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Abstract 

Cognitive phenotypes characterize our memories, beliefs, skills, and preferences, and 

arise from our ancestral, developmental, and experiential histories. These histories are 

written into our brain structure through the building and modification of various brain 

circuits. Connectal coding, by way of analogy with neural coding, is the art, study, and 

practice of identifying the network structures that link cognitive phenomena to individual 

histories. We propose a formal statistical framework for connectal coding and demonstrate 

its utility in several applications spanning experimental modalities and phylogeny.  

 

Connectal coding starts with a simple premise: brain structure can reasonably and usefully be 

modeled by a network, consisting of nodes and edges among them (Morgan & Lichtman, 2013; 

White, Southgate, Thomson, & Brenner, 1976). This model of brain structure is agnostic to scale, 

the model can be appropriate from the molecular scale to the whole system (and beyond) 

(Craddock et al., 2013; Helmstaedter, 2013; Osten & Margrie, 2013). Although a comprehensive 

model of the brain includes both brain activity and connectivity, both activity and connectivity can 

be fruitfully modeled independently. The goal of brain activity modeling (neural coding) is to link 

patterns of brain activity to past, ongoing, and future events (K. O. Johnson, 2000). In contrast, 

the goal of brain connectivity modeling (connectal coding) is to link patterns of connectivity to 

past, ongoing, and future events. The nature of the patterns, events, and links change by virtue 

of switching focus from activity to connectivity. Moreover, the statistical models one can leverage 

to learn those links from the data must also change.  

The goal of this manuscript is to introduce in clear terms, motivate from first principles, 

and formalize this emerging approach to studying the brain. While neural activity coding is well 

established and widely accepted as a (possibly the) legitimate framework for studying the brain, 

connectal coding remains in its infancy. Below we outline our rationale for why connectal codes 

are not just valuable, but required for a comprehensive understanding of cognitive mechanisms, 

and how to learn them.  

Modeling Brains as Networks 

 

The idea of the brain as a network dates back to the late 19th century, with Ramon y Cajal’s 

discovery of dendritic spines using Golgi’s stain. This marked the founding of the “neuron 

doctrine”, for the first time asserting that the brain is not, in fact, a syncytium (Shepherd, 1991). 
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In 1943, McCulloch and Pitts wrote down a mathematical model of the brain as a network, and 

proved that such networks could be “Turing-complete” (that is, they can solve any computational 

problem) (McCulloch & Pitts, 1943), thereby founding the field of artificial intelligence (Russell & 

Norvig, 2016). Shortly thereafter, Hebb introduced “cell assemblies” as essentially networks of 

neurons that are jointly active (Hebb, 1949). A few decades later Little (Little, 1974), and then 

Hopfield (Hopfield, 1982), introduced Little-Hopfield networks (which were the first recurrent 

neural networks and led to the founding of connectionism (Hinton, Mcclelland, & Rumelhart, 

1986)). Little and Hopfield leveraged an idea from statistical physics known as the Ising model 

(Onsager, 1944), positing that these assemblies could be used to store information. But in the 

entire 20th century, it was rare to use the tools of “graph theory” to study brain networks, even 

though graph theory was founded by Leonhard Euler in 1736 (Euler, 1741).  

 This all changed with the introduction of the term “connectome” by Sporns et al. and 

Hagmann in 2005 (Hagmann, 2005; Sporns, Tononi, & Kötter, 2005). Since then, >3,600 papers 

have been published using the term. Because many of those papers define connectome 

differently, we provide our definition below:  

  

Definition: A connectome is an abstract mathematical model of brain structure, denoted G, and 

is a set of two kinds of objects:  

1. Vertices (or nodes), V: A vertex represents a biophysical entity of the brain. In a 

connectome, one defines a set of constraints, including the spatial extent (e.g., the left 

mushroom body, a cortical column, or the whole brain), spatial resolution (e.g., a cell, 

cellular compartment, or a cellular ensemble), type (e.g., a neural, glial, or perivascular 

cell), and developmental stage (e.g., postnatal day six). The nodes of a connectome are 

all the nodes satisfying those constraints. 

2. Edges (or links), E: An edge between any pair of nodes represents the presence (and lack 

of edge represents the absence) of a connection or communication between those nodes. 

In a connectome, that connection/communication must satisfy another set of constraints, 

including the kind of communication (e.g. transmission of electrical charges, 

neurotransmitters, physical opposition, or fiber bundles) and the temporal duration under 

which these communications may be present (e.g., during a particular developmental 

phase, or during a traumatic injury including brain compression, etc.). The edges of a 

connectome are all the edges satisfying these constraints between the above described 

set of nodes. Note that implicit in this definition is that the connections for which edges 

count in connectomes are direct. 

