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Abstract	|	Vaccines	could	help	mitigate	the	burden	of	antibiotic-resistant	infections	by	
preventing	people	from	contracting	infections	in	the	first	place.	But	the	long-term	
impact	of	vaccines	upon	antibiotic	resistance	is	unclear,	because	we	do	not	know	how	
vaccination	may	itself	alter	selection	for	resistance.	This	lack	of	clarity	is	compounded	
by	uncertainty	over	which	mechanisms	drive	resistance	evolution	in	bacteria.	
Specifically,	there	is	disagreement	over	what	stably	maintains	observed	patterns	of	
coexistence	between	resistant	and	sensitive	strains	over	time.	Using	a	mathematical	
modelling	framework,	we	show	that	contemporary	patterns	of	penicillin	resistance	in	
the	commensal	pathogen	Streptococcus	pneumoniae	across	Europe	can	be	explained	
either	by	within-host	competition,	by	diversifying	selection	for	bacterial	carriage	
duration,	or	by	within-country	heterogeneity	in	treatment	rates.	However,	these	
alternative	mechanisms	vary	considerably	in	their	predictions	of	the	impact	of	vaccine	
interventions.	Specifically,	we	identify	the	testable	hypothesis	that	the	outcome	of	
within-host	competition	between	sensitive	and	resistant	strains	critically	determines	
whether	vaccination	promotes	or	inhibits	the	evolution	of	resistance.	These	predictions	
vary	for	settings	differing	in	carriage	prevalence	and	treatment	rates.	Hence,	calibration	
to	pathogen-	and	country-specific	data	is	required	for	evidence-based	policy.		
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In	an	age	of	widespread	antibiotic	resistance,	there	is	growing	interest	in	using	vaccines	
to	prevent	bacterial	infections	that	would	otherwise	call	for	treatment	with	antibiotics	
(1–4).	This	interest	arises	for	two	main	reasons:	first,	vaccines	are	effective	against	both	
antibiotic-resistant	and	antibiotic-sensitive	bacteria;	and	second,	successful	prophylaxis	
removes	the	need	for	a	course	of	antibiotic	therapy	that	might	promote	more	resistance	
(2–5).	Over	the	past	two	decades,	the	use	of	pneumococcal	conjugate	vaccines	(PCV)	has	
seemingly	borne	out	these	advantages.	Administering	PCV	to	young	children	has	
substantially	reduced	pneumococcal	disease	(5–8)	and	decreased	demand	for	antibiotic	
therapy,	largely	by	reducing	cases	of	otitis	media	requiring	treatment	(5,	9).	But	
because	PCV	targets	only	a	fraction	of	the	~100	known	pneumococcal	serotypes,	the	
niche	it	has	vacated	has	been	filled	by	non-vaccine	serotypes,	and	pneumococcal	
carriage	has	returned	to	pre-vaccine	levels	(10,	11).	Concomitantly,	disease	caused	by	
non-vaccine	serotypes	(12)	and	the	level	of	resistance	among	non-vaccine	serotypes	(5,	
13)	have	risen	in	many	settings.	Concern	over	serotype	replacement—along	with	the	
high	cost	of	manufacturing	PCV—has	spurred	development	of	“universal”	whole-cell	or	
protein-based	pneumococcal	vaccines	protecting	against	all	serotypes,	which	are	now	in	
clinical	trials	(14).		
	
However,	it	is	unclear	how	universal	vaccination	may	itself	impact	upon	the	evolution	of	
antibiotic	resistance	in	S.	pneumoniae.	While	mathematical	models	are	a	useful	tool	for	
generating	predictions	from	nonlinear	transmission	dynamics	(15,	16),	existing	models	
focus	on	serotype-specific	vaccines	and,	even	then,	disagree	over	the	expected	impact	of	
vaccination	on	resistance	evolution	(17–23).	Comparing	and	interpreting	the	results	of	
these	models	is	hampered	by	the	fact	that	none	starts	from	a	position	of	recapitulating	
contemporary,	large-scale	patterns	of	antibiotic	resistance.	The	main	challenge	in	
replicating	these	patterns	lies	in	identifying	the	mechanisms	that	maintain	long-term	
coexistence	between	sensitive	and	resistant	strains	across	a	wide	range	of	antibiotic	
treatment	rates,	like	those	seen	across	Europe	and	the	United	States	(24,	25).	Robust	
predictions	of	the	long-term	impact	of	vaccination	on	resistant	pneumococcal	disease	
require	a	mechanistic	understanding	of	these	patterns.	
	
Here,	we	identify	eight	hypotheses	that	have	been	proposed	to	explain	coexistence	
between	sensitive	and	resistant	strains	of	pathogenic	bacteria.	We	find	that	four	of	
these	hypotheses	are	consistent	with	empirical	patterns	of	penicillin	resistance	in	the	
commensal	pathogen	Streptococcus	pneumoniae	(pneumococcus)	across	27	European	
countries.	Then,	we	show	that	each	of	these	four	models	make	different	predictions	for	
the	impact	of	vaccination	upon	the	long-term	evolution	of	antibiotic	resistance.	In	
particular,	we	show	that	whether	vaccination	promotes	or	inhibits	resistance	evolution	
depends	upon	the	nature	of	within-host	competition	between	sensitive	and	resistant	
strains.	We	demonstrate	how	our	predictions	can	be	applied	more	generally	by	
extending	our	model	to	high-carriage	settings.	Our	work	emphasizes	that	an	
understanding	of	the	mechanisms	that	govern	resistance	evolution	is	crucial	for	
predicting	the	potential	for	using	vaccines	to	manage	antibiotic	resistance.	
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Results	
	
