response to 
iron deprivation in Saccharomyces cerevisiae: expression of siderophore-based systems of iron 
uptake. Biochem. Soc. Trans. 30, 698–702. https://doi.org/10.1042/ 

Pupo, A., Ayers, M.C., Sherman, Z.N., Vance, R.J., Cumming, J.R., Gallagher, J.E.G., 2019. MCHM 
acts as a hydrotrope, altering the balance of metals in yeast. bioRxiv 606426. 
https://doi.org/10.1101/606426 

Queiroz, J.R.C., Souza, R.O.A., Nogueira, L., Ozcan, M., Bottino, M.A., 2012. Influence of acid-
etching and ceramic primers on the repair of a glass ceramic. Gen. Dent. 60, 6157–6165. 
https://doi.org/10.1128/AEM.70.10.6157 

Rogers, B., Decottignies, A., Kolaczkowski, M., Carvajal, E., Balzi, E., Goffeau, A., 2001. The 
pleitropic drug ABC transporters from Saccharomyces cerevisiae. J. Mol. Microbiol. Biotechnol. 
3, 207–14. 

Rong-Mullins, X., Ayers, M.C., Summers, M., Gallagher, J.E.G., 2017. Transcriptional Profiling of 
Saccharomyces cerevisiae Reveals the Impact of Variation of a Single Transcription Factor on 
Differential Gene Expression in 4NQO, Fermentable, and Non-fermentable Carbon Sources. 
G3&amp;#58; Genes|Genomes|Genetics 8, g3.300138.2017. 
https://doi.org/10.1534/g3.117.300138 

Sánchez, B.J., Zhang, C., Nilsson, A., Lahtvee, P., Kerkhoven, E.J., Nielsen, J., 2017. Improving the 
phenotype predictions of a yeast genome�scale metabolic model by incorporating enzymatic 
constraints. Mol. Syst. Biol. 13, 935. https://doi.org/10.15252/msb.20167411 

Savinell, J.M., Palsson, B.O., 1992. Network analysis of intermediary metabolism using linear 
optimization. II. Interpretation of hybridoma cell metabolism. J. Theor. Biol. 154, 455–73. 

Smith, C.A., Want, E.J., O’Maille, G., Abagyan, R., Siuzdak, G., 2006. XCMS: processing mass 
spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and 
identification. Anal. Chem. 78, 779–87. https://doi.org/10.1021/ac051437y 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 16, 2019. ; https://doi.org/10.1101/609800doi: bioRxiv preprint 

https://doi.org/10.1101/609800
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sun, C., Woolford, J.L., Jr, 1994. The yeast NOP4 gene product is an essential nucleolar protein 
required for pre-rRNA processing and accumulation of 60S ribosomal subunits. EMBO J. 13, 
3127–35. 

Tenreiro, S., Vargas, R.C., Teixeira, M.C., Magnani, C., Sá-Correia, I., 2005. The yeast multidrug 
transporter Qdr3 (Ybr043c): Localization and role as a determinant of resistance to quinidine, 
barban, cisplatin, and bleomycin. Biochem. Biophys. Res. Commun. 327, 952–959. 
https://doi.org/10.1016/j.bbrc.2004.12.097 

Thomasson, E.D., Scharman, E., Fechter-Leggett, E., Bixler, D., Ibrahim, S., Duncan, M.A., Hsu, J., 
Scott, M., 2017. Acute Health Effects After the Elk River Chemical Spill, West Virginia, January 
2014. Public Health Rep. 132, 196–202. https://doi.org/10.1177/0033354917691257 

Tkach, J.M., Yimit, A., Lee, A.Y., Riffle, M., Costanzo, M., Jaschob, D., Hendry, J.A., Ou, J., Moffat, 
J., Boone, C., Davis, T.N., Nislow, C., Brown, G.W., 2012. Dissecting DNA damage response 
pathways by analysing protein localization and abundance changes during DNA replication stress. 
Nat. Cell Biol. 14, 966–976. https://doi.org/10.1038/ncb2549 

Varma, A., Boesch, B.W., Palsson, B.O., 1993. Biochemical production capabilities of escherichia coli. 
Biotechnol. Bioeng. 42, 59–73. https://doi.org/10.1002/bit.260420109 

Varma, A., Palsson, B.O., 1993. Metabolic capabilities of Escherichia coli: I. synthesis of biosynthetic 
precursors and cofactors. J. Theor. Biol. 165, 477–502. 

