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Abstract

Recent advances in applying optogenetics in primates initiated the development of light based
prosthetic implants for sensory restoration. Thanks to being the most well explored cortical area that
is readily accessible at the surface of the brain, vision restoration via direct optogenetic activation of
primary visual cortex is one of the most promising early targets for a optogenetics based prosthetic
program. However, two fundamental elements of the cortical optogenetic prosthesis remain unclear.
First, the exact mechanisms of neural dynamics under direct cortical stimulation, especially in the
context of living, active and functionally specific intra-cortical neural circuitry, is poorly understood.
Second, we lack protocols for transformation of arbitrary visual stimuli into light activation patterns
that would induce perception of the said stimulus by the subject. In this study we address these issues
using a large-scale spiking neural network modeling strategy of high biological fidelity. We examine
the relationship between specific spatial configuration of light delivered to cortex and the resulting
spatio-temporal pattern of activity evoked in the simulated cortical circuitry. Using such virtual
experiments, we design a protocol for translation of a specific set of stimuli to activation pattern
of a matrix of light emitting elements and provide a detailed assessment of the resulting cortical
activations with respect to the natural vision control condition. In this study we restrict our focus to
the grating stimulus class, which are an ideal starting point for exploration due to their thoroughly
characterized representation in V1 and well-defined information content. However, we also provide
an outline of a straight-forward road-map for transforming this grating centric stimulation protocol
towards general strategy capable of transforming arbitrary spatio-temporal visual stimulus to a
spatio-temporal pattern of light, thus enabling vision restoration via optogenetic V1 activation.

1 Introduction

Major effort is being undertaken to develop prosthetic implants [48, 67] for alleviating blindness in the
millions of people suffering this condition around the globe [48]. Devices targeting retina have so far
come closest to accomplishing reliable restoration of visual function, with several implants commercially
available or in clinical trials [27]. However, for number of conditions which render retina or optic tract
not viable, targeting the next two stages of visual processing – lateral geniculate nuclues (LGN) and
primary visual cortex (V1) – are the two next best options. While being attractive target for vision

1

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2019. ; https://doi.org/10.1101/610378doi: bioRxiv preprint 

https://doi.org/10.1101/610378
http://creativecommons.org/licenses/by/4.0/


restoration due to its straightforward coding of visual scene, the small size and poor accessibility deep in
the brain make LGN a challenging option for visual prosthesis [61]. On the other hand, the accessibility
at the surface of the brain combined with favorable magnification factor and well understood coding [23]
predispose V1 as the primary target for extra-retinal vision restoration.

The recent advances in applying optogenetics in primates raise the possibility of using light as stim-
ulation medium in neuro-prosthetic implants. Under such strategy, a region of cortex is transfected with
opsin from the Channelrhodopsin family, rendering the transfected cells excitable by light [30]. A matrix
of light emitting elements (MLEE) is placed on the surface of the treated cortical region (see figure
1). Pattern of light induced by the MLEE elicits analogous pattern of activity in the cortex under the
implant. The central hypothesis is that, providing the induced cortical activity is sufficiently close to
the encoding of the given visual stimulus under normal vision, perception of the said stimulus is elicited.
Due to the absence of mechanical damage to the cortex and active electric currents, and the availability
of high-density MLEEs (< 10µm pitch), such optogenetic based strategy elevates the disadvantages of
implants relying on direct electrical stimulation [32, 33, 54, 66], while giving hope for restoration of high
resolution vision.

Two fundamental issues of such optogenetic visual prosthesis have, however, gained little attention
so far. First, the mechanisms of cortical neural dynamics under external stimulation, especially in the
context of living, active and functionally specific neural circuitry, is poorly understood. Second, we
lack strategies for transforming arbitrary stimuli into light activation signals that would induce cortical
activity patterns similar to those due to natural visual stimulation. Development of such stimulation
strategies is challenging due to the complexity visual stimulus encoding schemes in V1 and the lack
of deeper understanding of the interactions of light induced depolarization with the ongoing recurrent
cortical dynamics. Therefore, computational models that capture both the complexity of the recurrent
cortical dynamics and the V1 encoding of visual stimuli represent an ideal test bed for understanding
the impact of light-activation on the cortical dynamics and in turn for design of light-based stimulation
strategies.

Interestingly, surprisingly few computational studies have so far attempted to elucidate the impacts
of optogenetic stimulation on cortical dynamics, and we are not aware of any studies trying to design
an optimal light based stimulation protocol for eliciting activity patterns replicating the encoding of
visual stimuli in V1. In this study we address both these issues using a detailed large-scale spiking
neuron based modeling strategy of high biological fidelity. Specifically, using a combination of a model
of light propagation in cortical tissue , model of channelrhodopsin dynamics, and a previous model of
anatomically and functionally calibrated V1 cortical circuitry [10], we examine the cortical dynamics in
a virtual population of transfected V1 neurons as a function of light stimulation parameters (figure 1).
We demonstrate that performing these tests in a detailed recurrent model of cortex is crucial, as the
simulated neural responses follow radically different patterns when the cortical circuitry is disabled.

Having gained insight on the dynamics of cortical activity under light stimulation, we proceed to
formulate a light stimulation strategy for reproducing encoding of sinusoidal grating stimuli in V1.
Focusing this canonical stimulus class with well studied encoding in V1 allows us to perform a systematic
characterization of the light evoked neural dynamics and their similarity to analogous activity patterns
evoked by natural visual stimulation via retina. We show that light activation of pyramidal cells in
layer 2/3 at resolution of greater than 100 µm (in cortical coordinates), and at light intensities below
1016 photons/s/cm2, is sufficient to evoke cortical activity patterns close to those evoked by natural
stimulation via retina. While here we only examine the canonical grating stimuli, in the discussion
we provide a straightforward roadmap towards expanding this stimulation strategy to arbitrary spatio-
temporal visual inputs.

To our best knowledge, this study represents the first quantitative examination of light based stim-
ulation in functional model of cortical circuitry, and offers numerous predictions that can guide future
experiments. Furthermore, we present the first V1 light stimulation protocol design that takes into
consideration cortical dynamics under external stimulation, and thus provides a ready to use testbed
for the upcoming in-vivo experiments of optogenetic prosthetic systems. Finally, the presented simu-
lation framework is to our best knowledge the only currently available tool for simulation of the full
cortico-prosthetic system, and can thus stimulate development int the sensory prosthetic field.
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2 Materials and Methods

This manuscript relies on five key simulation components: (1) a stimulation strategy that translates
a class of visual stimuli into driving signals for a MLEE, (2) a model of the MLEE, (3) a model of
light propagation through cortical tissue, (4) a model of light illumination dependent channelrhodopsin
(ChR) dynamics in transfected cells, and (5) a detailed large-scale model of primary visual cortex (whose
parametrization and justification were developed elsewhere [10]). As illustrated in figure 1, the chaining
of these five components allows us to simulate the effects of light stimulation in a ChR transfected primary
visual cortex given a specific stimulation strategy. I.e. the visual stimulus is translated by the stimulation
strategy into a set of signals determining the level of activation of individual light emitting elements. The
light propagation model then determines the exact amount of light impinging onto individual neurons
located in the simulated volume of cortical tissue given the pattern of activation of the MLEE. This in
turn allows us to simulate the ChR dynamics for each cortical neuron given the amount of light it receives
and thus determine the amount of current that it is injected with due to the light stimulation. Which
finally allows us to simulate the behavior of the considered population of V1 neurons when embedded in
the detailed, functional specific circuitry of the primary visual cortex.

Figure 1: The schematic of the virtual cortical prosthesis experiment. (A) the stimulation strategy that
translates a class of visual stimuli into driving signals for a MLEE, (B) a model of the MLEE (C) a model
of light propagation through cortical tissue taking into consideration the absorption and diffraction of
the light as it travels through the neural substrate. (D) a model of channelrhodopsin (ChR) dynamics
in transfected cells that transforms a temporal trace of light impinging onto a given cell into a current
that is injected into the cell due to the activation of ChR channels, and (E) a detailed large-scale spiking
conductance based neural model of 5mm2 of primary visual cortex. Using these 5 simulation elements,
we will be able to simulate the activation of cortical population to a specific set of visual stimuli. This
in turn allows us to evaluate specific stimulation strategies by comparing the cortical activation patterns
elicited by them to activation patterns due to equivalent stimulation via intact vision (through eye).

This work has been based on our recent detailed large-scale model of primary visual cortex [10]. The
model has been implemented using the Mozaik neural simulation workflow framework [8] and the Arkheia
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tool [7]. Here, we have extended the Mozaik framework with three additional components: the model of
MLEE, the model of light propagation in cortical tissue, and a model of channelrhodopsin dynamics [65].
The NEST simulator [36] was used as the back-end for all simulations described in this paper. In the
reminder of this section we provide a detailed description of the new components, and a more succinct
description of the cortical model, referring reader to the previous literature for details.

2.1 The model of light emitting elements and light propagation in cortical
tissue

We assume a regular 3.5× 3.5mm lattice of circularly shaped light emitting elements of identical radius
that is placed along the cortical surface. In this study we assume the pitch of the lattice to be 10µm
and the individual elements having circular shape. This configuration corresponds well with for example
a LED or DMD matrix commonly used in optogenetic stimulation. To determine the amount of light
impinging onto individual neurons in the cortical volume situated under the matrix we performed two
steps of simulation.

First we have determined the propagation of light through cortical tissue from a single light emitting
element. We have performed the simulations using the ’Human Brain Grey Matter’ model implemented
in the LightTools software, assuming 590 nm wavelength of the emitted light. The scattering and
absorption properties of the human brain tissue are modeled using the Henyey-Greenstein model [41].
The two key parameters of this model are the anisotropy factor g and mean free path (MFP) which are
both dependent on wavelength. Considering the 590 nm wavelength we have set the two parameters
to 0.87 and 0.07 mm based on Jacques et al.[41]. It should be noted that the accuracy and current
knowledge of biological optical properties of cortical matter is limited and both the inter and within
sample variability has been reported to be as much as 30%.