Four	models	of	resistance	evolution.	Using	a	literature	search,	we	identify	eight	
candidate	mechanisms	that	have	been	hypothesised	to	maintain	coexistence	between	
sensitive	and	resistant	bacterial	strains.	We	find	that	four	of	these	mechanisms	could	
plausibly	reproduce	patterns	of	coexistence	as	seen	in	S.	pneumoniae	(Table	1).	
Accordingly,	we	embed	these	four	mechanisms	in	the	following	model	framework	of	
pneumococcal	transmission.	Our	model	calculates	the	country-specific	equilibrium	
frequency	of	resistance	in	pneumococci	circulating	among	children	under	five	years	of	
age—the	age	group	responsible	for	the	majority	of	pneumococcal	carriage	(26).		We	
assume	that	hosts	mix	randomly	within	a	population,	with	each	host	making	effective	
contact	with	another	random	host	at	rate	β	per	month,	thereby	potentially	acquiring	a	
carried	strain	(either	sensitive	or	resistant)	from	the	contacted	host.	With	probability	c,	
resistant	strains	fail	to	transmit,	where	c	represents	the	transmission	cost	of	resistance	
(27,	28).	We	model	importation	of	strains	from	outside	a	country	at	a	low,	constant	rate	
ψ,	assuming	that	with	probability	ρ	(equal	to	the	average	resistance	frequency	in	
Europe)	an	imported	strain	is	resistant.	A	host	naturally	clears	all	carried	strains	at	rate	
u,	and	is	exposed	to	antibiotic	therapy	at	a	country-specific	rate	τ,	which	clears	the	host	
of	sensitive	strains	only.	We	assume	that	the	treatment	rate	is	independent	of	carriage	
status	(29).	In	the	absence	of	any	mechanism	maintaining	coexistence	between	
sensitive	and	resistant	cells,	competitive	exclusion	is	expected—in	other	words,	either	
resistant	or	sensitive	strains	are	expected	to	go	to	fixation	in	the	population	(24,	30).	
Each	of	the	four	models	builds	upon	this	framework	and	invokes	an	alternative	
mechanism	for	maintaining	coexistence.	
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Table	1.	Mechanisms	for	maintaining	coexistence	
	
Mechanism	

	
Mode	of	action	

	
Modelled	in	this	study?	

Consistent	with	
empirical	patterns?	

Within-host	
competition		

(A:	transmission	cost)	

Within-host	competition	creates	
frequency-dependent	selection	for	
resistance	(24,	25,	31–33)	

Yes	
		

	

Within-host	
competition	

(B:	growth	cost)	

"	 Yes	

	

Diverse	
subtypes	

Subtypes	maintained	by	diversifying	
selection	differ	in	propensity	for	
resistance	(34)	

Yes	

	

Treatment		
variation	

Assortatively-mixing	subpopulations	
differ	in	treatment	rates	(24,	35–38)	

Yes	

	

Treated		
class	

Individuals	currently	in	treatment	
maintain	resistant	strains	(24,	32,	35,	
39)	

No:	Only	supports	a	small	amount	of	
coexistence	(24)	

	

Separate	
niches	

Sensitive	and	resistant	strains	
exploit	separate	niches	(40,	41)	

No:	Resistant	and	sensitive	strains	
are	known	to	occupy	the	same	niches	
(30)	

	

Mutation		
pressure	

Mutation-selection	balance	
maintains	intermediate	resistance	
frequency	(38,	41,	42)	

No:	De	novo	acquisition	of	resistance	
in	S.	pneumoniae	is	not	frequent	
enough	(24)	

	

Prescription		
feedback	

Doctors	reduce	prescribing	of	a	drug	
as	resistance	to	it	increases	(38,	39)	

No:	Does	not	explain	how	coexistence	
is	maintained	over	a	range	of	
different	treatment	rates	
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Fig.	1.	Four	models	of	resistance	evolution.	(a–d)	We	contrast	four	models,	whose	structures	are	
shown	here.	The	mechanism	promoting	coexistence	in	each	model	is	illustrated.	See	Methods	for	model	
implementation	details.	(e)	Model	fits	with	associated	WAIC.	Vertical	lines	show	the	95%	HDIs	for	the	
reported	proportion	of	invasive	S.	pneumoniae	isolates	that	are	resistant	to	penicillin	plotted	against	the	
antibiotic	consumption	rate	in	under-5s.	Ribbons	show	the	50%	and	95%	HDIs	for	resistance	prevalence	
from	each	fitted	model.	(f)	The	top	row	shows	estimated	posterior	distributions	for	the	free	parameters	
in	each	model;	the	bottom	row	shows	model	outputs	associated	with	these	parameters	to	aid	
interpretation.	
	
