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Mechanical constraints influence microtubule
orientation in plant cells
S Bachmann, R Froese, and EN Cytrynbaum

ABSTRACT In growing plant cells, parallel ordering of microtubules (MTs) along the inner surface of the cell membrane
influences the direction of cell expansion and thereby plant morphology. For correct expansion of organs that primarily grow by
elongating, such as roots and stems, MTs must bend in the high-curvature direction along the cylindrically shaped cell membrane
in order to form the required circumferential arrays. Previous studies, which have recapitulated the self-organization of these
arrays, ignored MT mechanics and assumed MTs follow geodesics of the cell surface. Here, we show, through analysis of a
derived Euler-Lagrange equation, that an elastic MT constrained to a cylindrical surface will deflect away from geodesics and
toward low curvature directions to minimize bending energy. This occurs when the curvature of the cell surface is relatively
high for a given anchor density. In the limit of infinite anchor density, MTs always follow geodesics. We compare our analytical
predictions to measured curvatures and anchor densities and find that the regime in which cells are forming these cortical arrays
straddles the region of parameter space in which arrays must form under the antagonistic influence of this mechanically induced
deflection. Although this introduces a potential obstacle to forming circumferentially orientated arrays that needs to be accounted
for in the models, it also raises the question of whether plants use this mechanical phenomenon to regulate array orientation.
The model also constitutes an elegant generalization of the classical Euler-bucking instability along with an intrinsic unfolding of
the associated pitchfork bifurcation.

SIGNIFICANCE STATEMENT
The cortical microtubule array in plant cells is a dynamic
structure whose organization influences cell function, growth,
and plant morphology. During cell growth, the array must be
highly ordered and perpendicular to the axis of expansion. In
other instances, it can be disordered or axially oriented. Exper-
imental and modelling studies have outlined the importance of
various microtubule-microtubule interactions in the ordering
and orienting process. We explore the influence of cell shape
on the bending of microtubules that has been largely ignored to
date. We find that cell shape can induce microtubule bending
that steers them away from high-curvature directions. This
bending force can act as an obstacle to proposed mechanisms
for array organization and also as a mechanism for regulating
reorientation of the array.

INTRODUCTION
Our understanding of the molecular basis of organismal
development and morphology has been accelerating over the
last couple decades under the influence of new techniques
in molecular biology coupled with increasingly powerful
theoretical and computational methods. One area that has
benefited recently from these advances is plant development.
Plant growth is heavily dependent on the manner in which
cells deposit cellulose to form the cell wall because cell
expansion occurs most easily in the direction perpendicular to
the orientation of cellulose fibres (1). Cellulose deposition is
influenced, in turn, by ordered arrays of microtubules (MTs)

that adhere to the inner surface of the cell membrane by
anchoring to the cell wall (2). Remarkably, unlike animal
MT organization that is largely driven by centrosomes, for
example, as seen in the mitotic spindle, these plant cortical
arrays seem to self-organize by a combination of cell geometry,
distributed nucleation, and MT-MT interactions.

When a growing MT encounters an existing MT, the
interaction can lead to one of three outcomes that together
have been proposed to explain ordering: induced catastrophe,
entrainment/zippering, or cross-over and subsequent severing
(3). Early computational and mathematical analysis demon-
strated that models of cortical MTs on a two dimensional
surface could self-organize into highly ordered arrays driven
only by these MT-MT interactions (4–10). Simulating such
arrays on cylinders with inaccessible end-caps, the arrays
align circumferentially as seen in growing plant cells (5, 7).
At the level of the whole cell, extensions of these models
have been implemented in more complex geometries such as
polyhedral domains (11) and more recently in finely resolved
triangulations of actual cells (12). Another recent model ex-
amined the dynamic relocalization of MTs from cytosol to
cortex in abstract 3D geometries to assay the influence of
cell shape on MT distribution and orientation, in the absence
of MT-MT interactions (13). These whole-cell models have
helped clarify how array organization is globally coordinated
across geometrically complicated domains and in some cases
how MT-associated proteins can regulate that coordination
(11, 12).

In all of these models, MT growth was assumed to follow
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geodesics of the cell surface and the influence of cell wall
curvature in deflecting MTs through bending in the tangent
plane was ignored (in one stochastic model, MTs ought to
follow geodesics on average (13)). Although some authors
have given brief justification for this simplifying assumption
(5, 6, 14), the issue has never been properly addressed in the
context of this type of model.