These simulations supply us with a 2D table T (d, l) capturing the light flux (photons/s/cm2) in
cortical tissue relative to the value at the surface of the light emitting element as a function of depth d
and the lateral distance (along the cortical surface) from the light source l. The light flux in tissue at a
given level of activation of the light emitting element can be calculated as a simple multiplication of T
by the light flux at the surface of the element. The light flux at the location of the given neuron n in
the cortical volume is then calculated as a linear sum of the contributions from the individual elements
in the matrix:

γn =
∑
e

βeT (dn, ‖ce − cn‖) (1)

where γn is the resulting light flux at neuron n, βe is the light flux at the surface of the light element e,
and ce and cn are the lateral coordinates along the cortical surface of element e and neuron n respectively.

2.2 The channelrhodopsin model

We have used the model of ChrimsonR channel dynamics recently implemented by Sabatier et al.[65].
The electro-chemical behavior of the ChrimsonR protein is modeled using a Markov kinetic model [31].
In this model, a number of states (five in our case) represent the different conformations that the protein
can take. For each pair of states, there can be a directed transition from one state to the other if
there exist a chemical switch from the first state to the second. A time constant is associated with
each transition. A transition can either be thermal or photo-induced. Thermal transitions have fixed
time constants, while photo-induced transition’s time constants vary with the current value of the light
stimulus. A photo-induced reaction cannot occur in the absence of light.

Mathematically, the values of the transitions time constants along with the light stimulus describe
the linear differential system governing the evolution of the proportion of channels (or equivalently the
probability for a single channel) in each state. The relevant figure, the conductance of the population
of channels in a single neuron, is then derived from the number of channels in the open states and the
conductances of these states.

The parameters of this model have been fitted by Sabatier et al.[65] to light (590nm wavelength)
stimulation experiments in ChrimsonR-expressing HEK293 cells, and here we use the parameter values
reported in that study.
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2.3 The model of primary visual cortex

This model is derived from model presented in Antolik et al.[10]. A brief summary of the model follows.
We refer the reader to Antolik et al.[10] for full details. The cortical model corresponds to layers 4
and 2/3 of a 3.5×3.5 mm patch of cat primary visual cortex, and thus given the magnification factor
of 1 at 5 degrees of visual field eccentricity [73], covers roughly 3.5×3.5 degrees of visual field. It
contains 24200 neurons and ∼ 19 million synapses. This represents a significant down-sampling (∼10%)
of the actual density of neurons present in the corresponding portion of cat cortex [14] and has been
chosen to make the simulations computationally feasible. The neurons are distributed in equal quantities
between the simulated layer 4 and layer 2/3, which is consistent with anatomical findings by Beaulieu
& Colonnier [14] showing that in cat primary visual cortex approximately the same number of neurons
inhabits these two cortical layers. Each simulated cortical layer contains one population of excitatory
neurons (corresponding to spiny stellate neurons in Layer 4 and pyramidal neurons in Layer 2/3) and
one population of inhibitory neurons (representing all subtypes of inhibitory interneurons) in the ratio
4:1 [15, 50].

We model both the feed-forward and recurrent V1 pathways; however, overall the model architecture
is dominated by the intra-cortical connectivity, while thalamocortical synapses constitute less then 10%
of the synaptic input to Layer 4 cells (see section 2.3.3), in line with experimental evidence [26]. The
thalamic input reaches both excitatory and inhibitory neurons in Layer 4 (see Figure 2EF). In both
cortical layers we implement short-range lateral connectivity between both excitatory and inhibitory
neurons, and additionally in Layer 2/3 we also model long range excitatory connections onto other
excitatory and inhibitory neurons [69, 22, 5] (see Figure 2AB). Layer 4 excitatory neurons send narrow
projections to Layer 2/3 neurons (see Figure 2E). The model omits the infra-granular layer 5 and 6 as
well as the cortical feedback to perigeniculate nucleus (PGN) and lateral geniculate nucleus (LGN).

2.3.1 Neuron model

All neurons were modeled as the adaptive exponential integrate-and-fire units (eq 2), whereby the time
course of the membrane potential V (t) is governed by:

τm
dV

dt
= −(V − Vrest) +

∆T

Rm
exp(

V − VT
∆T

) +Rmgexc(Eexc − V ) +Rmginh(Einh − V )− ω

τω
dω

dt
= α(V − Vrest)− ω

(2)

where gexc and ginh are the incoming excitatory and inhibitory synaptic conductances. Spikes are regis-
tered when the membrane potential crosses the 0 mV threshold, at which time the membrane potential
is set to the reset value Vr, and the spike-triggered adaptation mechanism is activated:

if V > 0 mV

{
V → Vr

ω → ω + β
(3)

Each spike is followed by a refractory period during which the membrane potential is held at Vr. All
model parameters are set based on intra-cellular recordings of V1 neurons in Cat [53], and their values
are listed in our previous manuscript [10].

2.3.2 Thalamo-cortical model pathway

All neurons in the model Layer 4 receive connections from the model LGN (see Section 2.4). For each
neuron, the spatial pattern of thalamo-cortical connectivity was determined by a Gabor distribution,
inducing the elementary RF properties in Layer 4 neurons [72] (see Figure 2EF).

For individual neurons the orientation θ, phase ψ, size σ, frequency λ and aspect ratio γ of the
Gabor distribution were selected as follows. To induce functional organization in the model, we used an
existing model of stimulus dependent orientation map development [6] that utilizes Hebbian learning to
compute stabilized link map that conditions an orientation map. Such pre-computed orientation map,
corresponding to the 3.5× 3.5 mm of simulated cortical area, was overlaid onto the modeled cortical
surface, thereby assigning each neuron an orientation preference θ. The phase ψ of the Gabor distribution
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Figure 2: The model architecture. (A-B) Layer 2/3 and Layer 4 lateral connectivity. All cortical types
make local connections within their layer. Layer 2/3 excitatory neurons also make long-range functionally
specific connections. For the sake of clarity A,B do not show the functional specificity of local connections
and connection ranges are not to scale. (C) Extent of modeled visual field and example of receptive fields
(RFs) of one ON and one OFF-center LGN relay neuron. As indicated, the model is retinotopically
organized. The extent of the modeled visual field is larger than the corresponding visuotopic area of
modeled cortex in order to prevent clipping of LGN RFs. (D) Local connectivity scheme in Layer 2/3:
connections are orientation- but not phase-specific, leading to predominantly Complex cell type RFs.
Both neuron types receive narrow connections from Layer 4 excitatory neurons. (E) Local connectivity
in Layer 4 follows a push-pull organization. (F) Afferent RFs of Layer 4 neurons are formed by sampling
synapses from a probability distribution defined by a Gabor function overlaid on the ON and OFF LGN
sheets, where positive parts of the Gabor function are overlaid on ON and negative on OFF-center sheets.
The ON regions of RFs are shown in white, OFF regions in black.

6

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2019. ; https://doi.org/10.1101/610378doi: bioRxiv preprint 

https://doi.org/10.1101/610378
http://creativecommons.org/licenses/by/4.0/


was asigned randomly, in line with the experimental evidence suggesting no clustering of spatial phase
[77] in cat V1. For the sake of simplicity, the remaining parameters were set to constant values, matching
the average of measurements in cat V1 RFs located in the para-foveal area [43], specifically the size σ
was set to 0.5 degrees of visual field, the spatial frequency λ to 0.8 Hz and the aspect ratio γ to 1.7 [60].

2.3.3 Cortico-cortical connectivity

The number of synaptic inputs per single excitatory neuron has been set to 800, which is about 25% of
the actual number of synapses neurons in V1 receive on average [13]. This lower fraction has been chosen
to exclude distal synapses that are not simulated in this model and due to reliability issues of synaptic
transmission. For detailed justification please refer to Antolik et al.[10]. Inhibitory neurons received 35%
fewer synapses than excitatory neurons to account for their smaller size, but otherwise synapses were
formed proportionally to the two cell type densities. 30% of synapses from Layer 4 cells were formed on
the Layer 2/3 neurons. In addition layer 4 cells received 80 additional thalamo-cortical synapses [26].
The synapses were drawn probabilistically with replacement (with functional and geometrical biases
described bellow).

The geometry of the cortico-cortical connectivity was determined based on two main principles: the
connection probability falls off with increasing cortical distance between neurons [20, 70, 22] (see Figure
2AB), and connections have a functionally specific bias, specifically they preferentially connect neurons
with similar functional properties [22, 44]. The two principles were each expressed as a connection-
probability density function, then multiplied and re-normalized to obtain the final connection probability
profiles, from which the actual cortico-cortical synapses were drawn. The following two sections describe
how the two probability density profiles of connectivity were obtained. Finally, apart from the connec-
tivity directly derived from experimental data, we have also considered a direct feedback pathway from
layer 2/3 to layer 4. Such direct connections from layer 4 to layer 2/3 are rare [16], however a strong
feedback from layer 2/3 reaching layer 4 via layers 5 and 6 exists [16].

