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Abstract 44 

Image-based analysis as a rapid method for mutation detection can be advantageous in 45 

research or clinical settings when tumor tissue is limited or unavailable for direct testing.  Here, 46 

we applied a deep convolutional neural network (CNN) to whole slide images of melanomas 47 

from 256 patients and developed a fully automated model that first selects for tumor-rich areas 48 

(Area Under the Curve AUC=0.96) then predicts for the presence of mutated BRAF in our test 49 

set (AUC=0.72) Model performance was cross-validated on melanoma images from The Cancer 50 

Genome Atlas (AUC=0.75). We confirm that the mutated BRAF genotype is linked to phenotypic 51 

alterations at the level of the nucleus through saliency mapping and pathomics analysis, which 52 

reveal that cells with mutated BRAF exhibit larger and rounder nuclei. Not only do these findings 53 

provide additional insights on how BRAF mutations affects tumor structural characteristics, deep 54 

learning-based analysis of histopathology images have the potential to be integrated into higher 55 

order models for understanding tumor biology, developing biomarkers, and predicting clinical 56 

outcomes.   57 
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Introduction 58 

Mutations in the BRAF oncogene are found in 50-60% of all melanomas1. With the 59 

development of targeted therapies2, 3, determining the mutational status of BRAF has become 60 

an integral component for the management of Stage III/IV melanomas. Current methods for 61 

mutation detection include DNA molecular assays4 and rapid screening tests, such as 62 

immunohistochemistry, real-time polymerase chain reaction (PCR) and automated platforms5, 6, 63 

7, all of which require tumor tissue for analysis. Recently, image-based analysis has been 64 

investigated as an alternative method for mutation prediction, which can be particularly useful in 65 

settings when tumor is either not available or inadequate for direct testing. While many of these 66 

studies involve the use of radiomics8, image-based analysis has expanded to histopathology 67 

with the advent of digitized whole slide images (WSI). 68 

 69 

The field of pathomics attempts to extract and quantitate features from high-resolution 70 

digitized WSI on a large scale for the purposes of integrating with molecular signatures, 71 

developing biomarkers, and predicting clinical or treatment outcomes9. These tasks include 72 

quantifying the number of objects, detecting object boundaries, classifying groups of objects, 73 

and labeling that allow for characterization of tissue not typically possible by traditional 74 

microscopic evaluation10.  With the amount of data that can be potentially generated with 75 

pathomics, machine learning algorithms are uniquely positioned to link image features to a 76 

greater framework of understanding tumor biology11, 12.  77 

 78 

Relatedly, deep convolutional neural networks (CNN) have been shown to predict for the 79 

presence of actionable genetic mutations, such as EGFR, ER, and BRAF in a number of solid 80 

tumors using histopathological images13, 14, 15, 16, demonstrating that genotypic-phenotypic 81 

changes can be detected in tumor cells and/or the tumor microenvironment. In response to 82 

limitations that deep learning algorithms represent a “black box”, additional studies have 83 
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attempted to correlate learned histopathologic features with specific phenotypes17. Furthermore, 84 

better understanding of how various training parameters and modes of learning can influence 85 

model performance is required before broader applications to clinical practice. 86 

 87 

In this study, we utilize two distinct and complementary methods of analyzing whole slide 88 

images for the prediction of mutated BRAF in melanomas resected from patients prospectively 89 

enrolled in a single-institution, IRB-approved clinicopathological biorepository. First, we apply 90 

deep learning techniques to histopathology images of FFPE primary melanomas in order to 91 

develop a model from tissue specimens that are more representative of what might be seen in 92 

routine clinical practice. Through saliency mapping, we determine that cell nuclei are a key 93 

feature in what our network learns for mutation prediction. Finally, we confirm that the mutated 94 

BRAF genotype is associated with detectable and quantifiable nuclear differences using 95 

pathomics analysis, thus providing a genotype-phenotype link in melanoma tumor cells. We 96 

present our deep learning models for predicting BRAF mutations in melanoma to demonstrate 97 

the feasibility and explainability of rapid image-based mutational screening that can be used in 98 

research or clinical-based settings in which limited tumor tissue is available for direct testing.   99 
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Results 100 

Dataset characteristics 101 

NYU cohort 102 

Formalin-fixed paraffin embedded (FFPE) hematoxylin and eosin (H&E)-stained slides of 103 

293 primary melanomas from 256 unique patients were included in this study. 103 melanomas 104 

harbored mutated BRAF and 190 melanomas were wild-type BRAF. All slides were digitized at 105 

20x magnification and reviewed for quality control. Images that were blurry, faded, or contained 106 

no tumor were excluded. Additionally, only the slide with the greatest tumor content was used to 107 

build the classifier in order to reduce bias, leading to a final data cohort of 256 H&E slides. 108 

Slides were divided into training (n=184), validation (n=36), and independent testing cohorts 109 

(n=36) without overlap between patient subsets. Within each cohort, BRAF-mutant and BRAF-110 

wild type (BRAF-WT) melanomas were represented. V600E comprised 70% of the BRAF 111 

mutations. 112 

 113 

The Cancer Genome Atlas (TCGA) cohort 114 

An image dataset of 68 digitized FFPE H&E-stained slides of primary melanomas18 were 115 

retrieved from TCGA database19 and used as a second independent cohort. Clinical information 116 

was not available for all slides. Because TCGA primary melanoma specimens are enriched for 117 

thicker tumors (median=2.7mm; mean=4.9mm18), we selected 28 specimens with Breslow depth 118 

similar to our cohort as a second independent cohort to maintain uniformity of Breslow depth in 119 

our analysis. 120 

 121 

Automated selection of primary melanomas on whole slide histopathology images  122 

Our computational workflow is shown in Figure 1A and is the same across all our 123 

classifiers (see Methods). Because skin excisions often contain heterogeneous tissue, our first 124 
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task was to automate the identification of melanoma on whole slide images. Tumor-rich areas 125 

were manually annotated “in” the regions of interest (ROI) by a single dermatopathologist while 126 

normal skin, associated appendages, connective and subcutaneous tissue, necrosis, 127 

hemorrhage, and aggregates of dense inflammation were “out” of the ROI. For this task, we 128 

chose the Inception v3 architecture, which has been previously shown to accurately distinguish 129 

between tumor and non-tumor areas on H&E slides13. Learning curves are presented in Figure 130 