The cortical-array organization ofMTs had been studied in
earlierwork using in vitro experiments in fabricated cylindrical
geometries containing free-growing MTs and, to understand
these experiments, using thin-rod elasticity theory applied to
theoretical rods in an analogous geometry (15). Although the
theory was accurate in its prediction of the MT configurations
seen in the experiments, neither the experiments nor the theory
were consistent with the configurations observed in analogous
cylindrically shaped growing plant cells. As later pointed out,
cortical MTs in plants are not free to move laterally on the
cell membrane because they are anchored along their lengths
(14). In the latter article, the authors justified their own and
others’ assumption that elasticity of MTs did not play a role in
determining MT growth direction by invoking the stiffness of
MTs and the frequency of anchoring. Essentially, they claimed
that for unanchored MT tip lengths that are small compared
to the local radii of curvature of the cell wall, MT deflection
away from geodesics, induced by minimizing bending energy,
would be negligible. While this claim is true, a rigorous
treatment of this claim has never been given. Nor is it clear
that plant cells are in the alleged scaling regime. The relevant
curvatures of cell walls have been measured to be in the
range of 7 µm ± 2.5µm (mean ± standard deviation) around
longitudinal edges that MT arrays are seen to circumvent
(11). Distributions of unanchored MT tip lengths have also
been measured and average around 3 µm with tails extending
up to 8 µm (16, 17). Although, on average, the reported
unanchored lengths are smaller than the reported curvatures,
the distributions are overlapping which makes predictions
about the untested influence of mechanics on array orientation
difficult to assess.

In this paper, we address this question directly: To what
extent does minimization of bending energy allow the curva-
ture of the cell wall to deflect the unanchored tips of cortical
MTs away from geodesic paths?

METHODS
Model equation derivation
We consider a single microtubule (MT) anchored at the inner
surface of a cell membrane. In a plant cell, the cell wall
is much more rigid than a MT so we assume the cell-wall
shape is a fixed cylinder and the MT shape is determined by a
process of bending-energy minimization. Anchoring proteins
along the length of the MT keep it tight to the membrane but,
as growth occurs at the plus end, a short length of the MT at
that end, which we call the tip, is free to fluctuate thermally.

Figure 1: An illustration of the expected behaviour of a MT
tip on a curved surface. The thinner (blue) curve is a geodesic
(helix) and the thicker (red) curve is a MT tip decreasing its
total bending energy by deflecting away from the geodesic and
heading toward the lower curvature vertical orientation. The
plus ends, where the MTs grow, are at the top. The foremost
anchor on the MT, which defines the other end of the tip, is at
the bottom. The rest of the MT is not shown. The blue and red
curves share the same position and angle at the anchor point.

While free, this tip can explore the surface of the membrane,
and to some extent the cytosol, before getting pinned down by
an anchor somewhere along the free length. We examine the
problem of minimizing the bending energy of a single MT tip
and consider implications for the organization of cortical MT
arrays.

On a flat surface, the path of MT growth should be straight.
When a surface has curvature, the MT bends. Previous work
on MTs growing in such conditions assumed that MTs follow
geodesics of the surface, as described above. However, when
the surface has differing principal curvatures, we expect that
the equilibrium configuration is one that deviates from a
geodesic so as to turn the MT tip closer to the principal curva-
ture direction with lower curvature (see Fig. 1 for illustration).
More precisely, the shape of the MT between its plus end and
the nearest anchor point, at the base of the tip, should be such
that it minimizes its total bending energy given by the scalar
curvature

K [ϕ] =
∫ L

0
(cos(ϕ)4 + ϕ̇2) ds, (1)

under appropriate boundary conditions. Here, the shape of
the MT tip is described by the function ϕ(s) which gives the
angle formed between the circumferential direction of the
cylinder and the tangent vector to the MT at a distance s from
the anchored end of the MT tip.

In Appendix A, we derive the functional (1) and the
corresponding Euler-Lagrange equation:

1
2
ϕ̈ + cos3(ϕ) sin(ϕ) = 0, ϕ(0) = ϕ0, ϕ̇(L) = 0. (2)

2 Manuscript submitted to Biophysical Journal

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 16, 2019. ; https://doi.org/10.1101/609867doi: bioRxiv preprint 

https://doi.org/10.1101/609867


MT mechanics in plant cells

-1.5 -1 -0.5 0 0.5 1 1.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

p

Figure 2: Constructing solutions (ϕ(s), p(s)) to the BVP for
the cylinder case in the ϕ − p phase plane. Solutions must
start at ϕ(0) = ϕ0 (vertical green line segment) and end on
p(L) = 0 (dashed black line segment). As s increases, each
left boundary condition (at s = 0) on the green line flows
according to the vector field defined by (3) (red arrows). A
few level curves of the Hamiltonian are shown (black curves).

An abridged derivation of this equation has been published
previously with different boundary conditions to describe free
MTs in constrained geometries (15).

Hamilton’s equations
Analysing the problem in the phase plane is informative so
we recast the Euler-Lagrange equation (2) as a Hamiltonian
system. Using standard methods, we derive the Hamiltonian

H (ϕ, p) =
1
4

p2 − cos(ϕ)4.

and the first order Hamiltonian system

ϕ̇ =
p
2

,

ṗ = −4 cos(ϕ)3 sin(ϕ).
(3)

We illustrate the Hamiltonian vector field and some of
its integral curves in Fig. 2. Solutions of the boundary value
problem (BVP) ϕ correspond to integral curves starting along
the vertical line ϕ = ϕ0 and ending on the horizontal line
p = 0when s = L. This being a Hamiltonian system, solutions
stay on a level curve of H .