2.3.4 Spatial extent of local intra-cortical connectivity

The exact parameters of the spatial extent of the model local connectivity, with the exception of excitatory
lateral connections in Layer 2/3, were established based on a re-analysis of data from cat published in
Stepanyants et al.[70]. For the exact description of this analysis and resulting parameter values please
refer to Antolik et al.[10]. The Stepanyants et al.[70] study reflects only the local connectivity, due to it
depending on neural reconstruction in slices which cut off distal dendrites and axons further than 500µm
from the cell body. In cat Layer 2/3, unlike in Layer 4, excitatory neurons send long-range axons up to
several millimetres away, synapsing onto other excitatory and inhibitory cells [5, 22]. To account for this
long-range connectivity in Layer 2/3 we follow the observation by Buzás et al.[22], that the density of
boutons across the cortical surface originating from the lateral connectivity of a small local population of
stained Layer 2/3 neurons can be well approximated by the sum of two Gaussian distributions, one short
range and isotropic and one long-range and orientation specific (see Section 2.3.5). Thus we model the
lateral distribution of the Layer 2/3 excitatory connections as G(σs) + αG(σl), where G is a zero mean
normal distribution, σs = 270µm and σl = 1000µm are the short and long-range space constants chosen
in-line with Buzás et al.[22], and α = 1 is the ratio between the short-range and long-range components.

2.3.5 Functionally specific connectivity

Within Layer 4 we assume push-pull connectivity [72] (see Figure 2E). For each pair of Layer 4 neurons
the correlation c between their afferent RFs was calculated. The connectivity likelihood for a given pair

of neurons is given by 1
σ
√

2π
e−(c−µ)2/2σ2

where σ = 0.3 and µ is 1 if the pre-synaptic neuron is excitatory

or -1 if inhibitory.
In cat cortex excitatory neurons send long-range connections spanning up to 6 mm along the cortical

distance to both excitatory and inhibitory neurons, preferentially targeting those with similar orientation
preference [22]. To reflect this connectivity in the model we have defined the connectivity likelihood

between pairs of neurons in Layer 2/3 as 1
σ
√

2π
e−(∆o)2/2σ2

where the ∆o is the difference between the

orientation preference of the two neurons, and σ was set to 0.3. Please refer to Antolik et al.[10] for
detailed justification of the proposed connectivity scheme.
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2.3.6 Synapses

Synaptic inputs were modeled as transient conductance changes, with exponential decay with time-
constant τe = 2.5 ms for excitatory synapses and τi = 6.0 ms for inhibitory synapses. We have set the
unitary synaptic weight of excitatory synapses onto inhibitory neurons to 2.1 nS, while all remaining
synapses in the model were set to 1.4 nS. We have also modeled synaptic depression for thalamo-cortical,
and excitatory cortico-cortical synapses [1] using the model of Markram et al.[51], while we do not
model short term plasticity for inhibitory synapses as it is not well studied. For the thalamo-cortical
synapses we assume parameters corresponding to weak depression similar to Banitt et al.and Kremkow
et al.[12, 46] (U=0.5,τrec = 120,τpsc = 2.5 and τfac = 21). For the cortico-cortical excitatory synapses
we have assumed stronger depression (U=0.5, τrec = 440 ms, τpsc = 2.5 ms and τfac = 0 ms), in line with
Markram et al.[51].

2.3.7 Delays

We model two types of delays in the model circuitry. First are the delays due to the distance dependent
propagation that are in the order of several tens of ms. These delays are important for lateral integration
of information across multiple cortical columns. To reflect this, for all intra-cortical connectivity a
distance-dependent delay with propagation constant of 0.3 ms−1 [19, 35, 42] was used, which corresponds
to the slow propagation of action potentials along the intra-V1 (lateral) un-myelinated axons. The
delays in the feed-forward thalamo-cortical pathway are drawn from a uniform distribution within the
(1.4,2.4) ms−1 range. Second, Ohana et al.[56] have recently shown that delays of synaptic transmission
in cat visual cortex are dependent on both pre- and post-synaptic neural type, with the notable feature of
slow excitatory to excitatory and fast excitatory to inhibitory transmission. Distance-dependent axonal
propagation delay is unlikely to explain these results as these experiments were performed in nearby
neurons [56]. These pair-specific synaptic integration delays are in the order of only a few ms, but are
important for local integration (within the same column) and for the precise timing of spike control
by E/I interaction. Thus, as suggested by Ohana et al., we have included a constant additive factor
in all synaptic delays, specifically 1.4 ms for excitatory to excitatory synapses, 0.5 ms for excitatory to
inhibitory synapses, 1.0 ms for inhibitory to excitatory synapses and 1.4 ms for inhibitory to inhibitory
synapses, in line with the quantitative observations by Ohana et al.[56]. We observed that the addition of
this neuron-type-dependent delay factor improved the stability of the modeled cortical neural networks,
reducing synchronous events during spontaneous activity. We hypothesized that this is due to the ability
of inhibition to respond faster to any transient increase in activity in the network due to the shorter
excitatory to inhibitory delay.

2.4 Input model

The input model described below corresponds to the whole retino-thalamic pathway, where, for sake of
simplification, retina and thalamus are treated as a single layer integration stage. Our cortical model
corresponds to roughly 3.5× 3.5◦ of visual field (Figure 2CF). To accommodate the full extents of RFs
of neurons at the edges of the model, the LGN model corresponds to 4× 4◦ of visual field. In the same
manner, to accommodate the full extent of RFs of thalamic neurons the overall visual field from which
the thalamic model receives input corresponds to 10× 10◦.

We do not explicitly model the retinal circuitry and use the widely-used center-surround model of
receptive fields (RFs) to simulate the responses of the LGN neurons (Figure 2C). The centers of both
ON and OFF LGN neurons RFs are uniformly randomly distributed in the visual space, with density of
100 neurons per square degree. Each LGN neuron has a spatiotemporal receptive field, with a difference-
of-Gaussians spatial profile and a bi-phasic temporal profile defined by a difference-of-Gamma-functions.
Due to the relatively small region of visual space our model covers, we do not model the systematic
changes in RF parameters with foveal eccentricity (nor, for the sake of simplicity, the natural cell-to-cell
variance) and thus assume that all ON and OFF LGN neurons have identical parameters. The exact
spatial and temporal parameters have been adopted from Allen and Freeman [4].

To obtain the spiking output of a given LGN neuron, the visual stimulus sampled into 7ms frames,
was convolved with its spatiotemporal receptive field. In addition, saturation of the LGN responses with
respect to local contrast and luminance is modeled [59, 18], please refer to Antolik et al.for details [10].
The resulting temporal traces are then summed and injected into integrate-and-fire neurons as a current,

8

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2019. ; https://doi.org/10.1101/610378doi: bioRxiv preprint 

https://doi.org/10.1101/610378
http://creativecommons.org/licenses/by/4.0/


inducing stimulus dependent spiking responses. In addition to the stimulus-dependent drive, neurons are
also injected with white noise current. The magnitude and variance of this noise is such that neurons
fire ∼ 10 spikes/s in the no stimulus condition [72]. This artificially elicited spontaneous discharge, that
is calibrated to reproduce the experimentally observed spontaneous rates, corresponds to the combined
effects of the dark discharge of the retina and any other potential intrinsic mechanism of spontaneous
activity generation in the thalamus.

2.5 The in-silico experimental protocols

Throughout this study we employ orientation tuning protocol, that uses the drifting sinusoidal grating
stimulus of varying orientation to probe the canonical functional property of V1 neurons: the orientation
preference and selectivity. We administer this protocol in two variants, first that simulates the stimulation
of the cortex via retina (normal vision condition) and second that simulates the replication of the same
stimulation protocol via light activation (the prosthetic vision condition). The orientation tuning protocol
consists of series of sinusoidal grating stimuli that are presented at 8 different orientations in equal steps
between 0 and 180 design. Each grating was shown 10times for 600 ms. The spatial and temporal
frequency of the RFs of the modeled LGN neurons (see Section 2.3.2) and of the Gabor distribution
template from which thalamo-cortical synapses were sampled were identical. An important consequence
of this simplification is that it allowed us to efficiently execute protocols requiring drifting sinusoidal
gratings. By employing a full-field stimulus with spatial frequency matching that of the Gabor template
(0.8 Hz) and drifting at 2 Hz, we were in parallel stimulating all cortical neurons with a stimulus with
optimal spatial and temporal frequency.

Section 3.1 describes light stimulation protocol for evocation of cortical activity corresponding to
visual stimulation by specific full-field sinusoidal grating stimulus. Given this, the prosthetic vision
variant of the orientation tuning protocol followed the same series of corresponding stimuli as described
in previous paragraph, rendering the evoked responses directly comparable between the two tuning
protocol variants.

In order to assess orientation tuning of the responses resulting from the tuning protocol described
above (in both natural vision and prosthetic conditions), we followed [55] and calculated the half width
at half height (HWHH) measured by fitting the orientation tuning curves with a Gaussian function [3]:

R(φ) = β + α exp(
φ− φpref

2σ2
) (4)

where R is the spiking response of the given neuron to a sinusoidal grating with orientation φ, φpref is
the preferred orientation of the given neutron, σ is the width of the tuning, β is the baseline activity and
α a scale factor. Low responding neurons (less then 1 spike/s at optimal orientation) were excluded from
the analysis, as reliable curve fitting was not possible with the amount of recorded data. Furthermore,
neurons (< 10%), for which reliable fit of Gaussian curve was not possible (MSE > 30% of the tuning
curve variance) were also excluded from this analysis. HWHH was then calculated as

√
2ln2σ.

2.6 Data analysis

We have used the Naka-Rushton function to fit the contrast-response (figure 6ABC) and light intensity-
response (figure 6E) relationships:

R(x) = Rmax
xn

xn +Kn
(5)

where R(x) is the response at either contrast level x or stimulation light intensity x, Rmax is the
asymptotic maximum response amplitude, K is the semi-saturation constant, and n controls the slope.

In Figure 5D we fit the relationship between the photon flux at the cell body and the response of the
cell with a sigmoid:

R(F ) = S
1

1 + e−G(F−T )
(6)

R(F ) is the response at photon flux F , S is the scaler, G is the gain, and T is the threshold parameter.
The threshold T parameter of the sigmoid function doesn’t reflect well the threshold of the stimulus-
response relationship that is typically derived in experimental setting as the point where the response
function departs significantly from the spontaneous rate. To obtain a more comparable quantity we have
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calculated what we will refer to as effective threshold (eT), which is the photon-flux where the fitting
sigmoid reaches 0.05% of its asymptotic maximum.