In	the	first	two	“Within-host	competition”	models	(Fig.	1a&b),	individuals	can	be	
colonised	by	both	sensitive	and	resistant	strains.	Antibiotic	treatment	benefits	resistant	
strains	by	clearing	away	their	sensitive	competitors.	This	benefit	is	more	pronounced	
when	resistant	strains	are	rare,	because	when	rare	they	tend	to	compete	more	with	
common	sensitive	strains	than	with	other	rare	resistant	strains.	This	creates	frequency-
dependent	selection	for	resistance	that	can	maintain	coexistence	(25).	The	“Within-host	
competition	A”	model	assumes	that	only	antibiotic	therapy	mediates	within-host	
competition,	while	the	“Within-host	competition	B”	model	assumes	that	sensitive	
strains	can	gradually	outcompete	resistant	strains	within	the	host	in	the	absence	of	
antibiotics,	which	occurs	at	rate	b	(25).	We	assume	that	there	is	no	transmission	cost	of	
resistance	in	this	latter	model	(c	=	0),	with	the	within-host	growth	advantage	b	of	
sensitive	strains	accounting	completely	for	the	cost	of	resistance.	Accordingly,	the	two	
models	primarily	differ	in	how	the	cost	of	resistance	is	presumed	to	operate.	The	key	
parameter	governing	coexistence	in	these	two	models	is	k,	the	relative	rate	of	co-
colonisation	compared	to	primary	colonisation.	
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In	the	third	“Diverse	subtypes”	model,	pneumococci	are	divided	into	subtypes	(“D-
types”)	(34)	that	vary	in	their	mean	duration	of	natural	carriage.	Diversifying	selection	
acting	on	the	D-type	locus	ensures	that	all	subtypes	are	maintained	in	circulation	
despite	the	variability	in	carriage	duration.	In	turn,	the	variability	in	carriage	duration	
causes	resistance	to	be	selected	in	some	subtypes,	but	not	others	(Fig.	1c).	What	D-types	
correspond	to	is	not	explicitly	specified	by	this	model,	but	serotype	variation	is	one	
candidate.	For	example,	if	host	immunity	promotes	antigenic	diversity	through	acquired	
immunity	to	capsular	serotypes,	and	different	serotypes	tend	to	differ	in	their	intrinsic	
ability	to	evade	clearance	by	the	immune	system,	then	intermediate	resistance	can	be	
maintained	because	selection	for	resistance	tends	to	be	greater	in	strains	that	have	a	
prolonged	duration	of	carriage.	Long-lasting	serotypes	will	tend	to	evolve	resistance,	
while	shorter-lived	serotypes	will	tend	not	to—a	pattern	observed	in	S.	pneumoniae	
(34).	This	model	assumes	that	individuals	already	carrying	pneumococcus	cannot	be	co-
colonised.	The	parameters	governing	coexistence	in	this	model	are	a,	the	strength	of	
diversifying	selection	on	strain	type,	and	δ,	the	variability	between	subtypes	in	
clearance	rate.	
	
Finally,	in	the	“Treatment	variation”	model,	heterogeneity	in	the	consumption	of	
antibiotics	between	subpopulations	of	hosts	within	a	country	maintains	coexistence	(24,	
35,	36)	(Fig.	1d).	Subpopulations	in	which	consumption	is	high	tend	to	promote	
resistance,	and	subpopulations	in	which	consumption	is	low	tend	to	inhibit	resistance.	
Provided	that	the	interchange	of	strains	between	high-consumption	and	low-
consumption	groups	is	not	too	frequent,	a	stable,	intermediate	frequency	of	resistance	
can	be	maintained	across	the	whole	population.	Again,	co-colonisation	is	not	modelled.	
Subpopulations	within	a	country	could	correspond	to	geographical	regions,	
socioeconomic	strata,	host	age	and	risk	classes,	or	a	combination	of	these.	The	key	
parameters	governing	coexistence	in	this	model	are	κ,	which	measures	the	variability	in	
antibiotic	consumption	between	subpopulations,	and	g,	the	relative	rate	at	which	
contact	between	hosts	is	made	within	rather	than	between	subpopulations,	a	measure	
of	‘assortativity’.	Full	details	of	all	model	implementations	are	provided	in	the	Methods.	
	
All	models	can	reproduce	observed	patterns	of	resistance.	The	European	Centre	for	
Disease	Prevention	and	Control	(ECDC)	monitors	antibiotic	consumption	and	resistance	
evolution	across	European	countries	for	26	combinations	of	drug	and	bacterial	species	
(13,	43).	These	data	capture	a	natural	experiment	in	resistance	evolution:	for	each	
monitored	drug	and	pathogen,	each	country	reports	a	different	rate	of	antibiotic	
consumption	in	the	community	and	exhibits	a	different	frequency	of	resistance	among	
invasive	bacterial	isolates.	Overall,	resistance	tends	to	be	more	common	in	countries	
where	more	antibiotics	are	consumed	(44),	and	the	fraction	of	invasive	isolates	that	are	
resistant	is	maintained	at	a	stable,	intermediate	level	over	time	(25).	Fitting	models	to	
data	from	multiple	countries	allows	one	to	rule	out	models	that	cannot	reproduce	this	
large-scale	pattern	(25).	
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We	use	Bayesian	inference	to	independently	fit	the	four	models	to	ECDC	data	for	
community	penicillin	consumption	and	penicillin	resistance	in	S.	pneumoniae	across	27	
European	countries,	with	an	assumed	50%	carriage	prevalence	in	children	under	five	
years	(11,	26).	We	assume	that	countries	only	differ	in	treatment	rate	and	reported	
resistance	frequency,	with	other	model	parameters	shared	across	countries.	We	find	
that	each	model	can	fit	equally	well	to	the	empirical	data	(Fig.	1e,	ΔWAIC	<	2.0)	and	
recover	plausible	posterior	parameter	distributions	(Fig.	1f).	
	