Numerical methods
All numerical calculations were carried out using MATLAB®.
To solve the EL equations (3)with boundary conditions ϕ(0) =
ϕ0 and p(L) = 0 as required for Figure 3, we integrated a
family of initial conditions with ϕ(0) = ϕ0 and−2 cos2(ϕ0) ≤
p(0) ≤ 2cos2(ϕ0)) and selected the solution having p(L)

closest to zero. For Figure 6, we integrated forward in s starting
with two left boundary conditions (ϕ(0), p(0)) = (ϕ0, 0) and
(ϕ(0), p(0)) = (ϕ0, 2) using Matlab®’s fourth order Runge-
Kutta scheme ode45 and used a bisection method on p(0)
to approximate the solution satisfying p(L) = 0. To generate
the bifurcation diagrams, we integrated equation (3) over a
two-parameter family of p(0) and L values and approximated
the diagram with a contour plot of p(L) = 0.

RESULTS
MTs growing parallel to the cylinder axis
The steady state solution (ϕ(s), p(s)) = (π/2, 0) corresponds
to a MT growing parallel to the axis of the cylinder and
satisfies the right boundary condition p(L) = 0 for all L.
Since the curvature functional (1) is non-negative in general
and vanishes in this steady state, this solution is a global
minimizer of K and therefore a stable solution. This is, of
course, clear from the physical point of view since any bending
away from the axial direction increases both the cylindrical
bending (the cos term in K [ϕ]) and the bending of the MT
in the tangent plane (the ϕ̇ term). The symmetric solution for
ϕ0 = −π/2 has similar properties but points in the opposite
direction.

As suggested by the phase portrait, there is also a non-
constant solution of the Euler-Lagrange equation associated
with ϕ0 = π/2: it is the heteroclinic connection between
(π/2, 0) and (−π/2, 0). However, for any finite L it is not a
solution of the minimization problem since it reaches p = 0
only for L → ∞: This heteroclinic corresponds to an infinitely
long MT that comes from infinitely far down the cylinder,
undergoes a half turn and heads back down the cylinder.
The reverse heteroclinic is the mirror image solution on the
cylinder.

A buckling instability for circumferentially growing MTs
Solutions having ϕ0 = 0 have a richer structure. They corre-
spond to aMT initially oriented circumferential to the cylinder,
namely in the direction of maximal curvature on the cell. The
constant ϕ(s) = 0, p(s) = 0 is a solution for any value of L.
On the cylinder, this solution is an arc of a circle around the
circumference of the cylinder.

Although intuitively a circumferential solutionmight seem
to maximize the curvature, the situation is more subtle. In
order for a MT tip, clamped in the circumferential direction
at one end, to reduce its total bending energy by exploiting
the flat axial direction along the cylinder, it must bend away
from its initial direction. This induces an additional bending
in the tangent plane on top of to the bending normal to the
cell surface which is necessary to stay on that surface. Hence,
it is natural to expect a transition in stability as a function
of the length L, with the MT preferring the circumferential
direction for small L, but it bends away from it and towards
the axial direction whenever L is large enough to ensure a
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sufficiently long interval of MT heading in the flat direction.
In Appendix B, we show that for L < L0 where L0 =

π/2
√

2 ≈ 1.1, there is only the circumferential solution ϕ(s) =
0, p(s) = 0 to the EL equation with ϕ0 = 0. Furthermore, we
find that at L = L0, there is a supercritical pitchfork bifurcation
through which a symmetric pair of stable solutions appear and
the zero solution goes unstable. Numerical approximations
of the three solutions to the EL equation for a value of L just
above the bifurcation are shown in the top left and right panels
of Fig. 3. The former shows the solutions in the phase plane
and the latter shows them as rods on the cylinder.

We also derive an implicit expression for the angular
direction of these solutions at the end of the tip, ϕ f (L):

L =
∫ ϕ f

0

1√
cos(ϕ)4 − cos(ϕ f )4

dϕ

which can be inverted numerically to get the shape of the
emerging branches. As L increases, ϕ(L) approaches π/2
meaning that this solution bends closer to the axial direction.

In addition to the pitchfork bifurcation at L0, for each
n = 1, 2, 3..., there is a pitchfork bifurcation at

Ln =
(1 + 2n)π

2
√

2
. (4)

The stability of the zero solution can be understood by
analyzing the energy functional in a neighbourhood around
it. We find that the zero solution is a minimum of the energy
functional for L < L0 and hence is stable there. At L = L0, a
single mode goes unstable and for all L > L0 the zero solution
remains unstable. This analysis is explained in Appendix B.
To confirm that the branching solution that appears at L0 is
stable, we evaluate the energy functional numerically along
the line defined by ϕu (s) = A sin(

√
2s) for several values of L

just above L0. The mode ϕu is the one that goes unstable at L0
and the line spanned by it should be a close approximation of
the heteroclinic connecting the zero solution to the branching
solution for L above but close to L0. We find a pair of minima
for some value of ±A that gradually move away from the zero
solution with increasing L. This energy profile is shown in
the bottom left panel of Fig. 3. Note the maximum at A = 0
(unstable) and the two minima near A = ±0.6 (stable).

This result corresponds precisely to the intuitive expla-
nation of the bifurcation given above. We now see that the
tradeoff of tangential bending close to the anchor point in
exchange for less bending farther away reaches a balance at
L0, with it being worthwhile above L0 but not below.