1B left and middle. Model performance achieved a per patient AUC=0.96 [95% CI: 0.90-0.99] 131 

and a per tile AUC=0.92 [95% CI: 0.918-0.921] (Figure 1B right). H&E-stained non-annotated 132 

whole slides of BRAF-mutant and BRAF-WT melanomas along with their corresponding 133 

network-generated probability heat maps and pathologist-annotated tumor masks are presented 134 

in Figure 1C. Notably, there is excellent concordance between the pathologist and the network. 135 

Training performed on images at 10x and 5x magnification resulted in similar network 136 

performances (Supplemental Figure 1 and Supplemental Table 1). The networks generated 137 

by this analysis are hereafter referred to as “TumorNet” along with the corresponding 138 

magnification.  139 
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 140 
 141 
Figure 1. Automated tumor annotation. A. Computational workflow for all our classifiers. To train the 142 
CNN architectures, slides are tiled to non-overlapping tiles and assigned to training, validation and 143 
independent sets comprising of 70%, 15% and 15% of the total number of tiles, respectively. After 144 
conversion to TF Record format, training is performed. The best performing model on the validation data 145 
is evaluated on the independent set. B. Training loss (left) of Inception v3 for tumor annotation.  146 
Validation AUC (middle) across training with best model chosen at 98 training epochs. ROC curves on 147 
test set per tile and per patient (right). C. Examples of a BRAF mutated and a BRAF WT slide for the 148 
tumor annotation classifier with corresponding tumor areas as annotated by certified dermatopathologist.  149 
 150 

  151 
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BRAF mutation prediction from melanoma whole-slide images by different CNN architectures 152 

We first decided to explore the performance of three state-of-the-art CNN architectures 153 

in BRAF mutation prediction; Inception v3, VGG1620 and ResNet1821. All three architectures 154 

were successfully trained from scratch on the same dataset split into training, validation and test 155 

sets (Panels a and b of Figures 2A-C). Performance on the independent test set was varied, 156 

with Inception v3 achieving an AUC=0.69 [95% CI:0.50-0.86] (Figure 2A panel c); VGG16 157 

achieving AUC=0.74 [95% CI:0.58-0.90] (Figure 2B panel c); and ResNet18 achieving 158 

AUC=0.86 [95% CI:0.74,0.99] (Figure 2C panel c). When applied to the TCGA dataset, 159 

Inception v3 generalized better (AUC=0.73 [95% CI:0.53-0.94] compared to AUC=0.59 [95% 160 

CI:0.37-0.82] and AUC=0.59 [95% CI:0.36-0.81] of VGG16 and ResNet18 respectively (Panel d 161 

of Figures 2A-C and Supplemental Table 2) (See Methods for details). Consequently, we 162 

chose Inception v3 as the most suitable architecture for our subsequent analyses.  163 
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 164 
 165 
Figure 2. BRAF mutation prediction is feasible across multiple CNN architectures. A) Inception v3 166 
a) Training Loss of Inception v3 for BRAF mutation prediction. b) Validation AUC across training. Best 167 
checkpoint is chosen at 30 training epochs. c) ROC curve for independent test set on best checkpoint. 168 
AUC is 0.69. d) ROC curve for external TCGA cohort on best checkpoint. AUC is 0.73. B) VGG16 a) 169 
Training Loss of VGG16 for BRAF mutation prediction. b) Validation AUC across training. Best checkpoint 170 
is chosen at 30 training epochs. c) ROC curve for independent test set on best checkpoint. AUC is 0.74. 171 
d) ROC curve for external TCGA cohort on best checkpoint. AUC is 0.59. C) ResNet18 a) Training Loss 172 
of ResNet18 for BRAF mutation prediction. b) Validation AUC across training. Best checkpoint is chosen 173 
at 16 training epochs. c) ROC curve for independent test set on best checkpoint. AUC is 0.86. d) ROC 174 
curve for external TCGA cohort on best checkpoint. AUC is 0.59. 175 
 176 
  177 
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Effect of training parameters on BRAF mutation prediction using Inception v3 178 

We next sought to elucidate the effect of tile size and training mode of Inception v3 on 179 

BRAF mutation prediction. Because Inception v3 only accepts tile sizes of 299x299 pixels, we 180 

used different magnifications as a proxy and retrained the architecture at 5x and 10x 181 

magnifications using the same data set split to training, validation and independent test sets. 182 

Additionally, we explored whether utilization of transfer learning to fine tune the last layer of the 183 

network influenced architecture performance compared to training all layers from scratch. For 184 

transfer training, we retrained the architecture using the weights of the ImageNet challenge22 as 185 

well as the weights of the best checkpoints from our own melanoma annotation classifiers for 186 

each magnification (see Methods for details). The networks’ performance on the independent 187 

test set and the TCGA cohort are shown in Figure 3A with additional details provided in 188 

Supplemental Figures 2,3,4 and Supplemental Table 3. Training at 5x magnification yielded 189 

inconsistent results, with large variations in the AUC values.  While training at 10x magnification 190 

performed more consistently across different training modes, training at 20x magnification 191 

demonstrated the least amount of variation, with the model trained with transfer training based 192 

on the weights from our TumorNet network achieving the best AUCs for the independent NYU 193 

test set (AUC = 0.72 [95% CI:0.53-0.87]) and the TCGA cohort (AUC = 0.75 [95% CI:0.57-0.94]) 194 

(Figure 3B). Examples of BRAF-mutant and BRAF-WT H&E–stained slides from the 195 

independent test set and TCGA cohorts are shown in Figure 3C along with their probability heat 196 

maps.  197 

 198 

Lastly, we investigated the effect of dataset size on prediction AUC. We down-sampled 199 

the dataset to 20,40,60 and 80% of initial data (Supplemental Table 4). Transfer training of 200 

Inception v3 using the weights of TumorNet20x was repeated for each down-sampled data set. 201 

Average AUC on the validation and test sets was reduced, as expected (Supplemental Figure 202 