Models	differ	in	the	predicted	impact	of	vaccination.	Using	our	four	fitted	models,	
we	predict	the	impact	of	two	alternative	vaccines	that	each	reduce	carriage	prevalence	
by	a	different	mode	(Fig.	2).	We	model	an	“acquisition-blocking”	vaccine	that	prevents	
pneumococcal	acquisition	with	probability	εa,	and	a	“clearance-accelerating”	vaccine	
that	shortens	the	duration	of	pneumococcal	carriage	by	a	fraction	εc,	reflecting	
alternative	modes	of	acquired	immunity	that	might	be	elicited	by	a	pneumococcal	
vaccine	(45,	46).	For	simplicity,	we	assume	that	all	children	under	five	are	vaccinated	
and	refer	to	εa	or	εc	as	the	vaccine	efficacy.	To	compare	vaccines	with	antibiotic	
stewardship,	we	also	evaluate	the	impact	of	reducing	the	rate	of	antibiotic	therapy	by	a	
fraction	εs.	
	
We	report	the	effect	of	each	intervention	on	carriage	prevalence	and	on	resistance	
frequency	(Fig.	2).	As	expected,	pneumococcal	carriage	prevalence	is	decreased	by	both	
vaccines,	and	is	moderately	increased	by	antibiotic	stewardship	(Fig.	2a),	with	
consistent	effects	across	models.	
	
In	contrast,	predictions	for	resistance	frequency	vary	across	both	models	and	vaccine	
types	(Fig.	2b).	The	acquisition-blocking	vaccine	selects	strongly	against	resistance	in	
the	“Within-host	competition	A”	model	because	by	lowering	transmission,	it	reduces	co-
colonisation	and	thus	decreases	within-host	competition,	which	in	this	model	benefits	
the	resistant	strain	(Fig.	2d).	Conversely,	in	“Within-host	competition	B”,	within-host	
competition	typically	benefits	the	sensitive	strain,	and	so	the	vaccine	strongly	promotes	
resistance	(Fig.	2d).	This	mirrors	our	previous	finding	that	increased	transmission	of	
strains	modulates	resistance	evolution	through	its	impact	upon	within-host	competition	
(25).	In	the	“Diverse	subtypes”	and	“Treatment	variation”	models,	the	acquisition-
blocking	vaccine	has	a	relatively	minor	inhibiting	effect	upon	resistance.	This	stems	
from	vaccines	having	a	relatively	greater	impact	upon	transmission	in	populations	
(whether	countries	or	subpopulations	within	a	country)	where	carriage	is	lower,	
leading	to	variability	between	populations	in	the	interplay	between	transmission	and	
importation	that	have	a	mild	impact	upon	resistance	evolution.	All	of	these	effects	are	
also	seen	for	the	clearance-accelerating	vaccine,	which	has	an	additional	resistance-
inhibiting	effect	across	all	models,	because	a	shorter	duration	of	carriage	—	whether	
natural	or	vaccine-induced	—	selects	against	resistance	(Fig.	2d)	(34).	Antibiotic	
stewardship	selects	against	resistance,	as	expected.	
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Fig.	2.	Impact	of	interventions.	Points	give	the	mean,	and	vertical	bars	give	the	95%	HDI,	for	(a)	
carriage	prevalence,	(b)	resistance	frequency,	and	(c)	resistant	carriage	under	different	interventions.	
Note	that	as	vaccines	reduce	within-country	transmission	to	near	zero	(ε	≥	50%;	dashed	line),	carriage	is	
increasingly	dominated	by	imported	strains,	which	have	a	resistance	frequency	of	14%,	the	empirical	
average	across	Europe.	(d)	Illustration	of	the	strongest	forces	selecting	for	greater	or	lesser	resistance	
across	models.	
	
The	predicted	resistant	carriage	(Fig.	2c)	is	the	product	of	carriage	prevalence	and	
resistance	frequency.	Note	that	under	the	“Within-host	competition	B”	model,	
vaccination	at	intermediate	efficacy	is	expected	to	marginally	increase	the	overall	rate	
of	resistant	carriage.	In	other	models,	vaccination	always	reduces	resistant	carriage,	
particularly	under	the	“Within-host	competition	A”	model.	
	
Implications	for	policy.	Reducing	inappropriate	antibiotic	use	is	currently	the	primary	
means	of	managing	resistance.	Accordingly,	we	evaluate	the	average	reduction	in	
antibiotic	use	which	is	equivalent,	in	terms	of	reducing	resistant	carriage,	to	a	rollout	of	
each	vaccine	for	increasing	vaccine	efficacies	(Fig	3a).	We	find	that	the	relative	effect	of	
reducing	inappropriate	antibiotic	use	and	introducing	a	vaccine	is	considerably	
dependent	on	the	underlying	model.	For	example,	the	vaccine	efficacy	required	to	
achieve	the	equivalent	of	a	15%	reduction	in	antibiotic	consumption—the	current	
target	for	antibiotic	stewardship	in	the	UK	(48)—is	lowest	in	the	“Within-host	
competition	A”	model	(εa	=	11%;	εc	=	7%)	and	highest	under	the	“Within-host	
competition	B”	model	(εa	=	47%;	εc	=	45%).	Of	interest	for	clinical	trials	is	the	length	of	
time	that	is	expected	for	vaccine-mediated	changes	in	resistance	to	occur;	we	find	that	it	
takes	5–10	years	for	the	full	effects	of	resistance	evolution	to	be	seen	(Fig.	3b).	
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Fig.	3.	Policy	implications.	(a)	Median	equivalent	reduction	in	prescription	rate	across	four	models	of	
resistance	evolution,	in	terms	of	their	efficacy	at	reducing	the	incidence	of	resistant	pneumococcal	
carriage.	This	demonstrates	the	vaccine	efficacy	required	to	achieve	a	similar	decrease	in	resistant	
carriage	to	a	given	reduction	in	antibiotic	prescription	rates.	The	impact	on	overall	pneumococcal	
carriage	is	not	considered	here.	The	shaded	bar	shows	an	8.8–23.1%	reduction	in	prescriptions,	an	
estimate	of	the	percentage	of	prescriptions	which	are	clinically	inappropriate	in	the	UK	(47).	The	dashed	
line	shows	a	15%	reduction	in	prescriptions,	which	has	recently	been	announced	as	a	target	by	the	UK	
government	(48).	(b)	The	impact	of	vaccination	is	not	immediate,	but	takes	about	5–10	years,	depending	
upon	the	model.	Dashed	lines	show	equilibrium	resistant	carriage	after	vaccination	at	30%	efficacy,	while	
solid	lines	and	ribbons	show	mean	and	95%	HDIs.	(c)	Per-country	impact	of	vaccines.	Countries	
reporting	to	ECDC	are	ordered	from	lowest	(NL)	to	highest	(CY)	reported	rate	of	penicillin	consumption.	
Open	diamonds	show	the	change	in	all	pneumococcal	pneumonia	cases,	while	filled	distributions	show	
the	change	in	resistant	cases.	
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Fig.	4.	Vaccine	impact	in	a	high-burden	setting.	Adjusting	fitted	models	to	be	consistent	with	a	high-
burden	setting	yields	different	predictions	for	vaccine	impact,	highlighting	both	the	increased	challenges	
and	greater	opportunities	for	resistance	management	via	vaccination.	
	