The bifurcation diagram with stability denoted is outlined
in Fig. 4.

Deflection of MTs growing close to circumferentially
A complete bifurcation analysis as carried out for the ϕ0 = 0
case is not as simple for the case when ϕ0 , 0. However, we
can still approximately substantiate the main message from
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Figure 3: Numerically calculated solutions to the BVP in
the phase plane (top left), on the cylinder (right), and their
stability (bottom left). Top left: The green (solid vertical) line
and the dashed line represent boundary conditions as in Fig. 2.
The red curve shows the result of flowing the entire green
line segment forward from s = 0 to s = L for L = 1.6. The
solutions to the BVP are drawn as blue curves connecting the
dots at (ϕ(0), p(0)) and (ϕ(L), p(L)). The case of L = 1.6 is
just above the first pitchfork bifurcation at L0. Bottom left:
The energy of a MT with shape given by A sin(

√
2s). Note

the maximum at A = 0 indicating that the circumferential
solution is unstable and the minima close to 0.6 corresponding
to the stable solutions that bend up/down toward ±π/2.

the previous section: MTs grow nearly along geodesics only
if they anchor frequently to the cell wall and the lengths of
all segments are short. With ϕ0 , 0, symmetry is broken and
the pitchfork unfolds into a stable steady state and a saddle-
node pair. Fig. 5 shows the numerically calculated bifurcation
diagram for the case of ϕ0 = 0.008. The biologically relevant
feature is that for L below L0, p(0), and hence ϕ(L), is still
close to zero for much of that interval. However, even for this
small value of ϕ0, below but close to L0 there is already a
significant deflection.

It has been commonly assumed in previousmodellingwork
that higher frequency anchoring reduces the total deflection
away from circumferential. The bifurcation diagram in Fig. 5
shows that the deflection approaches zero as L approaches
zero, a necessary but insufficient condition to justify this
assumption. We must further ask whether these almost-zero
deflections may add up to something significant over many
anchored segments.

We compare the total deflection when the MT attaches
only at L with the total deflection when it attaches sequentially
n times to the surface with equal spacing ` = L/n. We enforce
a no-kink condition at each attachment point. For 1 ≤ j ≤ n,
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Figure 4: The bifurcation diagram, calculated numerically,
showing solutions to the EL equations with ϕ0 = 0. Solid
curves denote stable solutions and dotted curves denote un-
stable solutions, determined analytically for the zero solution.
The stability of the solutions bifurcating at L0 is inferred from
the numerical calculation of the energy for several instances
of L (see the bottom left panel of Fig. 3 for an example). The
shape of the first pitchfork bifurcation shown here differs from
the shape in Fig. 8 because here we plot the solutions by p(0)
instead of ϕ(L) for numerical convenience.
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Figure 5: The bifurcation diagram showing solutions to the
EL equations with ϕ0 = 0.008. We did not independently
determine stability either analytically or numerically in this
case but instead infer it from the stability for the symmetric
case (ϕ0 = 0) with solid curves denoting stable solutions and
dotted curves denoting unstable solutions.
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Figure 6: Deflection of nearly circumferentially growing MTs.
A perfectly circumferentially growing MT does not deflect
when the tip length is below L0 but above that critical length
it deflects dramatically (dashed curve). A nearly circumfer-
entially growing MT with an initial angle of ϕ0 = 0.1 (∼ 6◦)
will deflect significantly well below L0 (darkest solid curve).
For the same initial angle and the same total length of MT,
anchoring the MT incrementally so that the tip length at each
incremental anchor is shorter (L/n) leads to a marked decrease
in total deflection (lighter solid curves).

let ϕ j be the solution of the Euler-Lagrange equation on [0, `]
with boundary conditions ϕ̇ j (`) = 0 and ϕ j (0) = ϕ j−1(`).
Here we set ϕ1(0) = ϕ0. The total angular change is then
given by the telescopic sum

∆L (ϕ0, n) =
n∑
j=1

(ϕ j (`) − ϕ j (0)).

In this notation, ∆L (ϕ0, 1) corresponds to the scenario dis-
cussed above of a tip growing to length L and being an-
chored only at the end without intermediate anchoring while
∆L (ϕ0, n) corresponds to the scenario in which there are n
equally spaced anchors. In Appendix D, we prove that

|∆L (ϕ0, n) | ≤
L2

n
. (5)

Let us explain how Eq. (5) supports the claim that high
anchor frequency leads to near-geodesicMTgrowth for ϕ0 , 0.
From (5) it is clear that for any L

|∆L (ϕ0, n) | ≤ ∆L (ϕ0, 1),

for n large enough. In fact, we calculated ∆L (ϕ0, n) numer-
ically for ϕ0 = 0.1 and several values of n (see Fig. 6) and
found that ∆L (ϕ0, n) appears to be a decreasing sequence in
n for any fixed L. Thus, more anchors means less deflection.
Furthermore, Eq. (5) implies

lim
n→∞
∆L (ϕ0, n) = 0.
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From this, we reach the same conclusion as in the case
ϕ0 = 0, although not as sharply. If n is large enough, then the
total angular change approaches zero for any fixed L. This
conclusion brings us halfway to justifying the assumption
that cortical MTs follow geodesics. The one issue to resolve,
which we address in next section, is how long are the MT tip
lengths in real cells.