5). Fitting an inverse power law curve to the data demonstrated that in order for the classifier to 203 
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achieve an AUC of 0.8, ~4.5x more data (i.e., at least 800 slides) would be needed. For the 204 

classifier to predict BRAF mutation with an AUC of 0.90, 10x more data (i.e. at least 1800 205 

slides) would be needed.  206 

 207 

 208 
 209 
 210 
Figure 3. Exploration of the effect of magnification and learning mode on BRAF mutation 211 
prediction using Inception v3. A. Parameter exploration for magnification and training modes for 212 
Inception v3. The AUC on the independent test set and the external TCGA cohort are used as measures 213 
for prediction performance. Training at 5x seems unstable across different training modes (grey points). 214 
Training at 10x (light blue) and 20x (dark blue) yield more consistent results for different training 215 
approaches with 20x producing results with the smallest variation. Transfer training at 20x using the pre-216 
trained tumor annotation network will be used onwards as our best classifier. B. ROC curve on 217 
independent test set for best performing checkpoint for classifier trained on tumor annotation network at 218 
20x magnification. AUC is calculated at 0.72 CI[0.53-0.87] (left). ROC for external TCGA cohort with AUC 219 
at 0.75 CI[0.57-0.94]. C. Example mutation heat maps for BRAF mutated and BRAF WT slide from the 220 
test set (left) and the TCGA cohort (right). Tiles are colored based on their BRAF mutation probability 221 
values as predicted by the network. 222 
  223 
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Automated sequential workflow for melanoma selection and mutation prediction 224 

In order to improve utilization of our deep learning models, we developed a fully 225 

automated workflow by combining our tumor annotation and BRAF mutation prediction 226 

classifiers (Figure 4). For this task, we first verified that the BRAF mutation classifier trained on 227 

automatically annotated tumor areas performed similarly to the one trained on the manually 228 

annotated tumors. All 256 whole slide images (WSI) at 20x magnification were passed through 229 

the trained tumor annotation network (TumorNet). Tiles assigned with a probability of containing 230 

tumor higher than the threshold set were filtered and split into training, validation, and 231 

independent test sets. The Inception v3 architecture was re-trained on tiles selected by the 232 

automated network for mutation prediction. The network trained on tiles selected by TumorNet 233 

achieved similar performance to the one trained on the manually selected regions 234 

(Supplemental Figure 6), demonstrating a successful fully automated sequential model.  235 

 236 
 237 

 238 
 239 
 240 
Figure 4. Sequential workflow for BRAF mutation prediction. Non-annotated whole slides are 241 
processed, tiled, and passed through the automated tumor annotation network which assigns a 242 
probability to each tile of belonging in the tumor. Tiles with high probability of containing tumor are 243 
subsequently passed through the mutation prediction network for determining the mutational status of the 244 
slide of interest.  245 
  246 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 19, 2020. ; https://doi.org/10.1101/610311doi: bioRxiv preprint 

https://doi.org/10.1101/610311
http://creativecommons.org/licenses/by-nc-nd/4.0/


Association of network mutation localization with immunohistochemical analysis 247 

To further corroborate network accuracy, we examined whether network-generated 248 

probability heat maps are true visual representations of mutation localization. An additional set 249 

of 17 BRAFV600E cases underwent automated algorithmic mutation prediction and 250 

immunohistochemical (IHC) analysis with the monoclonal VE1 antibody, a reliable screening 251 

tool for detecting the specific V600E mutation23. A single dermatopathologist blinded to 252 

mutational status manually annotated tumor ROI on H&E-stained slides as well as regions of 253 

positive staining on both the H&E-stained and IHC slides. (Figure 5A). The annotated mask of 254 

positive IHC staining and the mask for the annotated tumor area form the H&E slide were then 255 

overlaid on the network-generated probability heat map. The average probability of tiles falling 256 

inside vs. outside the selected antibody stained mask was calculated and is displayed in the 257 

form of box plots in Figure 5B for all 17 slides. From the 7 slides that were correctly predicted 258 

as BRAF mutant by the network, five of them show statistically significant higher BRAF 259 

probabilities for the tiles inside the annotated V600E antibody stained area compared to the 260 

remaining tumor tiles, indicating that the network indeed localizes mutated BRAF. 261 

 262 
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 263 
Figure 5. BRAF V600E-predicted tumor areas overlap with immunohistochemical V600E antibody 264 
staining for correctly predicted slides. A) Overlap strategy for IHC and H&E slides. Tumor annotation 265 
was performed on the H&E slides. Using the corresponding stained IHC slide for V600E, a single 266 
pathologist performed annotation of the respective area on the H&E slide to avoid potential 267 
inconsistencies due to the use of different slides to perform H&E and IHC if a different overlap approach 268 
was utilized. Then, the masks for the annotated areas are overlapped with the tile BRAF mutation 269 
probability heat-map to perform the overlap analysis. B) Probability distributions for 17 BRAF V600E 270 
slides for tiles inside and outside of the V600E stained areas. From the seven slides correctly predicted 271 
as BRAF V600E (green box), five of them show statistically significant higher BRAF probabilities for the 272 
tiles inside the annotated V600E antibody stained area compared to the remaining tumor tiles. 273 
 274 
  275 
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Cell nuclei are informative areas for BRAF mutation prediction 276 

We next attempted to delineate some of the learned image features that contribute to 277 

BRAF mutation prediction by the CNN. Tiles from the NYU independent test set were ranked by 278 

BRAF mutation probability. The top 100 and bottom 100 tiles were then used to create saliency 279 

maps using our best performing network (Inception v3 trained at 20x on the pre-trained tumor 280 

annotation weights). Saliency maps are generated using the weights of the last layer of the 281 

network before the fully connected layer. The map visualizes the importance of each image 282 

pixel for the prediction (see Methods for implementation details). Figure 6A demonstrates 283 

examples from high confidence and low confidence tiles from six different patients, in which the 284 

H&E tile containing tumor is shown on the left, the saliency map is shown in the middle, and the 285 

overlap of the two is shown on the right. In the saliency map, pixels assigned colors in the 286 

“warm” spectrum are considered important for mutation prediction while pixels assigned “cool” 287 

colors contribute less to the prediction. In both the high and low BRAF-mutant probability tiles, 288 

pixels with the highest contribution to the network performance are those corresponding to cell 289 

nuclei. The same analysis was repeated on tiles from the TCGA slides (Figure 6B) and again 290 

demonstrate that areas corresponding to cell nuclei seem to be the most important structures 291 

for the network’s prediction. 292 
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 293 
Figure 6. Saliency maps reveal cell nuclei as informative areas for BRAF mutation prediction. A) 294 
Saliency maps for three tiles predicted with highest BRAF probability (left) and three tiles predicted with 295 
the lowest BRAF probability (right) from six different patients in the independent NYU test set. B) Saliency 296 
maps for three tiles predicted with highest BRAF probability (left) and three tiles predicted with the lowest 297 
BRAF probability (right) from six different patients in the TCGA data set. It can be observed that for all 298 
tiles independently of the BRAF probability, the network considers cell nuclei to be the most informative 299 
structures for the prediction.  300 
  301 
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Pathomics analysis reveals nuclear differences correlate to BRAF mutational status  302 