3 Results

The central goal of this study is to use computational methods to compare the dynamics of population
of layer 2/3 neurons within a local volume of primary visual cortex under natural visual stimulation
condition against the condition where the cortical representation of the same stimulus are approximated
via opto-genetically mediated light stimulation using matrix of light emitting elements. In this study we
will restrict ourselves to the experimentally most extensively characterized stimulus class: the drifting
grating stimuli. We will perform a series of virtual experiments in which we will explore several pa-
rameters of the grating stimulation protocol, gradually improving the match between visually and light
induced cortical responses.

3.1 The stimulation strategy

Because the drifting grating family of stimuli are effective drivers of activity in primary visual cortex,
while being mathematically highly tractable, they became the dominant visual stimulation method for
studying V1. Consequently, the behavior of V1 neurons with respect to the changes of the parameters
of the grating stimulus (such as orientation, contrast, frequency, etc.) became probably the most well
characterized aspect of cortical visual processing [39, 64, 29]. Here we will restrict our attention to this
stimulus class, designing a light stimulation strategy that can elicit cortical responses reminiscent of those
evoked by drifting gratings. However, using insights from the presented work, in the Discussion we offer
an outline of a straightforward method to extended this stimulation strategy to arbitrary spatio-temporal
stimulus.

Figure 3: Opto-stimulation protocol for grating stimulus. (A) The orientation preference of neurons
and assigned orientation preference to individual light emitting elements (top row); The driving signal
to individual light-emitting elements determined by the proposed stimulation protocol and the resulting
depolarization in cortical tissue (bottom row). (B) The light output of an example light-emitting element
(green) and the resulting light-mediated inward current to an example neuron located at the same location
(blue).

Majority of neurons in V1 are selective to the orientation of the stimulus [24]. With respect to phase
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of the grating, two functional cell classes have been identified [37]. Neurons in the first class respond
linearly whereby only a specific phase of the grating elicits their spiking response - the so called simple
cells. Neurons in the second class respond non-linearly, firing spikes to any phase of the grating, and thus
they respond by a tonic elevation of their membrane potential and spike response to a drifting grating
that is superimposed over their receptive field - the so called complex cells. These two functional cell
types are not distributed randomly throughout the cortical layers, but simple cells occupy predominantly
layer 4 while complex cells form the majority of cells in layer 2/3 [38, 64]. In the horizontal plane along
cortical surface, the functional properties of neurons also follow specific organization, whereby nearby
cells tend to be selective to similar orientation of the stimulus [40]. When viewed from the surface of
the cortex, the orientation preference of cells thus forms the signature orientation maps with smoothly
varying orientation preferences regularly interrupted by local discontinuities, so called pinwheels [25].

Due to the absorption and dispersion of the light as it travels through cortical tissue, the intensity
and resolution (contrast) of the pattern of light induced by the array of light emitting sources degrades
with increasing cortical depth (see section 2.1). Layer 2/3 being the primary layer that sends axons to
higher cortical areas (i.e. the cortical output layer), while at the same time being close to its surface is
thus the ideal target for optogenetic based vision restoration intervention.

Taking into consideration all the above anatomical, functional and physical constraints, we propose
following stimulation strategy:

1. Assuming the knowledge of orientation preference map in the targeted cortical volume, assign orien-
tation preference ORM to each light emitting element M located at the cortical surface coordinates
CM based on the circular distance weighted average of orientation preferences of neurons centered
at coordinates CM (figure 3A).

2. For a full-field sinusoidal grating of orientation ρ, for each light emitting element M calculate the
orientation dependent activation index ψρ,M as ψρ,M = f(δ(ρ, CM )), where δ is circular distance
and f is a function of distance. In this study we will set f to a Gaussian function with zero mean
and σ = 0.5 variance (except in section 3.3 where σ is varied; figure 3A).

3. Set the signal driving light emitting element M as a step function such that the resulting light
output at its surface (photon flux measured in photons/s/cm2) is θM = SM (τs, τe, φ), where τs is
the start of the step, and should be set to the delay of layer 2/3 activation in V1 by grating stimulus
under intact vision condition, and the τe = τs + d is the end of the step, where d is the duration
of the grating stimulus (figure 3B). The φ = Lmaxψρ,M is the magnitude of the step, where Lmax
is an overall stimulation scaling factor setting the maximum light emission at the surface of the
MLEE (i.e. the Lmax level of photon flux will be achieved only at the surface of the light emitting
elements that perfectly match the orientation of the to be induced grating stimulus).

The Lmax is an arbitrary scaling factor that has to be determined experimentally to achieve desired
level of activation, and absorbs such scaling unknowns as the rate of ChR transfection of the given
cortical volume, or the intensity of light emission of the matrix element depending on the driving signal.
Importantly, it also takes into account stimulus dependent scaling. In the case of sinusoidal gratings, it
is the contrast of the stimulus that sets the overall magnitude of membrane potential depolarization, and
hence the tonic level of spiking response. In section 3.3 we will offer a simple methods how to determine
the Lmax parameter in a stimulus contrast dependent manner. Finally note that in principle the Lmax
also depends on other properties of the grating stimulus to which V1 neurons are selective, such as its
spatial or temporal frequency, but for the sake of simplicity in this study we will assume that the other
grating parameters are kept at the known preferred values at the given retinotopic eccentricity of the
targeted V1 volume, and the Lmax is being determined with respect to these fixed values.

3.2 In-silico opto-stimulation of primary visual cortex.

To demonstrate the integrity of the simulation platform and to gain basic intuition on the elementary
influences of light stimulation on the cortical substrate, we will first examine a version of the model in
which all connections between the neurons were disabled. In other words, all cortical model neurons
behave independently of the other neurons, and, because we do not assume any external source of noise
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Figure 4: Light stimulation in cortical model. (A) The membrane potential of a randomly selected cell at
different levels of intensity of light impinging on the cell (the color coding corresponds to panel B). The
light stimulation was a step function, starting at 100ms and ending at 800ms.(B) The inward current
elicited by the light stimulation of different intensity (the legend shows the maximum photon-flux at the
surface of the MLEE) in the same cell as in A. (C) The spiking response of population of cells recorded
in central region of the model in response to light stimulation. The cells were ordered according to
their cortical depth increasing from top to bottom. (D) The relationship between the photon flux at the
position of neurons in the cortex and their firing rate. (E) The relationship between the photon flux at
the position of neurons in the cortex and the resulting inward current. (F) The relationship between
the depth of neurons in the model cortical substrate, and their response. (G) The relationship between
orientation preference of neurons (abscissa) and their firing-rate response (ordinate) to light stimulation
emulating sinusoidal grating of π2 orientation. The stimulation followed the strategy presented in section
3.1. With the exception of (G) only neurons whose orientation preference matched with the orientation
of the light-stimulation emulated grating stimulus were considered.
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in the model, their membrane potential is fully determined by only two factors: (i) their position in the
cortical volume and (ii) the induced pattern of light.

We have stimulated such ’disconnected’ model with a light stimulation pattern designed to approxi-
mate visual stimulation with drifting sinusoidal grating of horizontal orientation and optimal spatial and
temporal frequency, as described in previous section. In figure 4 we show responses of model neurons
to such stimulation. With the exception of panel G, only neurons with preference for horizontal orien-
tation, matching the orientation of stimulating grating, are analyzed. Figure 4A shows the evolution of
membrane potential of an example layer 2/3 model cell in response to step light stimulation pulse of
different intensity. The inward current to the same cell due to the same light intensities are shown in
figure 4B (color-matched traces between A and B). The traces in Fig4B bare the characteristics of the
ChR dynamics (see Methods), which are further transformed by the membrane potential dynamics as
shown in figure 4A. As expected, increased intensity of light stimulation leads to increased inward current
due to activation of ChR (Fig4E), which in turn leads to increasingly depolarized membrane-potential
and once the action potential threshold is crossed, light intensity is correlated with firing rate (figure
4D). Another way to view this is in figure 4C, which shows spike raster plot for a population of randomly
selected model neurons, one line per neuron, which were ordered by the depth of their location in the
cortex. We can see, that as the cortical depth of the neuron increases, their response rate decreases,
as expected due to the attenuation of incoming light which is the result of absorption and dispersion
of light as it travels through the neural substrate. This depth-dependence of firing rate is more clearly
visualized in figure 4F. In figure 4C we can also notice a slight increase in onset time of the response
with increasing depth, which is due to the reduced driving force causing slower and thus longer evolution
from resting to threshold membrane potential that induces the first action potential. Finally, figure 4G
shows the photon flux as a function of the orientation of the neuron, clearly demonstrating the desired
orientation dependence of stimulation. We will examine this orientation tuning more closely in section
4. Finally, we would like to note, that due to the absence of any ongoing noise in the decoupled model
all the variations in figure 4F and G are due to the variations of neuron’s depth or lateral displacement
of neurons with respect to the orientation map features (see Methods).

Having verified the sanity of the basic simulation properties in the decoupled model, we can proceed
to explore the response properties of cells under the dynamics induced by the fully connected cortical
circuit. In the remainder of this study we will consider 4 basic conditions comparison of which will
facilitate understanding of the simulation outcomes: (i) the model stimulated with the gratings stimulus
via retino-thalamic pathway (i.e. the natural vision condition), (ii) an opoto-genetically stimulated
decoupled model, (iii) an opoto-genetically stimulated fully connected model where only excitatory cells
express Channelrhodhopsin and (iv) an opoto-genetically stimulated fully connected model where both
excitatory and inhibitory neurons express Channelrhodhopsin.