We	also	evaluate	the	impact	of	each	intervention	on	a	national	level,	focusing	on	the	
concrete	outcome	of	childhood	pneumococcal	pneumonia	cases	(Methods).	While	
interventions	have	a	consistent	impact	from	country	to	country	on	the	total	pneumonia	
case	rate,	the	impact	on	resistant	pneumonia	cases	is	greatest	in	those	countries	where	
resistance	is	highest	(Fig.	3c).	
	
Vaccination	in	a	high-burden	setting.	High	carriage	and	resistance	rates	are	observed	
in	some	settings.	For	example,	a	90%	pneumococcal	carriage	rate,	with	81.4%	of	
isolates	resistant	to	penicillin,	has	been	observed	among	children	under	five	in	western	
Kenya	(49).	This	increased	carriage	rate	may	be	partly	attributable	to	a	longer	average	
duration	of	carriage	in	this	setting,	consistent	with	a	71.4-day	mean	duration	of	natural	
pneumococcal	carriage	measured	in	Kilifi,	eastern	Kenya	(50)	(Supplementary	
Material).	To	model	a	similar	high-burden	setting,	we	adjust	model	parameters	
estimated	from	European	data:	decreasing	the	rate	of	natural	clearance	to	71.4	days–1,	
increasing	the	transmission	rate	to	generate	a	90%	carriage	prevalence,	increasing	the	
treatment	rate	to	yield	a	resistance	frequency	of	81.4%,	and	ignoring	strain	importation	
(ψ	=	ρ	=	0),	while	keeping	other	parameters	(c,	b,	k,	a,	δ,	g,	and	κ)	the	same.	In	relative	
terms,	a	comparatively	greater	vaccine	efficacy	is	needed	to	reduce	the	rate	of	resistant	
cases,	particularly	under	the	“Within-host	competition	B”	model	(Fig.	4).	However,	
vaccination	is	expected	to	have	a	comparatively	greater	impact	in	absolute	terms	
because	of	a	comparatively	higher	rate	of	disease	in	such	settings:	for	example,	Kenya	is	
estimated	to	have	an	8.8-fold	higher	rate	of	severe	pneumococcal	pneumonia	than	the	
average	in	Europe	(51).	
	

Conclusions	
	
We	have	identified	four	mechanisms	that	can	explain	patterns	of	penicillin	resistance	in	
S.	pneumoniae	across	Europe.	These	mechanisms	are	not	mutually	exclusive,	but	the	
relative	importance	of	each	will	have	a	substantial	impact	upon	predictions	for	
resistance	evolution	under	vaccination.	In	particular,	the	“directionality”	of	within-host	
competition—that	is,	whether,	on	average,	within-host	competition	benefits	resistant	or	
sensitive	strains—has	a	substantial	impact	upon	whether	immunisation	selects	for	a	
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decrease	or	an	increase	in	antibiotic	resistance	in	the	long	term.	This	directionality	will	
vary	between	pathogens,	but	is	also	sensitive	to	the	antibiotic	treatment	rate,	and	so	
may	also	vary	between	settings.	Although	we	have	focused	on	competition	between	
sensitive	and	resistant	strains	of	S.	pneumoniae	only,	competition	between	serotypes	
(23)	and	among	other	nasopharyngeal	colonisers	will	also	impact	upon	resistance	
evolution,	and	determining	the	importance	of	these	other	sources	of	within-host	
competition	is	crucial.	
	
We	have	also	shown	that	the	mode	of	vaccine	protection—whether	acquisition-blocking	
or	clearance-accelerating—is	important.	Whole-cell	and	purified-protein	pneumococcal	
vaccines	may	induce	antibody-mediated	humoral	immunity,	CD4+	T	helper-17	cell-
mediated	immunity,	or	both	(45,	46).	By	modelling	both	modes	of	vaccine	action,	we	
have	highlighted	that	clearance-accelerating	vaccines	have	special	potential	for	
preventing	the	spread	of	resistance.	
	