To explore the feasibility of BRAF mutation prediction using traditional image analysis 303 

approaches we developed a Pathomics pipeline using CellProfiler, a publicly available software 304 

offering multiple functionalities for traditional image processing such as automated annotation of 305 

image structures24, to detect nuclei of tumor melanocytes (Figure 7A). Our pipeline focuses on 306 

annotating cells and nuclei from the H&E slide (see Methods for details). Our first task was to 307 

unmix colors that are present in H&E-stained slides, where hematoxylin stains nuclei blue-black 308 

and eosin stains proteins in the cytoplasm and connective tissue elements pink. Additionally, 309 

melanin pigment appears as brown granules. These color signals were deconvoluted to 310 

generate grayscale images that indicate the location of each stain with a white color. Because 311 

cells with high melanin content may represent melanophages rather than tumor melanocytes, 312 

the pigment channel was overlaid with the hematoxylin channel to identify highly pigmented 313 

cells. These cells were then removed from subsequent analysis (Figure 7A). Objects that 314 

passed criteria were measured and assessed for 18 features (Supplemental Figure 7, 8, 9 and 315 

10). 316 

 317 

All 293 slides from our patient cohort were passed through the pipeline, which runs for 318 

each tile of a slide. The data were averaged across all identified nuclei and normalized by the 319 

total number of tiles by patient, when necessary. The analysis was performed on both tumor 320 

and non-tumor tiles of each slide. In non-tumor areas, there were no statistically significant 321 

differences in nuclear features across all melanomas (Supplemental Figure 7). In contrast, 322 

within tumor areas, differences in some nuclear features were detected between BRAF-mutated 323 

and BRAF-WT tumor tiles (Figure 7B and Supplemental Figure 7). These features included: 324 

(1) average nuclear area, (2) average nuclear eccentricity, (3) average minor axis, (4) average 325 

maximum, (5) median and (6) mean nuclear radius.  326 

 327 
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Compared to BRAF-WT nuclei, nuclei harboring mutated BRAF exhibited a larger 328 

average nuclear area with longer maximum, median, and mean nuclear radius, indicating that 329 

these nuclei are larger. Furthermore, BRAF-mutated nuclei demonstrated a longer minor axis 330 

and a smaller average nuclear eccentricity, indicating that the shape of the nucleus is rounder. 331 

The analysis was repeated on 64 available TCGA FFPE samples (Supplemental Figure 8) and 332 

demonstrated similar trends in nuclear features, although the differences did not reach statistical 333 

significance due to the small sample size. We also modified the pipeline to annotate and 334 

analyze cells instead of nuclei for both the NYU and the TCGA cohort (see Methods). No 335 

cellular features showed statistically significant differences across BRAF mutant and BRAF WT 336 

patients for the non-tumor tiles. In tumor tiles, the average cellular area, minor cell axis length 337 

and the maximum, median and mean cellular radii were larger in BRAF-mutant compared to 338 

BRAF-WT tumor nuclei for the NYU cohort. No significant differences were observed between 339 

BRAF-mutant and BRAF-WT tumor cells in TCGA data (Supplemental Figures 9 and 10). 340 

 341 

Finally, we decided to explore if conventional pathomics image analysis can predict the 342 

BRAF mutation as well as our deep learning network. We trained a random forest model and a 343 

generalized linear model using 7-fold cross validation to mimic the number of ~37 slides in the 344 

independent test set that we have for our network. We used all our 293 slides and the 18 345 

nuclear features provided by CellProfiler (Supplemental Table 5 and Methods). The random 346 

forest model achieves an average AUC of 0.58 on the test set and 0.61 on the TCGA dataset. 347 

The generalized linear model yields an AUC of 0.56 on the test set and 0.58 on the TCGA data. 348 

Thus, deep learning was consequently better at predicting BRAF mutational status from H&E 349 

slides than conventional pathomics, an observation that has also been reported in radiomics 350 

studies8. 351 
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 352 
 353 
Figure 7. Pathomics analysis reveals that nuclear differences correlate to BRAF mutational status. 354 
A) Pathomics workflow with cellProfiler software. First, the hematoxylin, eosin and pigment stains are de-355 
convolved. Hematoxylin is then used to annotate cells and cell nuclei. The pigment channel is used to 356 
annotate pigmented areas. Annotated nuclei and cells are overlapped with the pigmented regions and 357 
those overlapping the pigment are not considered for analysis. A variety of metrics for the size and shape 358 
of annotated nuclei are calculated and collected. B)  Nuclear features for non-tumor and tumor nuclei 359 
aggregated per patient are plotted (for full list of features see Supplemental Figures 7,8,9 and 10). For 360 
non-tumor tiles, there are no differences between BRAF mutated and BRAF WT nuclei. For tumor tiles, 361 
BRAF mutated nuclei seem to have larger nuclear area, maximum radius and minor axis and lower 362 
eccentricity values. These results indicate bigger and rounder BRAF mutated nuclei compared to BRAF 363 
WT ones.  364 
  365 
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Discussion 366 
 367 

In the era of personalized medicine, molecular profiling can guide optimal cancer 368 

treatment, particularly if targeted therapies, such as BRAF inhibitors, are available. Predicting 369 

BRAF mutational status from image-based analysis is being investigated as an appealing 370 

method for rapid screening without the need for tumor tissue, and has been previously 371 

demonstrated in radiomics using ultrasound images for papillary thyroid cancer25, 26 and brain 372 