Figure 5 shows the response of an example neuron to 600ms presentation of horizontal sinusoidal
grating or its opto-genetically induced equivalent. In the natural vision condition the grating is presented
at 100% contrast, while for all the opto-genetically stimulated conditions the same arbitrary magnitude of
stimulation (Lmax = 9.2× 1015 photons/s/cm2) was selected such that all conditions induce sufficiently
elevated firing response (the problem of matching the scale of opto-genetic activation with stimulus
contrast will be addressed in the next section). As shown in figure 5, neurons in all conditions respond to
the stimulation by a tonic elevation of the membrane potential and spiking response for the duration of
the stimulus, but beyond these basic characteristic number of clear differences are present. The membrane
potential and conductances in the natural vision condition exhibit clear transient on- and off-set dynamics
due to the thalamic and cortical processing (see Methods), in line with experimental evidence [66,
49, 53]. Since the proposed stimulation protocol does not explicitly address these temporal response
characteristics and because under normal vision they arise largely due to feed-forward mechanisms [52]
which aren’t engaged during cortical stimulation condition, it is not surprising that the optogenetical
stimulation conditions lack them. Next, one can observe difference in the overall level of membrane
potential depolarization, its variance as well as the absolute magnitude and ratio of the excitatory and
inhibitory conductances, which will be examined in detail in section 5.

Last but not least, we can notice major differences in the overall firing response. Among the opto-
genetically stimulated conditions the reasons for these differences are straightforward: in the decoupled
condition no inhibition and source of noise are present and the condition thus exhibits steep illumination-
spiking curve (figure 5D), that is offset to the right due to the difference between resting membrane
potential and spiking threshold that has to be crossed by light induced depolarization before any spikes
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Figure 5: Example single-neuron dynamics in the 4 experimental conditions. The neurons respond to 10
trials of stimulation with drifting sinusoidal grating (or its emulation via cortical proshesis), that starts at
100ms and stops at 800ms. From top to bottom, intact system with stimulation via retina, cortical light
stimulation with all model connectivity disabled, cortical light stimulation where only excitatory neurons
respond to light, and cortical light stimulation where both excitatory and inhibitory neurons respond to
light. (A) spike raster plot. (B) Excitatory (red) and inhibitory (blue) conductances. (C) Membrane
potential. (D) The relationship between photon-flux and the spiking response of neurons in the given
condition. In B and C light thin lines are single-trials, thick saturated lines are mean across trials. In
all cortical stimulation conditions, the stimulation scaler was Lmax = 9.2× 1015 photons/s/cm2.
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are fired (G=2.62 , eT=3.00 ×1015 photons/s/cm2, see Methods 2.6). Even though inhibition is present
in the coupled condition with only excitatory neurons activated by light, steep activation curve reaching
higher values is observed and the intensity threshold required to induce firing becomes lower (G=1.82 ,
eT=0.51 ×1015 photons/s/cm2, see Methods 2.6). This difference can be explained by the stochasticity
of the membrane potential due to the ongoing activity in the coupled model. Due to the variability of
the membrane potential even small extra light-induced depolarization will generate extra spikes, shifting
the illumination-spiking curve to the left, and thus smoothing the transition between no-response and
activated intervals. Furthermore, the stochasticity of the membrane potential means that the same levels
of mean depolarization as in the decoupled condition will result in higher response rates in the coupled
condition. Finally, in the third opto-genetic condition with both excitatory and inhibitory neurons
activated by light, we can observe lower gain and higher threshold of the illumination-spiking curve
(G=1.02 , eT=1.71 ×1015 photons/s/cm2, see Methods 2.6), due to the additional external inhibitory
drive shifting the E/I ratio in favor of the inhibition.

These differences in overall response magnitudes across conditions pose two problems: (i) for the
purpose of effective prosthetic stimulation protocol we need to be able to control the magnitude of
response and match it to physiological levels expected for the given visual stimulus, and (ii) for the
purpose of this study it challenges our ability of doing rigorous comparisons across conditions as many
neural signal measures are rate dependent. We will address these issues in the following section, but before
we continue, let us point out that these basic observations of single-cell model responses already have
important implications for cortical optogenetic stimulation. First, they demonstrate that considering the
neural network dynamics resulting from the intra-cortical connectivity is essential for drawing relevant
conclusion that can drive future experiment. Second, extrapolating optogenetic single cell results whether
from modeling, cell culture or slice experiments that all largely lack ongoing activity and network effects
can be problematic. In particular, these observations suggest, that optogenetic experiments in slices or
cultures will over-estimate the minimum amount of light necessary to evoke spike-response in in-vivo
conditions (as long as other experimental parameters are well matched between the in-vivo and in-vitro
conditions). In our hands, this overestimation is about 6-fold (eT=3.0 (uncoupled condition) vs eT=0.51
(coupled condition selective to excitatory cells)). We also predict that the excitatory to inhibitory cell
type specificity of ChR transfection will have major impact on the intensity of light required to induce
desired neural response levels, and will effect the operating regime of the network.

3.3 Calibration of contrast response curves

In complex cells of primary visual cortex, stimulation with drifting sinusoidal grating induces steady
depolarization of membrane potential leading to a tonic increase in spiking of the cell. The magnitude of
the depolarization and in turn the neuron’s firing rate grows with the contrast of the stimulus. Because
under the light stimulation the membrane potential depolarization is proportional to the intensity of
the incoming light, in the proposed stimulation paradigm the analogue of the contrast parameter is
the light intensity scaler parameter Lmax (Methods 3.1). However, both the relationship between the
contrast and response rate, and the light intensity and response rate is non-linear (see figure 4). In
what follows we quantify these input intensity-response relationships in the model, and demonstrate a
scheme for mapping contrast of a grating stimulus onto light intensity that induces matching magnitude
of response. This allows us in the reminder of the manuscript to perform comparisons between visual
and light based stimulation that are matched for the overall response magnitude.

Figure 6A-C shows light intensity to response curves of example model layer 2/3 cells and correspond-
ing averages across the measured population for the 3 examined optogenetic conditions. As expected,
in the visual stimulation condition (figure 6E black line) the contrast-response curve is well fitted with
the so called Naka-Rushton function (see methods) as demonstrated in number of in-vivo studies [34].
Conveniently, the Naka-Rushton function also fits well the relationship between the light intensity and
evoked firing rates in the 3 optogenetic stimulation conditions (figure 6A,B,C). Just as in-vivo neurons,
our model neurons exhibit considerable variability in the fitted parameters of the Naka-Rushton function
from cell to cell. Furthermore, in the optogenetic conditions, there are systematic changes with respect
to depth due to the light absorption and dispersion in cortical substrate. Due to the various constraints
of the optical cortical prosthesis approach assumed here, it is impossible to control the activity of each
individual neuron independently, rather in our stimulation protocol we have only one global parameter
- the light intensity scaler Lmax - to control the global level of depolarization of neurons in the targeted
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Figure 6: Contrast to stimulation light intensity mapping. (A-C) The stimulation light to response
curve of two example individual neurons (left panel) and the mean curve over all recorded neurons (right
panel). Three conditions shown: no lateral connectivity (A), only-excitatory neurons excitable by light
(B) and both excitatory and inhibitory neurons excitable by light (C). (D) A scheme for translation of
desired contrast of the to be induced grating stimulus to the corresponding required stimulation light
intensity. (E) The resulting contrast-response curves of the three optogenetic conditions superimposed
over the natural vision data. In all panels, the dots are data points from simulations, line is the fit of
the Naka-Rushton curve to the data points.

cortical volume. Therefore, the best approximation we can hope to achieve is to match the mean contrast-
response curve across the targeted cortical volume. Having the parametric fits of the light-to-response
tuning curve F and contrast-to-response tuning curve G, this can be achieved by simply mapping the
desired contrast onto rate using G and then mapping this rate using inversion of F on the desired light
intensity scaler. Thus the function composition F−1(G) maps the contrast of the stimulus to be induced
onto the light intensity scaler that will induce it (figure 6C). As is demonstrated in figure (figure 6D),
this method secures a good match of the mean contrast response curves between the natural vision and
optogenetic conditions. In the remainder of this study, we will be comparing the different stimulation
conditions through the contrast matched paradigm demonstrated in this section.

4 Light induced orientation tuning of cortical responses

We will now turn our attention to the most salient and well explored property of V1 neurons: their
orientation selectivity. Majority of neurons in V1 are selective to orientation of the stimulus, such that
they response is highest when stimulus orientation matches their orientation preference, and response
drops of as the orientation of the stimulus departures from the preferred orientation [39]. V1 neurons
rarely respond with any spikes (beyond spontaneous level) to stimuli orthogonal to their preferred orien-
tation [34]. The tuning curves formed by such orientation specific responses can be well fit with Gaussian
curves, and selectivity in majority of neurons is sharp, falling between 15 and 30 degrees when measured
as the half-width at half height (HWHH) of the fitted Gaussian [55, 24, 34]. Another important property
of the orientation selectivity in V1, that cannot be explained in a simple feed-forward model, is that the
width of their tuning curve is independent of contrast - i.e. changes to contrast only induce multiplicative
changes to the response.

The cortical circuit model upon which the present study is derived from has been extensively explored
with respect to its functional characteristics and has been show to match all the above properties (and
many others) [10]. Indeed when we repeat the orientation selectivity experiments in the natural vision
condition in our simulation environment, we find that most neurons express Gaussian shaped (figure 7A)
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Figure 7: Orientation tuning of model neurons in the 4 experimental conditions. From top to bottom,
intact system with stimulation via retina, cortical light stimulation with all model connectivity disabled,
cortical light stimulation where both excitatory and inhibitory neurons respond to light, and cortical
light stimulation where only excitatory neurons respond to light. (A) mean of centered orientation tuning
curves across all recorded neurons (large plot) and single cell tuning curves of 6 randomly selected neurons
(6 small plots). (B) the half-height at half width (HWHH) of orientation tuning curves of neurons when
stimulated at low contrast or maximum light intensity (abscissa) and high contrast or maximum light
intensity (ordinate). (C) the distribution of HWHH at high contrast/light intensity across the population
of measured neurons.
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contrast invariant (figure 7B) orientation tuning curves with mean tuning width of about 25 degrees (see
figure 7C).