Our	focus	has	been	on	the	impact	of	the	four	identified	mechanisms	per	se	upon	
resistance	evolution.	Models	that	could	make	more	accurate	country-specific	
predictions	would	need	to	account	for	the	effects	of	demographic	structure,	differences	
in	carriage	prevalence	and	disease	rates	between	settings,	and	variable	vaccine	
protection	among	individuals.	We	have	assumed	that	antibiotic	treatment	rates	among	
pneumococcal	carriers	remains	constant	after	the	introduction	of	a	vaccine,	even	
though	treatment	rates	dropped	in	many	settings	following	PCV	introduction	(5,	9).	
However,	for	a	universal	pneumococcal	vaccine	that	reduces	antibiotic	treatment	rates	
because	it	reduces	carriage	and	thereby	prevents	antibiotic-treatable	disease,	any	
reduction	in	treatment	will	only	occur	among	individuals	who,	because	of	vaccine	
protection,	are	not	pneumococcal	carriers,	all	else	being	equal.	Accordingly,	it	might	be	
expected	that	treatment	rates	in	carriers	would	remain	equally	high	among	those	
individuals	for	whom	vaccine	protection	has	failed.	
	
A	highly	efficacious	next-generation	pneumococcal	vaccine	can	indeed	reduce	the	
overall	burden	of	antibiotic-resistant	pneumococcal	disease.	However,	the	long-term	
effect	of	a	vaccine	with	intermediate	efficacy	upon	resistance	is	less	certain,	as	vaccine	
impact	depends	crucially	upon	the	mechanisms	that	drive	resistance	evolution.	Thus,	
empirical	investigation	of	pathogen	competitive	dynamics—and	the	impact	of	setting-
specific	factors	on	these	dynamics—is	needed	to	make	accurate	predictions	of	vaccine	
impact	on	resistant	infections.		
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Methods	
	
Mechanisms	driving	resistance.	We	conducted	a	literature	search	to	identify	mechanisms	
through	which	an	intermediate	frequency	of	resistance	can	be	maintained	across	a	host	
population.	We	searched	PubMed	using	the	terms:	(AMR	OR	ABR	OR	((antimicrobial	OR	
antibiotic)	AND	resist*))	AND	((model	OR	modelling	OR	modeling)	AND	(dynamic*	OR	
transmi*	OR	mathematical))	AND	(coexist*	OR	intermediate).	This	yielded	93	papers	
(Supplementary	Material).	We	included	all	papers	containing	a	dynamic	host-to-host	
pathogen	transmission	model	analysing	both	sensitive	and	resistant	strains	with	stable	
coexistence	as	an	outcome	of	the	model.	From	the	11	studies	meeting	this	criterion,	we	
identified	seven	unique	mechanisms.	Four	of	these	we	ruled	out	because	of	
implausibility	or	because	previous	work	shows	that	the	mechanism	does	not	bring	
about	substantial	coexistence,	leaving	four	mechanisms	(Table	1).	
	
Model	framework.	We	analyse	the	evolution	of	antibiotic	resistance	by	tracking	the	
transmission	of	resistant	and	sensitive	bacterial	strains	among	hosts	in	a	population	
using	ordinary	differential	equations.	
	
In	a	simple	model,	hosts	can	either	be	non-carriers	(X),	carriers	of	the	sensitive	strain	
(S),	or	carriers	of	the	resistant	strain	(R).	Model	dynamics	within	a	country	are	captured	
by	
	
	 dS/dt	=	λSX	–	(u	+	τ)S	
	 dR/dt	=	λRX	–	uR	
	 X	=	1	–	S	–	R	,	 	 	 	 	 	 	 	 (1)	
	
where	λS	=	βS	+	ψ(1–ρ)	is	the	force	of	infection	of	the	sensitive	strain,	λR	=	β(1–c)R	+	ψρ	
is	the	force	of	infection	of	the	resistant	strain, β	is	the	transmission	rate,	c	is	the	
transmission	cost	of	antibiotic	resistance,	u	is	the	rate	of	natural	clearance,	τ	is	the	
treatment	rate,	ψ	is	the	rate	of	importation,	and	ρ	is	the	fraction	of	imported	strains	that	
are	resistant.	The	models	we	compare	in	this	paper	extend	this	simple	model.	
	
The	“within-host	competition”	models	(25)	allow	hosts	to	carry	a	mix	of	both	strains.	
Hosts	can	carry	the	sensitive	strain	with	a	small	complement	of	the	resistant	strain	(SR)	
or	the	resistant	strain	with	a	small	complement	of	the	sensitive	strain	(RS).	Dynamics	
within	a	country	are	
	
	 dS/dt	=	λSX	–	(u	+	τ)S	–	kλRS	+	b0bSR	
	 dSR/dt	=	kλRS	–	(u	+	τ)SR	+	bRS	–	b0bSR	
	 dRS/dt	=	kλSR	–	(u	+	τ)RS	–	bRS	
	 dR/dt	=	λRX	–	uR	–	kλSR	+	τ(SR	+	RS)	
	 X	=	1	–	S	–	R	–	SR	–	RS	,	 	 	 	 	 	 (2)	
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where	λS	=	β(S	+	SR)	+	ψ(1–ρ)	is	the	force	of	infection	of	the	sensitive	strain,	λR	=	β(1–
c)(R	+	RS)	+	ψρ	is	the	force	of	infection	of	the	resistant	strain,	k	is	the	rate	of	co-
colonisation	relative	to	primary	colonisation,	b	is	the	within-host	growth	benefit	of	
sensitivity,	and	b0	is	the	rate	of	the	SR	→	S	transition	relative	to	the	RS	→	SR	transition.	
“Within-host	competition	A”	assumes	the	cost	of	resistance	is	incurred	by	reduced	
transmission	potential	(b	=	0	and	c	>	0),	while	“Within-host	competition	B”	assumes	
that	the	cost	of	resistance	is	incurred	through	decreased	within-host	growth	(b	>	0	and	
c	=	0).	
	