MRI images of metastatic melanomas27. More recently, deep CNN algorithms have been 373 

applied to histopathology images obtained from TCGA to predict for actionable mutations in lung 374 

adenocarcinoma13, papillary thyroid cancers15, and colorectal cancers16, indicating that 375 

genotypic alterations lead to phenotypic changes on the tumor cell level. In our study, we 376 

corroborate that BRAF mutations lead to specific morphologic changes, specifically larger and 377 

rounder nuclei, that can be predicted through deep learning and pathomics.  378 

 379 

In melanoma, image-based analysis using deep learning has successfully been applied 380 

to classify pigmented lesions as benign vs. malignant using clinical28 or dermoscopic29 images 381 

with impressive accuracy. With respect to BRAF mutations, specific morphologic signatures 382 

associated with mutated BRAF in melanoma have been described independently with 383 

dermoscopy30, reflectance confocal microscopy31, and histology32, 33. These histologic features 384 

were determined by traditional microscopy and include greater pagetoid scatter, intraepidermal 385 

nesting, epidermal thickening, better circumscription, larger epithelioid and more pigmented 386 

melanocytes, and less solar elastosis. However, attempts to develop binary decision trees to 387 

predict for the BRAF mutation using histology alone achieved a predictive accuracy of only 388 

60.3%33.  389 

 390 

A pan-cancer deep learning image analysis by Kather et al.16 of FFPE H&E-stained 391 

slides of 14 different solid tumors and more than 5,000 patients from the TCGA database, 392 
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successfully predicted for mutated BRAF in colorectal cancers. Interestingly, no significant 393 

mutations were able to be predicted from primary melanomas, and only FBXW7 and PIK3CA 394 

from metastatic melanoma samples. One potential reason that mutation prediction was less 395 

successful in melanoma samples from TCGA data is the relatively small sample size. Here, we 396 

use a dataset of melanomas from over 250 patients to train our architecture, with our best 397 

model achieving an AUC=0.72. Importantly, we were able to cross-validate our model on 398 

images from TCGA [AUC=0.75]. We further substantiate the accuracy of our model by utilizing 399 

IHC analysis with the monoclonal VE1 antibody and assessing the overlay between positive IHC 400 

staining of BRAFV600E on tissue sections and network-generated probability heat maps. Of the 401 

concordant cases between IHC and the network, 70% demonstrate significant overlap between 402 

the positive IHC staining and the heat map.  403 

 404 

Despite the potential applications of unsupervised machine learning in pathology, a 405 

common concern is the "black box" issue in which learned features cannot be discovered from 406 

outputs. Relevant features can be inferred by examining high confidence image tiles for 407 

common morphological features. In the study by Kather et al.16, tiles of colorectal cancers 408 

ranked highly for mutated BRAF demonstrated areas of mucin as well as poorly differentiated 409 

tumor. A different computational approach by Fu et al.17 trained on 17,355 H&E-stained fresh-410 

frozen tissue spanning 28 tumor types from TCGA to extract 1,536 image features and then 411 

used transfer learning to build prediction models for genotypes of interest. One high performing 412 

model was the association of mutated BRAF in papillary thyroid cancers, in which BRAF 413 

mutations are said to be found in 50%. The authors raise the question of whether the mutated 414 

BRAF genotype leads to the histological phenotype or whether BRAF mutations preferentially 415 

occur in certain cell types. We would argue the case for the latter, as BRAF mutations are also 416 

found in up to 50% of melanomas, but cannot be reliably predicted based on World Health 417 
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Organization (WHO) histologic subtypes: superficial spreading melanoma, nodular melanoma, 418 

lentigo maligna melanoma, and acral lentiginous melanoma32. 419 

 420 
Consequently, morphologic alterations associated with mutated BRAF are likely too 421 

subtle to be detected through traditional microscopy. Saliency maps or explainability techniques 422 

alter individual pixels and capture its effects on model performance34. In our study, we 423 

developed a novel pipeline that generates saliency maps for our network mutation prediction 424 

model and identified pixels corresponding to cellular nuclei as important for network decision-425 

making (Figure 6) in both our institutional cohort as well as the TCGA cohort. We further 426 

investigate whether there are nuclear features that are associated with BRAF mutational status 427 

using pathomics to extract and quantitate 18 features using CellProfiler software24. Nuclei 428 

harboring mutated BRAF were larger and rounder than wild-type BRAF nuclei as measured by 429 

area, radii, and eccentricity. Notably, this corroborates previous studies that described BRAF-430 

mutated melanomas as featuring larger and epithelioid melanocytes32, 33.  431 

 432 

Because WSI analysis is a crucial feature for clinical adaptability, we also built a fully 433 

automated model that first applies a tumor selection algorithm (TumorNet) on non-annotated 434 

images followed by the mutation prediction algorithm. With the recent FDA approval of the first 435 

WSI imaging system for primary diagnosis in pathology35, the digitization of slides seems poised 436 

to be integrated into routine clinical practice. For instance, feature extraction from WSI analysis 437 

integrated with clinicopathologic data, mutational status, and gene expression data led to an 438 

improved prognostic model for recurrence-free survival in melanomas from TCGA36, while 439 

pathomics combined with trancriptomics analysis of CD8(+) T-cell distribution in metastatic 440 

melanomas can potentially predict clinical responses to BRAF-inhibitor therapy37. Other 441 

approaches have combined radiomics with pathomics to localize high-grade prostate cancers38 442 

or  predict for outcomes such as recurrence-free survival in lung cancer patients39.  443 
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 444 

Similarly, while deep learning-based mutational predictions are unlikely to replace direct 445 

molecular testing on tissue in the immediate future, there is great promise for these 446 

computational approaches to be integrated into higher order models, such as predicting for 447 

treatment responders vs. non-responders or survival outcomes, as has been previously 448 

demonstrated in lung cancers40 and gliomas41. We present a fully automated deep CNN model 449 

that accurately differentiates melanomas from benign tissue and uses morphologic features to 450 

predict the presence of the BRAF driver mutations on two independent cohorts. We confirm that 451 

the mutated BRAF genotype is linked to phenotypic alterations at the level of the nucleus 452 

through saliency mapping and pathomics analysis, providing additional insights on how this 453 

mutation affects tumor structural characteristics. Compared to direct testing methods, such an 454 

image-based approach has the potential to provide mutational data in a rapid, cost-reducing, 455 

and tissue-sparing manner that can be scaled up in research or even possibly, clinical settings. 456 

 457 

Materials and Methods 458 

Dataset of whole-slide images 459 

All patients were enrolled in an IRB-approved clinicopathological database and 460 

biorepository in the Interdisciplinary Melanoma Cooperative Group (IMCG) at NYU Langone 461 