Before moving on to an analysis of data, we would like
to point out the following simplifying assumption which is
implicit in the model. As the tip of theMT grows, it deforms as
predicted by energy minimization and the resulting minimal
energy shape along the entire segment length ` is locked
in by the addition of a new anchor at its very end. A more
detailed, stochastic model would take into account the fact that
the anchoring happens anywhere along the free tip, meaning
that the locked-in shape of the MT should be determined by
solving the minimization problem for a tip length that is longer
than the final distance between the last anchor points. We
believe that such a refined analysis would yield qualitatively
the same conclusion.

CURVATURE AND ANCHORING DATA
SUGGEST SIGNIFICANT MT DEFLECTION
Recall that the length L in our model is the nondimensional
tip length with the background scale being the radius of the
cylinder. To extract this from data, we need measurements of
tip lengths and radii of curvature from actual cells. Tip lengths
have been measured previously (16) and analyzed using a
growth and anchoring model (17). Typical radii of curvature
have also been measured (11). We used the mean, SEM, and
sample size of radii of curvature for longitudinal edges from
root epidermal division zone cells from Fig. 3c of (11) to
reconstruct an approximation of the original distribution in the
data. Then, combining that with the distribution of tip lengths
in widltype cotyledon epidermal cells shown in Fig. 4 of (16),
we generated a synthetic data set of nondimensional tip lengths
by randomly sampling both distributions and calculating their
ratio. Obviously, no MT whose tip length was measured
in (16) ever crossed the longitudinal edges from which the
curvatures were measured in (11) but these distributions
represent reasonable scales for the required quantities.

The resulting distribution is shown as a histogram in
Fig. 7. As explained in the caption, although many MTs
are predicted to stay close to geodesics, roughly one third
of the “synthetic” MT tips are predicted by the model to
undergo substantial deflection. This raises serious concerns
for the assumption commonly made that cortical MTs follow
geodesics, especially given that the deflection is away from
the circumferential direction.

DISCUSSION
The issue of howMTmechanics influences the organization of
cortical arrays in plant cells has remained largely unexplored
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Figure 7: A histogram of nondimensional tip lengths gener-
ated from measured distributions of tip lengths and radii of
curvature. Superimposed on the histogram are the deflection
graphs for ϕ0 = 0 (dashed, with a kink at the critical value)
and ϕ0 = 0.1 (solid) from Fig. 6. If we consider a deflection
of 0.1 (∼ 6◦) or larger for a MT starting at an angle of 0.1 to
be a substantive deflection, roughly one third of the nondi-
mensional tip lengths (to the left of the vertical dotted line)
fall into this category.

until now. Here, we found that MTs with sufficiently long
unanchored lengths at their plus ends deflect from high to
low curvature directions on the cortical surface of the cell.
Given the important role of circumferential orientation of
cortical MT arrays for cellulose deposition and hence plant
morphology, the density of anchors is thus a critical parameter
that plant cells must control.

Specifically, we found that the free tip of a MT with its
anchored end fixed exactly in the circumferential direction
deflects significantly towards the axial direction when the
tip length is larger than a critical length of L0 × R where
L0 = π/2

√
2 ≈ 1.1 and R is the radius of curvature in the

circumferential direction. This deflection also occurs for MTs
whose anchored ends are fixed close to the circumferential
direction, even below the critical length. On the other hand, in
the limit of short tip lengths, we proved that deflection goes
to zero fast enough that, when added up over many anchored
segments, the total deflection over a longer length of MT is
still negligible.

Although we have shown that surface curvature can influ-
ence individual MT orientation, we have not addressed how
this tendency plays out at the level of array organization and
orientation tuning. Our analysis of previously published data
on tip lengths and curvatures of cell walls indicates that a large
fraction of MT in the simulations of the ordering and orienting
of cortical arrays should actually be subject to a deflecting
force that is disruptive to circumferential organization. The
effect of this force on array orientation needs to be tested.

Interestingly, our analysis is independent of the flexural
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rigity or Young’s modulus of the MT. In fact, a dimensional
version of the energy functional given by Eq. (1) would have
the flexural rigidity as a coefficient but it would fall out of the
Euler-Lagrange equation due to homogeneity of the equation.
The flexural rigidity would matter in two circumstances: (1)
if we did not assume an infinite stiffness for the cell wall, the
ratio of the elastic moduli of the cell wall and the MT would
determine their relative deformations; (2) the probability that
MT polymerization slows or stalls on a curved surface is
dependent on curvature because a MT must deform to allow
for the addition of subunits. Clearly, the ratio of elastic moduli
is finite but large enough that cell wall deformation can be
ignored. On the other hand, slowing or stalling of MT growth
due to curvature is likely to occur but in our work we are
focused on those MTs that continue to grow around corners
and their speed is not relevant in our model.

Although polymerization speed is not a parameter in our
model, it does provide for an interested anchor-density regu-
latory mechanism. At slower polymerization speeds, anchor
density is predicted to be higher even if the background rate
of anchor formation is the same (17).