The	“Diverse	subtypes”	model	extends	the	simple	model	(eq.	1)	by	structuring	the	
pathogen	population	into	D	different	“D-types”	(we	assume	D	=	25),	each	with	a	
different	natural	clearance	rate,	where	each	type	is	kept	circulating	by	diversifying	
selection	acting	on	D-type	(34).	Dynamics	within	a	country	are	
	
	 dSd/dt	=	qdλS,dX	–	(ud	+	τ)Sd	
	 dRd/dt	=	qdλR,dX	–	udRd	
	 X	=	1	–	Σd	(Sd	+	Rd)	 	 	 	 	 	 	 (3)	
	
where	λS,d	=	βSd	+	ψ(1–ρ)/D	is	the	force	of	infection	of	the	sensitive	strain	of	D-type	d,	
λR,d	=	β(1–c)Rd	+	ψρ/D	is	the	force	of	infection	of	the	resistant	strain	of	D-type	d,	𝑞" =
(1 − '()*(

∑ ,'-)*-.-
+ 0

1
)3	is	the	strength	of	diversifying	selection	for	D-type	𝑑	 ∈ 	 {1,2, … , 𝐷}	

and	𝑢" = 𝑢 >1 + 𝛿 @2 "A0
1A0

− 1BC	is	the	clearance	rate	for	D-type	d	(34).	

	
Finally,	the	“Treatment	variation”	model	extends	the	simple	model	(eq.	1)	by	
structuring	the	population	into	multiple	subpopulations	that	exhibit	different	rates	of	
antibiotic	treatment	and	make	contact	with	each	other	at	unequal	rates	(21,	26,	27,	38).	
In	each	country,	we	model	N	representative	subpopulations	indexed	by	𝑖	 ∈ 	 {1,2, … , 𝑁},	
where	we	assume	N	=	10.	Dynamics	within	a	country	are	
	
	 dSi/dt	=	λS,iX	–	(u	+	τi)S	
	 dRi/dt	=	λR,iX	–	uR	
	 Xi	=	1	–	Si	–	Ri	 	 	 	 	 	 	 	 (4)	
	
where	λS,i	=	β	(Σj	wijSj)	+	ψ(1–ρ)	is	the	force	of	infection	of	the	sensitive	strain	in	
subpopulation	i,	λR,i	=	β(1–c)	(Σj	wijSj)	+	ψρ	is	the	force	of	infection	of	the	resistant	strain	
in	subpopulation	i,	and	wij	is	the	“who	acquires	infection	from	whom”	matrix,	capturing	
the	relative	rate	of	contact	by	group-i	individuals	to	group-j	individuals.	We	assume	that	
wij	=	g	+	(1–g)/N	when	i	=	j,	and	wij	=	(1	–	g)/N	when	i	≠	j,	such	that	g	is	the	assortativity	
of	subpopulations.	Finally,	we	assume	that	treatment	rates	of	subpopulations	within	a	
country	approximately	follow	a	gamma	distribution	with	shape	parameter	κ	and	mean	
treatment	rate	τ.	Accordingly,	the	rate	of	antibiotic	consumption	in	subpopulation	i	is	
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𝜏G = ∫ 𝑡	𝑃K(𝑡|𝜅)	𝑑𝑡
NO@

P
Q|RB

NO@
PST
Q |RB

,	where	𝑄K(𝑞|𝜅)	is	the	quantile	q	of	the	gamma	distribution	

with	shape	𝜅	and	𝑃K(𝑡|𝜅)	is	the	probability	density	at	t	of	the	same	gamma	distribution.	
	
Data	and	model	fitting.	We	extracted	community	penicillin	consumption	and	penicillin	
non-susceptibility	in	S.	pneumoniae	invasive	isolates	from	databases	made	available	by	
the	ECDC	(13,	43).	We	use	data	from	2007,	because	changes	in	pneumococcal	resistance	
reporting	standards	for	some	countries	after	this	year	hamper	the	comparability	of	
ECDC	data	points.	We	assume	that	community	penicillin	consumption	drives	penicillin	
resistance,	that	antibiotic	consumption	is	independent	of	whether	an	individual	is	
colonised	by	pneumococcus,	and	that	resistance	among	invasive	bacterial	isolates	is	
representative	of	resistance	among	circulating	strains	more	broadly.	Countries	report	
community	penicillin	consumption	in	defined	daily	doses	(DDD)	per	thousand	
individuals	per	day.	To	transform	this	bulk	consumption	rate	into	the	rate	at	which	
individuals	undertake	a	course	of	antibiotic	therapy,	we	analysed	prescribing	data	from	
eight	European	countries,	estimating	that	5	DDD	in	the	population	at	large	correspond	
to	one	treatment	course	for	a	child	under	5	years	of	age.	
	
Our	model	framework	tracks	carriage	of	S.	pneumoniae	among	children	aged	0-5	years,	
the	age	group	driving	both	transmission	and	disease.	In	European	countries,	we	assume	
that	the	prevalence	of	pneumococcal	carriage	in	under-5s	is	50%	(11,	26)	and	the	
average	duration	of	carriage	is	47	days	(52,	53).	We	calculate	the	average	incidence	of	S.	
pneumoniae-caused	severe	pneumonia	requiring	hospitalisation	as	610	per	million	
children	under	5	per	year	(51)	across	the	European	countries	in	our	data	set.	To	match	
model	predictions	to	a	high-burden	setting,	we	increase	the	duration	of	carriage	to	71.4	
days;	increase	the	transmission	rate	by	a	factor	of	3.61	(Within-host	competition	A),	
3.20	(Within-host	competition	B),	3.62	(Diverse	subtypes),	or	3.49	(Treatment	
variation)	so	that	carriage	prevalence	reaches	90.0%;	and	increase	the	antibiotic	
consumption	rate	to	1.138,	5.887,	1.458,	or	1.670	courses	per	person	per	year,	
respectively,	so	that	resistance	prevalence	reaches	81.4%.	See	Supplementary	Material	
for	details	of	calculations	relating	to	pneumococcal	carriage	and	disease.	
	