Health. The IMCG collects prospective clinical, pathological, and follow-up data from melanoma 462 

patients who present for diagnosis and/or treatment42.  463 

365 H&E-stained FFPE whole-slides from 324 primary melanomas diagnosed between 464 

1994 to 2013 were retrieved and digitized at 20x magnification. A single board-certified 465 

dermatopathologist (RHK) reviewed all digitized slides for image quality and excluded images 466 

that were blurry, faded, or did not contain any tumor.  293 images from 256 melanomas were 467 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 19, 2020. ; https://doi.org/10.1101/610311doi: bioRxiv preprint 

https://doi.org/10.1101/610311
http://creativecommons.org/licenses/by-nc-nd/4.0/


subsequently annotated by RHK for tumor-rich regions of interest (ROIs) using Aperio 468 

ImageScope software. Driver mutations were previously determined by Sanger sequencing. 469 

 470 

Dataset from The Cancer Genome Atlas 471 

68 FFPE slides of primary melanomas from 66 patients from the TCGA were 472 

downloaded and tiled into non-overlapping tiles of 299x299 pixels. Clinical information was not 473 

available for all slides. 28 slides with a Breslow depth similar to our cohort were maintained a 474 

second independent cohort. All tiles were sorted for testing and TFRecord files were generated. 475 

The slides were passed through the mutation prediction networks and the average probabilities 476 

per slide were used for the AUC calculation. The TCGA cohort was used as a generalizability 477 

metric for our classifiers. 64 slides were used for the pathomics analysis. The 4 slides excluded 478 

were very large and generated a very high number of tiles making the processing time for 479 

CellProfiler prohibitive.   480 

 481 
Software availability 482 

We utilized the adapted Tensorflow DeepPATH pipeline 483 

(https://github.com/ncoudray/DeepPATH.git) to perform our analysis using the Inception v3 CNN 484 

architecture. To train the vgg16 and resnet18 architectures we used the PathCNN pipeline 485 

published on github (https://github.com/sedab/PathCNN). Our CellProfiler analysis pipeline is 486 

also available on github (https://github.com/sofnom/HistoPathNCA_pipeline).  487 

 488 

Image pre-processing 489 

BRAF mutation prediction 490 

To avoid introducing potential bias in our BRAF mutation classifiers, only the slide with 491 

the highest tumor content was used per patient, resulting in a dataset of 256 slides. WSI were 492 

partitioned at 20x magnification into non-overlapping 299x299 pixel tiles. For these classifiers, 493 
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only the tiles from the area annotated as tumor were included in the analysis. This process 494 

generated 222,561 total tiles in our dataset, after removing tiles with more than 50% 495 

background (white area of slides). All tiles take the label of the slide they belong to and are 496 

sorted in training, validation and independent sets comprising of 70%, 15% and 15% of the total 497 

number of tiles correspondingly. All tiles from a specific slide are included in the same set with 498 

no overlap allowed. Tile sorting was performed using sorting option number 14 from the 499 

DeepPATH pipeline. Tiles in the train and validation sets were then converted to TF record 500 

format, which is necessary for training of Inception v3, in groups of 1024 tiles in each TF record 501 

file for the training set and 128 tiles for the validation set.  502 

 503 

Tumor annotation network 504 

 All 293 whole-slide images were tiled for this task in order to provide the maximum 505 

amount of data available for training, similar to a data augmentation technique. The slides were 506 

tiled separately for the areas annotated as “tumor” and “non-tumor”.  The number of tiles is 507 

presented in Supplemental Table 1, for all three magnifications explored. Tile sorting was 508 

performed using sorting option 19 from the DeepPATH pipeline. Tiles in the train and validation 509 

sets were converted as before to TF record format in groups of 1024 tiles in each TF record file 510 

for the training set and 128 tiles for the validation set. 511 

 512 

Deep learning with Convolutional Neural Networks for BRAF mutation prediction 513 

Inception v3 514 

The Inception v3 architecture is a Convolutional Neural Network (CNN) that utilizes 515 

modules comprised of various convolutions with different kernel sizes and a max pooling layers. 516 

The network was trained on 70% of the tiles from each data set, with 15% of the tiles used for 517 

validation and 15% used for independent testing.  518 
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The network was trained from scratch and using transfer learning for 150,000 training 519 

steps on batches of 160 images, on 4 GPUs. The corresponding number of epochs varies 520 

based on the total number of tiles and the batch size and is determined by the following 521 

equation:  522 

# 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ =  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�  

 523 

 The learning rate was set to 0.1. For transfer learning, the initial learning rate was set 524 

to 0.001. The RMSProp for gradient descent optimizer was used with learning rate decay factor 525 

of 0.16 and 15 epochs per decay for both training modes. The activation function used in the 526 

output layer was softmax. The built-in data augmentation techniques of Inception v3 were 527 

utilized as defined in the “image_processing.py” script available here 528 

https://github.com/ncoudray/DeepPATH/tree/master/DeepPATH_code/01_training/xClasses/inc529 

eption. These include horizontal flip of the images and random color distortion, as well as 530 

obtaining randomly sized crops of the training images and resizing them to the necessary tile 531 

size.  532 

 For transfer training using ImageNet weights we used the checkpoint at the following 533 

link: http://download.tensorflow.org/models/image/imagenet/inception-v3-2016-03-01.tar.gz. For 534 

transfer training using the weights from the corresponding tumor annotation classifier we used 535 

the best checkpoints of the tumor classification networks.  536 

The network’s performance was monitored based on the AUC on the validation set. The 537 

best performing model was chosen either when the validation AUC displayed a very sharp drop 538 

between the training steps or when there was a clear plateau. The performance of the best 539 

model was then evaluated on the independent set and the AUC was calculated. The network 540 

outputs a probability value for every tile for each class of interest. The tile is assigned to the 541 
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class with the highest probability. The tile probabilities are then averaged to produce the final 542 

slide probability.  543 

A heat map for each slide in the test set can be generated according to the 544 

“0f_HeatMap_nClasses.py” script in (https://github.com/ncoudray/DeepPATH.git). The heat map 545 

overlaps the probability information for each tile with the initial H&E slide to produce a color-546 

coded image visualizing the localization of the mutation as predicted by the network at the tile 547 

level. The color intensity is analogous to the probability value of the tile to belong in each class.  548 

 549 

VGG16 and ResNet18 550 

 These architectures were trained using the code available at 551 

https://github.com/sedab/PathCNN. They were trained for 50 training epochs, using learning 552 

rate of 0.1 for VGG16 and 0.05 for ResNet18. Image tiles are automatically resized from 553 