Having functionally accurate benchmark in the natural vision condition, we have repeated the same
orientation tuning protocol but using the analogous optogenetic stimulation (see section 3.1) in the
decoupled model. In this condition the model response directly reflects the orientation selectivity of
the stimulation protocol (i.e. see the parameter σ in section 3.1), only altered by the light propagation
properties of cortical tissue, but not shaped by the intra-cortical connectivity. We can see that while the
responses are clearly orientation tuned, their broadness increases with contrast of the stimulus (see figure
7A,B). Importantly, by increasing light intensity further would broaden the tuning curves, eventually
eliciting responses even in neurons with orthogonal orientation preferences to that of the stimulus (figure
S1). This is not the fault of the stimulation protocol itself: the light emitting elements sitting above
the cortical domains with orthogonal orientation preference are set to be off by the stimulation protocol
(see section 3.1). Instead it is two opposing phenomena that cause the contrast dependent changes in
the width of the tuning. On one hand it is the dispersion of light traveling along the cortical tissue that
causes bleeding of light from those domains that are being illuminated into nearby domains that are not
meant to be illuminated. It is this phenomena that can cause, providing sufficiently intense illumination,
even invocation of activity in neurons that prefer orthogonal orientation. On the other hand, due to the
lack of ongoing activity in the decoupled model, the gap between the resting and membrane potential
and spiking threshold causes an ’iceberg effect’ whereby any cortical volume that is not illuminated
above fixed threshold will generated zero response. It is this second phenomena that in the range of the
illuminations we test here (dictated by the contrast response curve calibration discussed in section 3.3)
causes the very narrow tuning curves that abruptly cross zero response level at about 45 degrees, unlike
the gradual decrease towards zero of the natural vision condition.

Note that while for fixed contrast one could possibly tune the stimulation protocol such that the right
tuning is achieved in the decoupled condition it could not be done in a contrast independent manner.
Could however the engagement of intra-cortical connectivity that is know to exert competitive influence
over the cortical response, whereby stronger responses are magnified, while weaker suppressed resolve
these difficulties we observe in the decoupled condition? Indeed in both optogenetic conditions with
intact intra-cortical interactions the model neurons exhibit orientation tuning curves remarkably similar
to those due to visual stimulation (figure 7): both optogenetic conditions generate tuning curves with
similar tuning width and contrast invariance. We would like to point out that this is an interesting
and encouraging finding. While conceptually the presence of complex recurrent dynamics due to the
recurrent connectivity complicates the reasoning how to optimally stimulate the cortex, these results
suggest that their presence can actually make it easier (or even possible at all) to optogenetically induce
cortical activity patterns that are close to those due to natural vision.

In the orientation tuning results discussed above (figure 7) we have fixed the sharpness parameter σ
of the stimulation protocol at an arbitrary value of 0.5. This value have generated orientation tuning
surprisingly well matched against the tuning due to visual stimulation as is. However, prosthetic visual
application might require fine-tuning or changing the orientation tuning width, for example due to
differences across species or retinotopic eccentricity. In figure 8 we have explored range of values of the
sharpness parameter, showing that systematic increase or decrease of the the parameter value leads to
corresponding sharpening or broadening of the orientation tuning of the induced cortical responses (figure
8BD). We can also see that we have been lucky with our arbitrary choice of the parameter value in results
presented in figure 7, having chosen value close to the optimum for our model based on cat/macaque
physiology. Interestingly, despite the very broad range of values of the σ parameter explored in figure 8,
the range of resulting orientation tuning width of cortical responses is rather narrow. This again points
to our proposed hypothesis that the recurrent intra-cortical processing tends to nudge the resulting
activation patterns towards those due to similar visual stimulation. We have thus demonstrated that
the orientation tuning induced by proposed stimulation protocol has room for fine-tuning for specific
circumstances, which in the case of clinical application, could be part of perceptually driven calibration
process for given subject.

18

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2019. ; https://doi.org/10.1101/610378doi: bioRxiv preprint 

https://doi.org/10.1101/610378
http://creativecommons.org/licenses/by/4.0/


Figure 8: Width of orientation tuning as a function of the sharpness parameter of the optogenetic
stimulation protocol. Each column corresponds to cortical optogenetic stimulation simulation where
different parameters of the stimulation orientation sharpness σ was used. (A) The illumination intensity
at the cell body as a function of the orientation preference of the given neuron. (B) The orientation
tuning curves centered and averaged across all recorded neurons. (C) The scatter plot showing the
orientation tuning width measured as HWHH at minimum and maximum contrast. (D) The histogram
of tuning width measured as HWHH at maximum contrast. The black arrows on top mark the mean of
the distribution. The red arrows mark the mean HWHH of the natural vision condition.
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5 Statistical properties of the opogenetically evoked cortical ac-
tivity.

In the previous section we have shown that very good match between the response rates of visually
and corresponding optogenetically evoked activity can be achieved. It can however be expected that
properties of neural signals beyond that of mean response rate can have implications for perceptual
outcomes. It is thus important to assess neural signals under optogenetic activation in greater detail.
In the following we will focus on comparing basic statistical properties between the natural vision and
optogenetic conditions both at the level of spikes but also membrane potential and excitatory and in-
hibitory conductances. For analysis in the section only neurons with orientation preference matching or
orthogonal to the presented stimulus were analyzed.

Figure 9: Visually and prosthetically evoked response statistics. (A-D) Response statistics at preferred
(left bar group) and orthogonal (right bar group) orientation of the grating in the three examined
conditions: normal vision (black), light stimulation with excitatory cells transfected (blue) or both exc.
and inh. cells transfected (orange). (A) The mean Pearson correlation between the PSTH (binned
at 10ms) of all pairs of recorded excitatory cells. (B) The ratio of mean excitatory and inhibitory
conductance during presentation of grating averaged across all recorded cells. (C) The mean trial-to-
trial variability of membrane potential during stimulation across the recorded cells. (D) Variability of
Vm, averaged over the duration of the stimulus presentation and across over all recorded cells. (E-F)
The relationship between variance (E) and mean (F) of the membrane potential and the response rate
of recorded excitatory cells to the stimulation with grating of preferred orientation.

A level of synchronization among nearby neurons during evoked activity has been demonstrated in
primary visual cortex [75]. In figure 9A we show the synchrony among excitatory model neurons in layer
2/3 measured as the mean Pearson correlation of PSTH (binned at 10ms). As we can see the natural
vision condition shows higher synchronization among neurons than the optogenetic stimulations. This is
expected, as processing in thalamus and layer 4, up-stream from layer 2/3 and not engaged during light
stimulation condition, can already induce some level of synchronization which can be further amplified
in layer 2/3. Next figure 9A shows the ratio of excitation and inhibition during grating stimulation.
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Interestingly, during the preferred orientation, neurons across all conditions show very similar ratios
(±5%). This is somewhat surprising, as for example the condition where only excitatory neurons are
light-activated, one could expect bias towards excitation in the network. This again emphasizes that the
recurrent cortical circuitry converges to similar operating regime during broad range of input scenarios.
For the orthogonal orientation the one noticeable difference is that the natural vision condition has lower
exc. to inh. ratio than the optogenetic conditions, indicating that visual stimulation engages more
effectively lateral inhibition then light stimulation.

Next we looked at trial-to-trial (figure 9C) and trial averaged (figure 9D) variance of the Vm. First
we can notice significant decrease of both quantities at orthogonal orientation (figure 9) as would be
expected due to lower response rate. The most noticeable difference between the natural vision and
light stimulation conditions is that the trial-averaged variance of the membrane potential is significantly
higher in the natural vision condition, both at preferred and orthogonal stimulus configurations. This
indicates that the visual stimuli induce more repeatable trial-to-trial responses than the light stimulation.

Ultimately it is the spike response of the cells that will determine their impact on perception. There
are however two basic principles by which changes in membrane potential can affect the rate of spike
generation: by changes in the mean (the mean driven regime) or by changes in the magnitude of variability
that changes the likelyhood of crossing the spike generation threshold (fluctuation driven regime) [71, 47].
To compare the operating regime between the natural vision and optogenetic conditions we have plotted
the spike rate response as a function of the mean (figure 9E) and the variance (figure 9G) of the membrane
potential. As expected in all conditions both the mean and variance of membrane potential are positively
correlated with spike rate, however major differences between the absolute levels of these measures are
present between the different conditions. The natural vision condition remains less depolarized during the
evoked activity than the optogenetic conditions, but instead relies on higher variability of the membrane
potential to generate the same levels of response rates. Interestingly, the optogenetic condition with
only excitatory light-sensitive neurons is closer to the natural vision condition, and notice that in fact in
all the measures examined in this section the difference between the natural vision and excitatory only
activation is smaller or the same compared to the condition where both cell types are activated. Overall
these results show, that even though at the level of mean spike rate responses very good match between
natural vision and optogenetic stimulation can be achieved (see section 4), important differences can
remain at the sub-threshold level. It will therefore be important to quantify these differences in in-vivo,
and determine in future experiments how much can such differences impact the perceptual outcomes.
Our simulations also suggest, that targeting of only excitatory cells is preferable for cortical optogenetic
prosthesis.