Our mathematical analysis generalizes the classical anal-
ysis of the buckling of a thin elastic rod under compression.
The connection between these two is made more clear by
considering an alternate physical scenario that leads to the
same mathematical formalism discussed here. Suppose a thin
elastic rod is clamped at one end to a flexible sheet and the
sheet is slowly curled into a cylinder. If the clamped end is
oriented perpendicular to the cylinder’s axis, the rod buckles
through a pitchfork bifurcation when the product of the cur-
vature of the sheet with the length of the rod is L0, analogous
to the classic rod buckling. In addition, this system provides
an elegant unfolding of that pitchfork bifurcation when the
orientation of the rod is not perpendicular to the cylinder’s
axis.

In light of our findings, a few questions become a priority.
Do simulations of cortical arrays still orient correctly under
the deflecting influence of cell wall curvature? What is the
actual distribution ofMT tip lengths asMTs circumvent highly
curved regions of the cell surface, especially near sharp edges
where CLASP may be modulating deflection by promoting
anchoring or where slowing of polymerization might be
increasing anchor density? When MT arrays rearrange from a
circumferential orientation during growth to more disordered
or longitudinally oriented during non-growth phases, could the
transition be driven by a regulated decrease in anchor density?
How does cell geometry influence MT array organization
in cells with more complicated geometry, for example leaf
pavement cells, and is MT mechanics enough to explain the
relationship?
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A DERIVATION OF THE EULER-LAGRANGE
EQUATION

MTs on a cylindrical cell surface
We describe a plant cortical MT as a curve embedded within
the cell surface, in the case described here, a cylinder. We
make a few simplifying physical assumptions that allow us to
treat each segment ofMT between neighbouring anchor points
independently. (1) We assume that anchors always attach the
MT to the cell surface at the location of the plus end of a
growingMT at the moment it anchors. (2) Upon attachment of
an anchor at the plus end, the position and orientation of that
point along the MT are henceforth fixed. This is equivalent
to saying that anchors act as infinitely stiff positional and
torsional springs. (3) As the MT grows beyond a new anchor,
the shape of the new tip is determined by minimizing the total
bending energy along the entire length of the MT tip under the
assumption that it is on the cell surface at all points along the

tip. In the calculations that follow, we are always considering
the shape of the MT tip and not the rest of the MT given that
behind the foremost anchor the MT shape is fixed.

We consider curves constrained to lie on the (infinite)
cylinder

C =





cos(θ)
y

sin(θ)


: θ ∈ [0, 2π], y ∈ R




,

where units are chosen so that the cylinder has a (nondi-
mensional) unit radius. All lengths in the model can thus be
interpreted dimensionally by multiplying the nondimensional
length by the actual radius of the cell in question. For a
parametrized curve in C given by

x(s) =


cos(θ(s))
y(s)

sin(θ(s))


,

the tangent vector v is given by

v(s) = ẋ(s) =


− sin(θ(s))
0

cos(θ(s))


θ̇(s) +



0
1
0


ẏ(s)

so that ‖v(s)‖2 = θ̇(s)2 + ẏ(s)2. Thus x is parametrized by
arclength if θ̇(s)2 + ẏ(s)2 = 1. Without loss of generality, we
set θ(0) = y(0) = 0. The tangent vector and hence the curve
is uniquely determined by a single function ϕ(s) with the
relations

θ̇(s) = cos(ϕ(s)), ẏ = sin(ϕ(s)). (6)

Note that these relations imply the identity ϕ̇(s)2 = θ̈(s)2 +
ÿ(s)2. With this parametrization, the local curvature κ2(s) =
‖v̇(s)‖2 is given by

κ2(s) = θ̇(s)4 + θ̈(s)2 + ÿ(s)2 = (cos(ϕ(s)))4 + ϕ̇(s)2.

In order to keep the notation as simple as possible, we shall
from now on drop the explicit s-dependence of all functions.

The Euler-Lagrange equation
The principle determining the MT’s shape is the minimization
of the total curvature over paths of fixed total length L,
the length of the MT tip. The initial orientation of the MT,
ϕ(0) = ϕ0 (equivalently described by θ̇(0) and ẏ(0)), is
determined by the orientation locked in by the anchor at the
base of the MT tip. Let

FL (ϕ0) = {ϕ ∈ C1([0, L];R) : ϕ(0) = ϕ0},

We are looking for the minimizers of the functional

K [ϕ] =
∫ L

0
(cos(ϕ)4 + ϕ̇2) ds ϕ ∈ FL (ϕ0). (7)
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(as given in the main text as Eq. (1). To find the critical points
of K , we derive the associated Euler-Lagrange equation. We
consider variations ϕ(s) + rξ (s) where ξ ∈ FL (0). The first
variation in the direction of ξ is

d
dr
K [ϕ + rξ]

�����r=0
=

∫ L

0
(−4 cos3(ϕ) sin(ϕ)ξ + 2ϕ̇ξ̇) ds

= 2ϕ̇(L)ξ (L) − 2
∫ L

0

(
2 cos3(ϕ) sin(ϕ) + ϕ̈

)
ξ ds,

where we have used ξ (0) = 0 to eliminate one boundary term.
If ϕ is to be a critical point of K , then this vanishes for all
ξ, and in particular for all ξ ∈ C∞c ((0, L)) for which the first
term vanishes. By the fundamental lemma of the calculus of
variations, this implies that ϕ is a solution of

1
2
ϕ̈ + cos3(ϕ) sin(ϕ) = 0. (8)

Once we know this, the first variation in the direction of ξ
reduces to 2ϕ̇(L)ξ (L). This must vanish for all ξ and hence
ϕ̇(L) = 0.