299x299 to the default tile size for these architectures which is 224x224 pixels.  The SGD 554 

optimizer is used. Dropout was set at 0.1 and the Xavier initialization was employed. Data 555 

augmentation included random horizontal image flip, random image rotation and random color 556 

normalization, as defined in the “train.py” script of the pipeline. A leaky non-linear function was 557 

used. Network performance was measured by the AUC on the validation set. The best 558 

checkpoint was chosen the same way as for the Inception v3 architecture above. 559 

 560 

Hardware 561 

All deep learning models were trained on Tesla V100-SXM2-16G GPUs.  562 

 563 

Automated tumor selection classifiers - TumorNet 564 

Inception v3 was trained from scratch on the tiles generated as described under “Image 565 

preprocessing, Tumor annotation network” on 4 GPUs. Learning rate was set to 0.1 and batch 566 

size to 400, for all magnifications. Softmax was used as the activation function for the output 567 
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layer. Training loss and validation AUC were monitored the same way as for the BRAF mutation 568 

classifiers and performance is measured on the independent test set for the best model. 569 

 570 

BRAF mutation prediction on the automatically selected tumor areas for the sequential model 571 

To be able to use a sequential model with automatic tumor annotation we wanted to 572 

show that a BRAF prediction classifier trained on automatically selected tumor regions will 573 

achieve similar AUC as the one trained on the manually selected ones. We passed all 256 574 

slides through the TumorNet20x network to annotate the tumor regions. We then split the 575 

selected tumor tiles (tumor probability >= 0.365789) into training, validation and test sets. 576 

Inception v3 was trained on the tiles that are considered as tumor, using transfer training on the 577 

best TumorNet checkpoint at 20x magnification with the same parameters as for the manually 578 

annotated tumor regions. 579 

 580 

Statistical analysis 581 

After training and choosing the best performing model on the validation set, model 582 

performance was evaluated using the independent test set, which is comprised of a held-out 583 

population of tiles coming from 36 slides. Each slide comes from a unique patient in the case of 584 

our BRAF prediction classifiers. Regarding the tumor annotation classifiers, where each patient 585 

can have multiple slides, we report the “per patient” AUC. The probabilities for each slide were 586 

aggregated by the average of probabilities of the corresponding tiles. Receiver Operative 587 

Characteristic (ROC) curves and the corresponding Area Under the Curve (AUC) were 588 

generated as a measure of accuracy. Heat maps allowed visualization of probability differences 589 

and regions of interest. 590 

 591 

Conventional Machine Learning Models for Pathomics 592 
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The multivariate logistic regression model was built using the glm function in R from the 593 

“ROCR” package. The Random Forest model was created using the randomForest function 594 

from the “randomForest” package in R. 595 

 596 

Smoothed training loss and validation AUC plots 597 

Smoothing was performed using the function geom_smooth() from the ggplot2 package with 598 

default parameters based on the number of data points, in R.  599 

 600 

Receiver Operating Characteristic Curves 601 

ROC curves were generated using the pROC package in R. 602 

 603 

Immunohistochemical analysis of mutated BRAF V600E  604 

Immunohistochemistry (IHC) was performed on 10% neutral buffered FFPE, 4-µm 605 

human archival melanoma sample sections collected on plus slides (Fisher Scientific, Cat# 22-606 

042-924) and stored at room temperature. Unconjugated, mouse anti-human Serine-Threonine-607 

Protein Kinase B-raf (BRAF) V600E, clone VE1 (Abcam Cat# ab228461, Lot# GR32335840-6) 608 

raised against a synthetic peptide within human BRAF (amino acids 550-650) containing the 609 

glutamic acid substitution, was used for IHC43, 44.  BRAF antibody was optimized on known 610 

positive and negative colon samples and subsequently validated on a mixed set 20 known 611 

positive/negative samples.  Chromogenic immunohistochemistry was performed on a Ventana 612 

Medical Systems Discovery Ultra using Ventana’s reagents and detection kits unless otherwise 613 

noted. In brief, slides were deparaffinized online and antigen retrieved for 24 minutes at 95°C 614 

using Cell Conditioner 1 (Tris-Borate-EDTA pH8.5).  BRAF was diluted 1:50 in Ventana 615 

antibody diluent (Ventana Medical Systems, Cat# 251-018) and incubated for 16 minutes at 616 

36°C. Endogenous peroxidase activity was post-primary blocked with 3% hydrogen peroxide for 617 

4 minutes. Primary antibody was detected using Optiview linker followed by multimer-HRP 618 
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incubated for 8 minutes each, respectively. The complex was visualized with 3,3 619 

diaminobenzidene for 8 minutes and enhanced with copper sulfate for 4 minutes. Slides were 620 

counterstained online with hematoxylin for 8 minutes and blued for 4 minutes. Slides were 621 

washed in distilled water, dehydrated and mounted with permanent media. Positive and 622 

negative (diluent only) controls were run in parallel with study sections. Blinded analysis of 623 

staining was performed by a single dermatopathologist (GJ).  624 

 625 

BRAF V600E-predicted tumor areas overlap with immunohistochemical V600E antibody 626 

staining. 627 

Manual annotation of V600E-stained areas on the IHC slides was performed using the 628 

Aperio ImageScope software. The same area was annotated on the H&E slide by visual overlap 629 

of the slides by a single certified dermatopathologist (GJ). Different tumor slices are used for 630 

IHC and H&E and most available alignment software are not allowing for image rotation which 631 

would account for a more faithful image alignment. Consequently, they were deemed unreliable 632 

to overlap the stained regions with the tumor area of the H&E slide. Manual annotation is more 633 

reliable in this case. After obtaining the desired masks, the probability distributions for tiles 634 

assigned to the V600E-stained areas as opposed to the probabilities of the remaining tumor 635 

tiles were plotted in the form of a boxplot for all 17 BRAF V600E slides. P-values were 636 

calculated using an unpaired two-sided Wilcoxon rank sum test for each slide.  637 

 638 
Generating saliency maps 639 

Saliency maps were created with the Smooth Integrated Gradients method45. First, an 640 

InceptionV3-architectured graph was constructed using Tensorflow slim API in order to reload 641 

the trained model. The architecture and all hyperparameters were kept exactly the same as the 642 

trained model. Then, selected tiles from the independent test set and the TCGA cohort with the 643 

highest and the lowest predicted probabilities were fed into the reloaded models. The weights of 644 
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the layer before the last fully connected layer were then used to build the saliency map.  We 645 

used the Saliency package (https://pypi.org/project/saliency/) from PyPI to generate Smoothed 646 