6 Impact of the density of the MLEE on the induction of ori-
entation tuning.

In all the simulations discussed so far we have assumed an MLEE with pitch and diameter of the individ-
ual light emitting elements of 10 µm. This value is rather at the extreme of what current technology can
deliver and we used it to assess the full potential of optogentic prosthesis with current technology. How-
ever, as we have demonstrated in previous sections, our stimulation strategy rests upon the presence of
topologically organized functional representations of the visual stimulus along cortical surface. It should
be emphasized that this is not only our choice, but a necessity due to the geometrical constrains of the
light illumination from MLEE, whereby dispersion of light in the neural tissue leads to loss of resolution
of the light pattern with increasing cortical depth. On the other hand the smooth representation of
visual feature along cortical surface implies that MLEE with greater pitch and size of individual light
emitting elements could still be effective at functionally specific activation of primary visual cortex.

We thus set out to explore this possibility by running a series of optogenetic simulations with increas-
ingly large diameter (and consequently pitch) of the light emitting elements. As we can see in figure
10B, the optogenetic stimulation can accurately match the orientation tuning due to visual stimulation
up to the size of individual light emitting elements of 100 µm, beyond which the optogenetic response
similarity starts to deteriorate. The contrast-invariance of the tuning is also largely maintained (figure
10C). We can again see that despite the fact that the orientation specific sharpness of the illumination
degrades with increasing element diameter (figure 10A) the intra-cortical connectivity is able to sharpen
the illumination pattern greatly to produce orientation tuning close to that due to natural vision over
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Figure 10: The impact of the diameter of individual light emitting elements on the induction of orientation
tuning in V1. Each column corresponds to cortical optogenetic stimulation simulation with different size
and pitch of light emitting elements. (A) The illumination intensity at the cell body as a function of
the orientation preference of the given neuron. (B) The orientation tuning curves centered and averaged
across all recorded neurons. (C) The scatter plot showing the orientation tuning width measured as
HWHH at minimum and maximum contrast. (D) The histogram of tuning width measured as HWHH
at maximum contrast. The black arrows on top mark the mean of the distribution. The red arrows mark
the mean HWHH of the natural vision condition.
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surprisingly broad range of element sizes (figure 10B,D). This finding indicates that utilization of lower
resolution MLEEs can offer sufficient resolution of light patterns for vision restoration. This has im-
portant practical consequences, because lower resolution MLEEs are easier and consequently cheaper to
manufacture, and crucially have greater potential to achieve sufficient light density, which is a major
hurdle in manufacturing of MLEEs suitable for optogenetic stimulation.

It is import to point out that in this study we focus only on a single of several features represented
along cortical surface of primary visual cortex: the orientation of the stimulus. It is reasonable to
expect that, as we will outline in greater detail in discussion, other visual features also topologically
represented along cortical surface will be incorporated into the stimulation protocols in future. Some
of these, such as retinotopy or occular dominance are represented at lower spatial frequency (in cortical
surface coordinates) than orientation [74] and thus the above findings will hold. However, others, such
as direction or disparity preference, are represented at higher spatial frequency and thus the minimum
resolution of the MLEE would have to be reassessed for protocols targeting these visual features. To that
end, the simulation environment presented in this study represents an efficient and flexible way to design
and assess such series of increasingly complex stimulation protocols prior their in-vivo implementation.

7 Dicsussions

Cortical optogenetics based prosthetics are an emerging approach for vision restoration, that promises to
mitigate several issues with previous technologies utilizing various forms of direct electrical stimulation.
Undoubtedly, major technological development still needs to be undertaken to achieve the readiness of
such prosthetic system for implantation in blind patients. Imagine, however, that the technology is
ready. How would we go about stimulating the brain in such manner that it elicits useful perception
of the visual world? Despite clearly being a central question of prosthetic vision, we are not aware of
any study that attempted to directly answer this question. Because the relevant in-vivo experimental
setups are not yet fully available, but some basic answers to this broad question will be needed to guide
the in-vivo experiments that are expected in near future, we have set out to address this question via
comprehensive computational modeling means.

Of course we do not intend to answer this question in its entirety. Concerted development in the field
over next decades will be required for that, but this study does address some important initial concerns.
We predict the intensity of illumination required for invocation of realistic levels of activity, and how
will the required intensity change depending on which neural types are targeted by ChR transfection.
We also provide guidance on the design of the stimulation hardware, for example showing how the size
of the individual light emitting elements will effect the ability to evoke desired cortical active patterns.
Our insights into how does the intra-cortical recurrent circuitry interact with the light-mediated input,
how does the natural and prophetically evoked responses differ at sub-threshold level, how to translate
between intensity of the stimulation and the contrast of the to be evoked stimulus will inform future
more elaborate stimulations strategies. Last but not least, we provide here a ready to use stimulation
protocol for induction of canonical visual stimuli, which is ideal for testing in early prosthetic experiments.
Crucially, this stimulation strategy is accompanied by detailed prediction of what response should be
expected. Of course it is likely that not all these predictions will be fulfilled, but by interpreting the
experimental outcomes in the context of the models and by resolving any discrepancies that arise first in
the model and thus gaining the understanding why they happened, will be instrumental for guiding the
further development. We contend, that only trough such tight continuous interplay between modeling
and experiments we can sufficient understanding of the cortico-prosthetic system to eventually achieve
successful vision restoration.

7.1 Interaction of cortical circuitry with optogenetic stimulation

Given knowledge of the cortical responses pattern R elicited by presentation of stimulus S under natural
vision, the straightforward way to approach the question of how to externally stimulate cortex to elicit
responses similar to R, is to attempt to directly inject the response pattern R via the stimulation
device (or its best possible approximation). In other words, to attempt to clamp the activity of the
targeted cortical volume to its desired output. This approach, however, is guaranteed to work only
if neurons were isolated entities. Quite contrary, individual neurons receive inputs via large number of
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synapses. This means that any externally imposed injection of activity into the cortical population will be
further remodeled by the recurrent dynamics of the cortical network and the resulting activity pattern
will presumably differ from that due to stimulation alone. On the other hand, one could follow the
alternative hypothesis, that the optimal stimulation protocol should inject what would be the input to
the target cortical population under normal vision, expecting that the cortical circuitry will reshape this
simulated input the same way as the input due to normal vision and thus converge onto the same steady
state response. Ultimately, it is not clear how significant factor will reshaping of injected activity via
the intra-cortical circuitry be, especially in the context of various physical constraints of the prosthetic
device which greatly limit the domain of spatio-temporal patterns illumination that can be achieved.

To advance our understanding of these issues, in this study we have compared the responses in V1
model between fully connected or disconnected conditions. We have found that taking the recurrent
cortical interactions in consideration is crucial for arriving with correct predictions on how will cortex
react to optogenetic stimulation, and consequently how to design an optimal stimulation protocol. Apart
from differences of basic parameters such as excitability (section 3.2), which however can have major
implications on the minimum specifications required of the stimulation device, we found that lateral
cortical interactions sharpen the resulting patterns of activity in comparison to the light-induced pattern
of depolarization, and consequently mitigate some of the systematic biases in the illumination patterns
that arise due to the physical limitations of the stimulation technology. We observe analogous effects
also when investigating the effect of sharpness of stimulation, observing much narrower range of tuning
width of the resulting cortical responses when compared to the explored range of illumination tuning
widths 4, and also when investigating the influence of light-emitting elements size (section 6). These
findings are consistent with the idea, that it might be more appropriate to design prosthetic stimulation
protocols such, that they mimic the functional input to the targeted cortical volume, rather than its
output. In light of these observation we would like to propose following hypothesis: the intra-cortical
recurrent circuitry tends to push externally induced cortical activation patterns towards similar proximate
ecological (i.e. those that can arise due to plausible ecological visual stimulus) cortical response patterns.
Overall these are encouraging findings, indicating that the intra-cortical circuitry can actually simplify
the implementation of prosthetic vision, as they can mitigate some of the imprecisions in the illumination
patterns, whether they are due to limitation to the stimulation strategy itself, or the various bio-physical
constraints of the cortico-prosthetic system.

7.2 Future work

Being the first foray into modeling of cortical optogenetic stimulation, the present work has several
limits that will need to be addressed in future. First, by focusing on the question of cortical network
effects, we employ the much more computationally efficient point-neuron integrate and fire scheme as the
model of neurons. These approaches have been shown to be effective at reproducing cortical processing
[62, 11, 10] but important considerations might arise from the interaction between light illumination and
the ChR channel distribution throughout the full neural morphology. Currently, computational resources
are not available to perform simulations of the scale presented here that would take into account the
full morphological detail of neurons. However, hybrid-schemes could be considered in the future, where
for example the center of the model would be occupied by detailed morphological set of columns, but
embedded within larger point-neuron network.

Another limitations of this study is that for now we have explored only the canonical stimulus class
of drifting grating stimuli. This was a logical decision given that this is a first study of its kind, and this
stimulus class is by far the best understood in terms of its V1 coding under normal vision condition,
and thus easier to interpret under the new conditions we explore them here. As we can see range of
useful insights that will inform future development of more elaborate and general stimulation protocols
has been derived from the present work. But, of course, eventually more general stimulation protocols
need to be developed if we are to achieve vision restoration. To this end in section 7.3 we propose a brief
outline how the present work can be extended into full general purpose stimulation protocol. However,
we would still like to note, that it still might be beneficial to study cortical stimulation in the context of
more artificial stimuli, such as various protocol for studying contextual integration in V1, before moving
to full ecological stimuli.

Another aspect of cortical processing that has not been explored here in greater details is the temporal
dynamics of evoked responses. This is partially because representation of grating stimuli in complex cells
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largely reduce to a simple step depolarization function. However, as we show in figure 5, even for this
temporally simple stimulus the cortical response in the natural vision condition show the characteristic
onset and offset response transients, which our protocol did not take into account. Ultimately more
work will have to be done to develop stimulation strategies that can accurately reproduce the stimulus
evoked temporal dynamics of intact vision, especially in the context of more ecological visual stimuli.
To this end, the advanced stimulation protocol, that we will describe in section 7.3, already offers a
straightforward way to incorporate the canonical temporal response characteristics, such as the onset
and offset dynamics.