In conclusion, ϕ is a critical point for K if it solves (8)
with boundary conditions ϕ(0) = ϕ0 and ϕ̇(L) = 0.

B BIFURCATION ANALYSIS AND BUCKLING
INSTABILITY

For ϕ0 = 0, the constant ϕ(s) = 0, p(s) = 0 is a solution
in FL (0) for any value of L. We seek to build a bifurcation
diagram around this solution. First, we look for solutions
having ϕ0 = 0 but such that p(0) > 0. If ϕ f = ϕ(L) is the
value of the solution at the end point, the energy is given by

E = H (ϕ(L), p(L)) = − cos(ϕ f )4

where we used that p(L) = 0 if a solution exists. In turn, this
yields

p2 = 4(cos(ϕ)4 − cos(ϕ f )4), (9)

for all s. We now constrain ourselves to consider solutions
that make a quarter rotation in the phase plane (starting on
the line ϕ = 0 and wrapping to the line p = 0). For these,
L = min{s > 0 : p(s) = 0}. Furthermore, p(s) > 0 for all
s < L so that (9) and Hamilton’s equation 2ϕ̇ = p yield

L =
∫ ϕ f

0

1√
cos(ϕ)4 − cos(ϕ f )4

dϕ (10)

This defines a function L(ϕ f ) which gives the length of a MT
tip required to ensure that the solution to equation (3) with
boundary condition ϕ(0) = 0 terminates at ϕ(L) = ϕ f when
p(L) = 0. We prove the following three facts about L as a
function of ϕ f in Appendix C:

1. L is finite for 0 ≤ ϕ f <
π
2 .

0 1 2 3 4 5 6

L

0

0.5

1

1.5

f(L
)

Figure 8: An approximate plot of ϕ f (L) for ϕ0 = 0 found by
numerical integration of Eq (10) (solid curve). The quadratic
approximation is superimposed (grey, dashed).

2. L is monotone increasing on [0, π/2), with

lim
ϕ f→

π
2

L(ϕ f ) = ∞.

3. For ϕ f small,

L(ϕ f ) ≈
π

2
√

2
+

5π
16
√

2
ϕ2
f . (11)

In particular,
min L =

π

2
√

2
=: L0

proving the following bifurcation picture. If L ≤ L0, the
only solution with initial condition ϕ0 = 0 is the steady state
ϕ = 0. If however L > L0, there exists another branch of
solutions having p(0) > 0 and as L increases, the direction at
the end of the MT tip continuously deflects further from the
circumferential direction to the axial direction.

Inverting L(ϕ f ) gives us a characterization of this second
solution described by its final value ϕ f (L). Fig. 8 shows a
numerical plot of ϕ f (L) and the quadratic approximation
given above. A third solution is characterized by the other
inverse branch −ϕ f (L) and this corresponds to the symmetric
solution in the phase plane starting at p(0) < 0. Combining
the zero solution with these two spatially varying solutions in
a single diagram, we see that the system seems to undergo a
pitchfork bifurcation at L = π/(2

√
2).

In fact, let us show that there is a sequence of solutions
bifurcating from the zero solution in the direction sin(

√
2s)

for
Ln =

(1 + 2n)π

2
√

2
, n ∈ N, (12)

For this, it is best to rescale the variable by setting s = rL and
define

ϕ̄(r) = ϕ(Lr).
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The curvature functional becomes

K̄L[ϕ̄] =
∫ 1

0

(
L cos4(ϕ̄) +

1
L

(ϕ̄′)2
)

dr . (13)

While the Lagrangian now depends explicitly on L, the func-
tion space is L-independent, being F = F1(0) for all L. Now,
the Euler-Lagrange equation can be cast as G(L, ϕ̄) = 0,
where G acts on the Banach space R × F. By the inverse
function theorem, G(L, ·) is invertible in a neighbourhood of
the point ϕ = 0 as long as G′(L, 0) is invertible. Hence, it
suffices to check that the kernel of G′(L, 0) is trivial. This is
nothing else than showing that the linearized Euler-Lagrange
equation

ϕ̄′′ + 2L2ϕ̄ = 0, ϕ̄(0) = 0, ϕ̄′(L) = 0

has no solution in F. The kernel of the operator ∂2+2L2 is the
intersection of F with the two-dimensional space of solutions
of the differential equation, namely span{sin(

√
2s), cos(

√
2s)}.