We	use	Bayesian	inference	via	differential	evolution	Markov	chain	Monte	Carlo	(54)	to	
identify	model	parameters	that	are	consistent	with	empirical	data.	Country	m	has	
antibiotic	treatment	rate	τm	and	reports	rm	of	nm	isolates	are	resistant.	Over	all	M	
countries,	these	data	are	denoted	𝜏 = (𝜏0, 𝜏V, … , 𝜏W),	𝑟 = (𝑟0, 𝑟V, … , 𝑟W),	and	𝑛 =
(𝑛0, 𝑛V, … , 𝑛W),	respectively.	The	probability	of	a	given	set	of	model	parameters	𝜃	is	
then	

𝑃(𝜃|𝜏, 𝑟, 𝑛) ∝ 𝑃(𝜏, 𝑟, 𝑛|𝜃)𝑃(𝜃),	
	

where	𝑃(𝜃)	is	the	prior	probability	of	parameters	𝜃	and	
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𝑃(𝜏, 𝑟, 𝑛|𝜃) = 𝐶,𝑌 = 𝑌(𝜏|𝜃).^𝑅,𝑟 = 𝑟 , 𝑛 = 𝑛`, 𝜌 = 𝜌(𝜏`|𝜃).
bc/be

W

`f0

.	

	
is	the	likelihood	of	data	𝜏, 𝑟, 𝑛	given	model	parameters	𝜃.	Above,	𝑌(𝜃)	is	the	average	
model-predicted	prevalence	of	carriage	across	all	countries	and	𝜌(𝜏`|𝜃)	is	the	model-
predicted	resistance	prevalence	for	country	m.	C(Y)	is	the	credibility	of	prevalence	of	
carriage	Y	and	R(r,n,ρ)	is	the	credibility	of	r	out	of	n	isolates	being	resistant	when	the	
model-predicted	resistance	prevalence	is	ρ.	For	C(Y),	we	use	a	normal	distribution	with	
mean	0.5	and	standard	deviation	0.002.	For	R(r,n,ρ),	we	use	𝑅(𝑟, 𝑛, 𝜌) = ∫ 𝑇,𝑥|𝜇 =0

k

𝜌, 𝜎 = 𝜎(𝜃).	m
n
𝑥n(1 − 𝑥)mAn	𝑑𝑥,	a	binomial	distribution	where	the	probability	of	success	

is	modelled	as	a	[0,1]-truncated	normal	distribution	centered	on	ρ	and	with	standard	

deviation	σ.	Here,	𝑇(𝑥|𝜇, 𝜎) = o(p|q,r)
,s(0|q,r)As(k|q,r).

,	where	𝜑(𝜇, 𝜎) = 0
√Vvrw

𝑒𝑥𝑝 @− (pAq)w

Vrw
B		is	

the	untruncated	normal	PDF	and	𝛷(𝜇, 𝜎) = 0
V
(1 + 𝑒𝑟𝑓 @pAq

r√V
B	)	is	the	untruncated	normal	

cumulative	distribution	function.	Finally,	Nm	is	the	population	size	of	country	m	and	𝑁e	is	
the	average	population	size	across	all	countries;	the	exponent	𝑁`/𝑁e	allows	us	to	weight	
the	importance	of	each	country	by	its	population	size,	which	allows	a	closer	fit	with	the	
overall	resistance	prevalence	across	all	countries.	See	Supplementary	Material	for	
MCMC	diagnostics.	
	
Prior	distributions	for	model	fitting.	We	adopt	𝑐 ∼ 𝐵𝑒𝑡𝑎(𝛼 = 1.5, 𝛽 = 8.5),	𝑏 ∼
𝐺𝑎𝑚𝑚𝑎(𝜅 = 2, 𝜃 = 0.5),	𝛽 ∼ 𝐺𝑎𝑚𝑚𝑎(𝜅 = 5, 𝜃 = 0.35),	𝑘 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 1, 𝜎 = 0.5),	
𝑎 ∼ 𝐺𝑎𝑚𝑚𝑎(𝜅 = 2, 𝜃 = 5),	𝛿 ∼ 𝐵𝑒𝑡𝑎(𝛼 = 20, 𝛽 = 25),	𝑔 ∼ 𝐵𝑒𝑡𝑎(𝛼 = 10, 𝛽 = 1.5),	and	
𝜅 ∼ 𝐺𝑎𝑚𝑚𝑎(𝜅 = 4, 𝜃 = 2)	as	weakly	informative	prior	distributions	for	model	fitting.		
	
Interventions.	Interventions	have	the	following	impact	on	model	parameters:	for	the	
acquisition-blocking	vaccine,	the	transmission	rate	becomes	β′	=	(1–εa)	β;	for	the	
clearance-accelerating	vaccine,	the	clearance	rate	becomes	u′	=	u/(1–εc);	and	under	
antibiotic	stewardship,	the	average	treatment	rate	in	each	country	m	becomes	τm′	=	τm	
(1–εs).	
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