7.3 Towards induction of arbitrary visual stimuli

In the present work we have only focused on a single canonical stimulus type in visual neuroscience: the
sinusoidal gratings. This is because the responses of V1 to these stimuli are extremely well characterized,
they are optimized to engage the most prominent functional property of V1 - orientation tuning, and
their mathematical form with few parameters makes them natural starting point for investigation of
stimulus-dependent phenomena. However, vision restoration obviously requires system that can induce
perception of far more complex stimuli. We would like to point out that the work presented here is an
essential step towards such vision restoration end-goal, goes beyond past stimulation protocols that were
purely retinotopy based [61, 33, 66], and in fact forms basis for a straightforward extension into a protocol
applicable to any visual stimulus. The present work enlightens the interaction between the light-induced
input and recurrent network interactions, shows how to map stimulus contrast onto light stimulation
intensity, shows that the cortical activations are responsive to changes in stimulation parameters in a
predictable manner that allows for devising methods for fine-tuning the prospective stimulation protocols,
and brings insights on the dependence of the opto-induced cortical activity patterns on the resolution of
the light-stimulation array. All these findings should be highly informative for any future development
of more complex cortical opto-stimulation protocols.

Let us now outline a straightforward path from the present work towards a stimulation protocol that
can be applied to arbitrary visual stimuli. By only considering full-field stimuli of uniform orientation,
here we have only considered the orientation domain of the cortical visual representation. If we would
want to expand this consideration also into the retinotopic domain, a natural construct to consider is the
ubiquitous gabor-shaped receptive field model [28] - i.e. the canonical model of V1 simple cells that binds
the position and orientation preference of V1 neurons. Because we want to induce stimulus representation
in layer 2/3 predominantly occupied by complex cells that are insensitive to the phase of the stimulus, we
need to take one step further and consider an extension of the Gabor RF models for complex cells - the so
called energy model[28]. The energy model is typically considered as a representation of single neurons,
but because within a single orientation column the position and orientation preference of neurons varies
little while in layer 2/3 the neurons are insensitive to phase, it is reasonable to assume that the energy
models is in fact also a good approximation of the stimulus dependent response of the whole column.
Following these consideration we propose following protocols:

1. Associate a energy model µE with each element E of the LED array, whose orientation and position
is set to the pre-determined retinotopic and orientation preference of the cortical column below the
element E and the remaining parameters are set to the know mean values at the given retinotopic
eccentricity.

2. The activation of the LED element E is then proportional to the dot-product between µE and the
visual stimulus to be induced.

3. To determine an appropriate mapping between the output of the RF model and the activation level
of the LED element one can use analogous procedure as presented here in section 3.3.

This stimulation protocol is applicable to arbitrary stimulus, and can simply be extended to elemen-
tary temporal properties of V1 neural response by for example assuming space-time separability and
expanding the RF model by a temporal filter reflecting the onset or offset dynamics. An interesting po-
tential approach for setting the parameters of these filters would be to use reverse correlation approaches
for their determination [68, 9] directly from data.
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Furthermore, here we have restricted our consideration only to two stimulus feature selectivities
present in V1 - the orientation and position. However, more such selectivities that are topologically rep-
resented along the cortical surface, and thus potentially exploitable by the optogenetic prosthetic setup
considered here, are present in V1, including ocular dominance,ON-OFF dominance, direction, disparity,
color and frequency preference. In principle, it would be straightforward to expand the proposed proto-
col to all these domains, providing they can be measured prior the implantation, as simple extensions
of the RF model exist for all these features [21, 76, 2, 45]. It should be noted, however, that as more
dimensions of the feature space are added the size of the cortical domains with similar properties across
all these dimensions will shrink, and thus it would have to be determined if the opto-genetic prosthe-
sis would have sufficient resolution to selectively engaged such higher-dimensional feature space of the
cortical representation. Finally, the physical constraints of the considered opoto-genetic setup allowed
us to consider only engagement of cortical representations that are topologically mapped onto cortical
surface, however, the present work is informative and could be further expanded also to potential future
technologies that facilitate activation of cortex at single-cell resolution (e.g. 2- or 3-photon imaging).

7.4 Consideration for application in blind subjects

The stimulation protocol presented in this study, as well as all the proposals for future extensions
discussed in the previous section require the knowledge of the mapping of the neural stimulus feature
preferences onto the cortical surface. During testing of the visual prosthesis in animal models, this
information can be acquired by employing well established imaging techniques, such as intrinsic optical
imaging [17], to measure these stimulus feature preferences directly using visual stimuli in an intact-vision
condition. In this setting the ’blind’ condition is induced later, and possibly reversibly, via surgical or
chemical intervention. However, what about the ultimate goal of application to blind patients, where
the intact-vision condition and thus visual stimulus dependent mapping is not available? The previous
cortical visual prosthetic attempts solved this problem via a crude sequential calibration, based on
reported perceptual outcomes in response to activation of individual or local groups of stimulation
elements [33, 54]. Since past visual prosthetic devices only targeted single dimension of the visual feature
representation - the retinotopic position, this procedure was relatively straightforward. The individual
stimulation elements of the prosthesis were activated one by one, and for each activation the patient had
to report the position of the elicited phosphene (or lack of it) in his visual field. Simple aids have been
built to help sufficiently accurate reporting of the posphene position in the subjects visual field [54].
Furthermore, past empirical evidence have shown that this calibration procedure has to be repeated
regularly, due to bio-physical processes [33, 54], that degrade the validity of the mapping over time.

However, this poses a problem for the optogenetic prosthetic approach proposed here, which would
render such simple sequential calibration either highly impractical or outright impossible, due to the
huge number of stimulation elements in the high-resolution LED array and the combinatorial explosion
due to higher dimensional feature space. We would like to propose here that because thanks to the high-
resolution opto-genetic prosthesis one has much finer control over the cortical activation, and because
of the topological organization of the stimulus features targeted in this proposal, one could devise much
more efficient calibration protocol. Assuming a rapid approximate identification of the retinotopic area
that the LED array implant spans in the subject, that could for example be done using similar simple
approach as in the past, one could identify the expected spatial frequency (along cortical surface) of
the topological mapping of the given feature on the cortical surface at the pre-determined retinotopic
eccentricity using previously established human functional atlas. One can than exploit the regularity
of the functional topological mapping of the individual visual features (e.g. orientation) to radically
reduce the number of stimulus presentations and associated reporting of perceptual outcomes required
to determine the mapping of the given feature onto the cortical surface under the implant. Furthermore,
one can repeat this process one feature at a time, thus braking the combinatorial augmentation. Of
course, number of complications can be expected, for example distortions in the uniformity of functional
representations due to presence of anatomical features such as vasculature, and ultimately only empirical
experiments will resolve this issue, but we believe the proposed direction of investigation is worthwhile.
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7.5 Broader impacts

The models and computational tools presented here allow us to examine the relationship between specific
configurations of light delivered to cortex and the resulting spatio-temporal pattern of activity evoked in
the simulated cortical circuitry. We have used them to advance our understanding of cortical stimulation
under physiological conditions and to design a protocol for translation of specific class of visual stimuli
to LED array activation pattern. In future, this same approach can be applied to further development of
stimulation protocols, to screen numerous aspects of potential stimulation strategies in advance before the
entire technological prosthetic stack is fully developed, and selecting only the most promising stimulation
protocols for future testing in in-vivo animal models. This way one can inform the specification of future
hardware components, as wells as informing the type of experiments that will be most informative in
in-vivo testing, thus accelerating the development and reducing the usage of animal experimentation. In
similar fashion, these computational tools could find use throughout the field of cortical based prosthetics,
and could be adapted to address other cortical areas, sensory modalities and other stimulation techniques.

Finally, the high-fidelity modeling methodology developed in this study, together with the assumed
prosthetic system, have potential to significantly advance our understanding of processing in the early
visual cortex and beyond. On one hand, by directly probing neural activity, neuroscience has been
effective in gaining insights into how visual information is coded in early sensory corticies and how is this
coding implemented in neural substrate [57, 58]. On the other hand, using psychophysics, substantial
insights into the principles of perception have been obtained [63]. However, bridging the gap between
such low- and high level representations - i.e. understanding how low level coding leads to perception,
and linking perceptual phenomena to neural substrate - remains elusive. In recent years optogenetic
based brain stimulation in behaving rodents have attempted to addressee these issues [63], however the
limited ability to induce complex activity patterns and poor behavioral potential of rodents prevented
major breakthroughs.

The combination of high-fidelity modeling approach presented here with the optogenetic prosthesis
could lead to paradigm shift in how neural basis of perception can be studied. Stimulation protocols
reflecting specific properties of cortical sensory coding, and deep understanding how they interact with
the cortical circuitry can be developed in the presented computational tools. Specific physiological
and crucially perceptual predictions can be formulated, and subsequently tested in primate optogenetic
model, utilizing behavioral psychohpysical experimental paradigms. This way a an unprecedented depth
of understanding of the cortical processing that bridges the sensory coding, it’s implementation to neural
circuitry and its perceptual outcome could be obtained.
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Supporting Information

Figure S1: Orientation tuning of model neurons in the cortical stimulation condition, when only excita-
tory neurons are light sensitive. Orientation tuning curves are shown at different intensities of overall
light stimulation (see legend). (A) mean of centered orientation tuning curves across all recorded neu-
rons. (B) single cell tuning curves of 6 randomly selected neurons. The legend refers to maximum photon
flux at the surface of the virtual implant.
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