Integrated Gradients for these tiles. Considering the nature of the digital histopathology images, 647 

both pure black (RGB=[0,0,0]) and pure white (RGB=[255,255,255]) were used as the baselines 648 

to calculate the gradients. Saliency maps using the white background are presented in Figure 649 

6. A better visualization output was made by overlaying saliency maps onto the original tiles.  650 

  651 

Pathomics Analysis using CellProfiler 652 

To perform Pathomics analysis we used CellProfiler24, a publicly available software 653 

platform for cell and nuclear analysis from multiple formats of biological images. We developed 654 

a pipeline on CellProfiler version 3.1.8 to measure nuclear and cellular features on the tile level 655 

of H&E slides.  CellProfiler 3 documentation is available here http://cellprofiler-656 

manual.s3.amazonaws.com/CellProfiler-3.0.0/index.html for a detailed description of all pipeline 657 

steps that follows. 658 

 659 

Pipeline steps for nuclear annotation 660 

UnmixColors: The pipeline starts by de-convolving the Hematoxylin, Eosin and Pigment 661 

signals and generating grayscale images indicating the location of each stain with white color. 662 

The deconvolution of Hematoxylin and Eosin is built-in the software and the pigment color was 663 

determined by choosing a custom color profile based on the pigmentation of our images.  664 

IdentifyPrimaryObjects: Then, the Hematoxylin stain is used to annotate nuclei, and the 665 

pigment stain is used to annotate pigmented regions on the tile. To annotate nuclei, we decided 666 

to adopt the Otsu method with default parameters except for “threshold correction factor” for 667 

which we used value of 1.3 instead of the default 1.0 for more stringent annotation. “Typical 668 

diameter of objects” was set to 10 to 40 pixels, as by default. For pigment annotation, we used a 669 
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manual thresholding method with a threshold of 0.8 and ‘typical diameter of objects” was set to 670 

10 to 100 to reduce the number of objects identified. Our slides were not color normalized. We 671 

noticed that color normalization was interfering with the annotation of pigmented regions 672 

because it was reducing the contrast between the pigment color and the rest of the slide. 673 

Instead, we opted for the Otsu method which tests multiple thresholding values before 674 

performing nuclear annotation, therefore it automatically adapts to each tile’s color profile. For 675 

cell annotation, we changed the annotation method to Minimum Cross Entropy with the default 676 

thresholding smoothing value of 1.3488 and the default threshold correction factor of 1.0. The 677 

rest of pipeline stages are unchanged. 678 

ConvertObjectsToImage: This step is used to convert the identified pigment objects to a 679 

mask image that can be used by the following step MaskObjects. 680 

MaskObjects: Pigmented areas were excluded from our nuclear annotation because 681 

pigmented cells may represent melanophages rather than tumor cells.  682 

OverlayOutlines: This step is overlaying the tile image with the identified nuclei and 683 

pigmented regions for visualization and evaluation of our pipeline. The objects are overlayed 684 

using the default parameters.  685 

SaveImages: The overlay images of can be saved in a jpeg format. 686 

MeasureObjectSizeShape: This module measures object size and shape features. In 687 

total, it measures 18 features:  688 

Export ToSpeadsheet: This step is used to save the outputs of the previous step into a 689 

text file for every slide.  690 

Our code is available on github: https://github.com/sofnom/HistoPathNCA_pipeline. 691 

 692 

Processing of CellProfiler results  693 

The CellProfiler pipeline generates data for each tile of all slides of a patient. All 694 

identified cells and nuclei per patient were collected and the nuclear and cellular features were 695 
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averaged by patient. Additional normalization to the total number of tiles by patient was needed 696 

for the total number of objects, total object area and total pigmented area. The distribution of 697 

each feature was plotted for both the non-tumor and the tumor tiles, stratified by the true label of 698 

the patient. Logarithmic conversion was used for plotting the total object and pigment areas. P-699 

values for the boxplots were calculated using an unpaired two-sided Wilcoxon rank sum test in 700 

R.  701 

 702 

Down-sampled training of Inception v3 703 

The NYU dataset was down-sampled to 20, 40, 60 and 80% of the available slides. We 704 

made sure to maintain the same proportion of BRAF mutant to BRAF WT slides in the down-705 

sampled datasets as for the network trained on the initial dataset to avoid biasing the training 706 

process and our results (Supplemental Table 4). Transfer training at 20x magnification was 707 

performed using the TumorNet weights. Learning rate was set to 0.1 and batch size to 160. All 708 

other training parameters were the same as the network trained on the whole dataset. The 709 

average AUC on the validation and test sets was calculated for the best checkpoints along with 710 

the average CIs. The data were imported in Microsoft Excel. Using the built-in “Power” function 711 

we fit an inverse power law curve to the data to predict the number of available tiles we would 712 

need to achieve a BRAF mutation prediction AUC of 80% and 90%; performance which is much 713 

more relevant for clinical practice.  714 

  715 
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Supplementary Materials 716 

Fig S1. Training of tumor annotation classifier at multiple magnifications. 717 

Table S1. Training Tumor Annotation Network for different magnifications.  718 

Table S2. Training multiple architectures for BRAF mutation prediction. 719 

Fig S2. Different learning modes affect BRAF mutation prediction (Inception v3; 20x 720 

magnification). 721 

Fig S3. Different learning modes affect BRAF mutation prediction (Inception v3; 10x 722 

magnification). 723 

Fig S4. Different learning modes affect BRAF mutation prediction (Inception v3; 5x 724 

magnification). 725 

Table S3. Different learning modes affect BRAF mutation prediction (Inception v3).  726 

Table S4. Down-sampled datasets for Inception v3 training.  727 

Fig S5. Dataset down-sampling reduces classifier’s performance. 728 

Fig S6. BRAF mutation prediction using manual vs. network annotated tumor areas. 729 

Fig S7. Nuclear features for NYU cohort. 730 

Fig S8. Nuclear features for TCGA cohort. 731 

Fig S9. Cellular features for NYU cohort. 732 

Fig S10. Cellular features for TCGA cohort. 733 

Table S5. Pathomics machine learning models for BRAF mutation prediction using nuclear 734 

features. 735 
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