Wang, X., Bai, X., Chen, D.F., Chen, F.Z., Li, B.Z., Yuan, Y.J., 2015. Increasing proline and myo-
inositol improves tolerance of Saccharomyces cerevisiae to the mixture of multiple lignocellulose-
derived inhibitors. Biotechnol. Biofuels 8, 1–13. https://doi.org/10.1186/s13068-015-0329-5 

Weidhaas, J.L., Dietrich, A.M., DeYonker, N.J., Ryan Dupont, R., Foreman, W.T., Gallagher, D., 
Gallagher, J.E.G., Whelton, A.J., Alexander, W.A., 2016. Enabling Science Support for Better 
Decision-Making when Responding to Chemical Spills. J. Environ. Qual. 45, 1490. 
https://doi.org/10.2134/jeq2016.03.0090 

Whelton, A.J., McMillan, L.K., Connell, M., Kelley, K.M., Gill, J.P., White, K.D., Gupta, R., Dey, R., 
Novy, C., 2015. Residential tap water contamination following the freedom industries chemical 
spill: Perceptions, water quality, and health impacts. Environ. Sci. Technol. 49, 813–823. 
https://doi.org/10.1021/es5040969 

Xue, Z., Duan, L.X., Qi, X., 2015. Gas chromatography mass spectrometry coupling techniques, in: 
Plant Metabolomics: Methods and Applications. pp. 25–44. https://doi.org/10.1007/978-94-017-
9291-2_2 

Yilmaz, L.S., Walhout, A.J., 2017. Metabolic network modeling with model organisms. Curr. Opin. 
Chem. Biol. 36, 32–39. https://doi.org/10.1016/j.cbpa.2016.12.025 

Yore, M.M., Syed, I., Moraes-Vieira, P.M., Zhang, T., Herman, M.A., Homan, E.A., Patel, R.T., Lee, J., 
Chen, S., Peroni, O.D., Dhaneshwar, A.S., Hammarstedt, A., Smith, U., McGraw, T.E., 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 16, 2019. ; https://doi.org/10.1101/609800doi: bioRxiv preprint 

https://doi.org/10.1101/609800
http://creativecommons.org/licenses/by-nc-nd/4.0/


Saghatelian, A., Kahn, B.B., 2014. Discovery of a class of endogenous mammalian lipids with 
anti-diabetic and anti-inflammatory effects. Cell 159, 318–332. 
https://doi.org/10.1016/j.cell.2014.09.035 

Yu, G., Wang, L.-G., Han, Y., He, Q.-Y., 2012. clusterProfiler: an R Package for Comparing Biological 
Themes Among Gene Clusters. Omi. A J. Integr. Biol. 16, 284–287. 
https://doi.org/10.1089/omi.2011.0118 

Zhou, B., Wang, J., Ressom, H.W., 2012. Metabosearch: Tool for mass-based metabolite identification 
using multiple databases. PLoS One 7. https://doi.org/10.1371/journal.pone.0040096 

Zimmerman, Z.A., Kellogg, D.R., 2001. The Sda1 Protein Is Required for Passage through Start. Mol. 
Biol. Cell 12, 201–219. https://doi.org/10.1091/mbc.12.1.201 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 16, 2019. ; https://doi.org/10.1101/609800doi: bioRxiv preprint 

https://doi.org/10.1101/609800
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 16, 2019. ; https://doi.org/10.1101/609800doi: bioRxiv preprint 

https://doi.org/10.1101/609800
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 16, 2019. ; https://doi.org/10.1101/609800doi: bioRxiv preprint 

https://doi.org/10.1101/609800
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 16, 2019. ; https://doi.org/10.1101/609800doi: bioRxiv preprint 

https://doi.org/10.1101/609800
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 16, 2019. ; https://doi.org/10.1101/609800doi: bioRxiv preprint 

https://doi.org/10.1101/609800
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 16, 2019. ; https://doi.org/10.1101/609800doi: bioRxiv preprint 

https://doi.org/10.1101/609800
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 16, 2019. ; https://doi.org/10.1101/609800doi: bioRxiv preprint 

https://doi.org/10.1101/609800
http://creativecommons.org/licenses/by-nc-nd/4.0/