It is non-trivial if and only if
√

2L = π/2+nπ for any n ∈ Z, in
which case it is one-dimensional since the cosine never lies in
F. Standard bifurcation arguments, see e.g. (18), then yield (i)
neighbourhoods of (Ln, 0) in which all solutions are given by
two branches, namely the trivial one and a continuous branch
bifurcating in the direction of sin(

√
2s) and intersecting the

trivial one only at (Ln, 0), and (ii) that there are no other
bifurcation points along the zero solution.

Let us finally discuss the stability of the zero solution.
Note that K̄L[0] = L. We claim that the zero solution is stable
for L < L0, by which we mean that

K̄L[ϕ̄] > K̄L[0] = L

for all L < L0 and all ϕ̄ , 0 in a neighbourhood of 0 in F.
Let us first observe that Eq. (13) implies that for any fixed
function ϕ̄ , 0, we have that K̄L[ϕ̄] > L for L small enough.
Conversely, since

∫ 1
0 cos4(ϕ̄)dr < 1 for any ϕ̄ , 0 the reverse

inequality K̄L[ϕ̄] < L holds for L large enough. In fact, since

d
dL

(K̄L[ϕ̄] − L) =
∫ 1

0

(
(cos4(ϕ̄) − 1) −

1
L2 (ϕ̄′)2)dr < 0,

the function L 7→ K̄L[ϕ̄]− L is strictly decreasing. Hence, for
each ϕ̄ there is a unique L(ϕ̄) for which K̄L(ϕ̄)[ϕ̄] − L(ϕ̄) =
0. By the implicit function theorem, L(ϕ̄) is a continuous
function.

But then, the claim follows from the already established
fact that there is no bifurcation point for L < L0. Indeed,
suppose that there is a path [−1, 0) 3 σ 7→ ϕ̄σ such that
ϕ̄σ → 0 as σ → 0− and such that L(ϕ̄σ ) → L∗ < L0 as
σ → 0−. Then by construction K̄L(ϕ̄σ ) (ϕ̄σ ) = L(ϕ̄σ ) →
L∗ = K̄L∗ (0) and hence K̄L∗ has a flat direction: there is a
bifurcation at (L∗, 0), which is a contradiction.

C PROPERTIES OF L(ϕ f )
In order to simplify notations, we set ϕ f = x. Setting ϕ = xt,
we obtain

L(x) =
∫ 1

0

x√
cos(t x)4 − cos(x)4

dt.

First of all, if 0 < x < π
2 , the denominator is O((t −1)1/2)

and hence integrable at t = 1−, so that L is finite. If x = π
2

however, the integrand is of order (t − 1)−2 and hence not
integrable. In order to show monotonicity, we compute

L′(x) =
∫ 1

0

G(xt) − G(x)
(cos(xt)4 − cos(x)4)3/2 dt

where G(x) = cos(x)4 + 2x cos(x)3 sin(x). To show that L′

is positive it suffices to show that G(xt) is decreasing for
t ∈ [0, 1] for any x ∈ [0, π/2]. The t derivative of G(xt)
is 2x cos(xt)2(4t x cos(xt)2 − sin(xt) cos(xt) − 3xt). Thus
it suffices to show that 4z cos(z)2 − sin(z) cos(z) − 3z ≤
0 for z ∈ [0, π/2]. The z derivative of this expression is
−2 sin(z)(4z cos(z) + sin(z)) which is clearly negative in this
range.

Finally, the small x behaviour of Eq. (11) is obtained
from a Taylor expansion in x, with t a parameter. Start with
the Taylor expansion cos(x)4 =

∑∞
n=0 anxn, where a0 = 1,

a2 = −2, a4 = 5/3 and an = 0 for n odd. Using this we may
write

cos(t x)4 − cos(x)4

x2 =

2(1 − t2) *
,
1 − (5/6)(t2 + 1)x2 +

∞∑
n=6

an
tn − 1
1 − t2 xn−2+

-

The coefficients an arising from the expansion of an entire
function are exponentially decreasing in n so it is not hard to

see that
∑∞

n=6 an
tn − 1
1 − t2 xn−2 = O(x4), uniformly for t ∈ [0, 1].

Raising both sides to the power −1/2 and using the expansion
(1 + x)−1/2 = 1 − (1/2)x +O(x2) leads to(

cos(t x)4 − cos(x)4

x2

)−1/2

= (2(1 − t2))−1/2
(
1 + (5/12)(t2 + 1)x2 +O(x4)

)
.

The result now follows from integrating with respect to t.

D PROOF OF A BOUND ON ∆L

Here we prove inequality (5) which stated that |∆L (ϕ0, n) | ≤
L2

n . To show this, we note that the Euler-Lagrange equation (3)
immediately implies that | ṗ| ≤ 2 and hence

|p(s) | ≤
∫ `

s

| ṗ(r) |dr ≤ 2`,
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where we used that p(`) = 0. By the dynamical equation
again, we thus obtain the uniform bound

|ϕ j (`) − ϕ j (0) | ≤
1
2

∫ `

0
|p(r) |dr ≤ `2.

Hence, the total angular change is given by

|∆L (ϕ0, n) | = ���
n∑
j=1

(ϕ j (L/n) − ϕ j (0))��� ≤ n`2 =
L2

n
,

where we recalled that ` = L/n. This establishes the bound
we had set out to show.
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