Under this simplest definition of what constitutes a connectome, it is common to represent the 

connectome via a two-dimensional (2D) array, A (Figure 1). In this representation, each 

row/column pair corresponds to a node, and edges between a pair of nodes u and v are depicted 

by a non-zero entry in the corresponding element of the array, i.e., A(u,v)=1. It is tempting to think 

of this as a matrix, and it certainly is from the computer science perspective. But it is decidedly 

not a matrix from the mathematics perspective, where matrices are linear operators, e.g. y = Ax. 

Whereas matrix algebra can be applied to study these representations of graphs, we often find it 

helpful to keep in mind that these “adjacency matrices” are special kinds of 2D arrays. The row 

identities are inextricably linked to column identities, a property that is not generally true for 

arbitrary matrices, and changes the kinds of statistical procedures appropriate for these data.  
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Moreover, in classical graph theory, the graph is simply the tuple G=(V,E), and lacks 

additional structure. For connectomes to serve as a model for brain structure that can link to past, 

ongoing, and future events, they often require some additional structure. The most common 

additional structure is edge weights, such that each binary edge is associated with a magnitude 

that can take any continuous value. More complicated and nuanced edge attributes abound in 

connectomics. For example, when edges correspond to synapses, they might be attributed with 

weights, locations, directions of transmission, neurotransmitters, etc. Similarly, for connectomes, 

it is natural for nodes to have attributes. The most common attribute of a node is a semantic label, 

such as the Mauthner neuron (Eaton, Lee, & Foreman, 2001), or Purkinje cell, or primary visual 

cortex. Nodes in connectomics, like edges, can have other attributes as well, such as location, 

volume, and shape. Finally, when studying populations of connectomes, the entire graph may be 

endowed with attributes, such as a weight.  

The above definition clarifies what a connectome is for this manuscript, but not what it is 

not. It is not many things; we illustrate a few. The shape, size, or morphology of a set of brain 

regions or neurons does not comprise a connectome, nor does the set of all spike trains of a 

brain. These features can be attributes of nodes, but without also characterizing the edges, one 

has not modeled a connectome. Similarly, correlation between a pair of nodes cannot be defined 

as an edge (though it may be used to estimate the presence of an edge). This is because 

connectomes, as defined above, are models of brain structure and anatomy, and correlation is an 

emergent property of dynamics on that model, rather than a description of the model itself. While 

many connectomics papers disagree with this definition, we find it useful, and use it for the 

remainder of the manuscript.  

An implication of this definition is that one could simultaneously model a given brain with 

many different connectomes at different times, or at different resolutions, or of different types, etc. 

Moreover, the neuron-level model of brain structure does not have an elevated status over, say, 

compartments of neurons, glia, or brain regions; rather, each scale and type of node can serve 

as a perfectly adequate model of part of the brain, and those parts may turn out to be the most 

important parts to explain any particular past or future event.  

Given all this, one can measure parts of a brain to estimate a connectome from many 

different experimental modalities, each of which has its shortcomings. At cellular resolution, as 

early as 2001, several papers began characterizing how to estimate connectomes (without using 

the word connectome) from physiology data (Kamiński, Ding, Truccolo, & Bressler, 2001; 

Mishchenko, Vogelstein, & Paninski, 2011; Pillow, Paninski, Shlens, Simoncelli, & Chichilnisky, 

2005; Truccolo et al., 2005). More recent developments in cellular resolution connectome 

estimation incorporated unobserved variables (Kulkarni & Paninski, 2007; Yatsenko et al., 2015), 

called “confounders” in the causal inference field (Pearl, 2000). At the millimeter scale, diffusion 

magnetic resonance imaging data (dMRI) is known to exhibit both false positives and false 

negatives, as compared to gold standard methods (Maier-Hein et al., 2017). By the same token, 

one can use functional MRI (fMRI) data to estimate edges. The most common approach by far is 

to simply use correlations (Biswal et al., 2010); these approaches are also known to yield 

problematic estimates for a number of reasons, including susceptibility to various exogenous 

variables, such as time of day, week, and month (Yan, Craddock, Zuo, Zang, & Milham, 2013). 

Methods for addressing confounders have also been proposed in the fMRI literature (Smith et al., 

2011), and while widely cited, are still largely underappreciated.  
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Example Estimated Connectomes  

We show several different previously published estimated connectomes from different species 

spanning the phylogenetic tree, with widely disparate definitions of what constitutes nodes and 

edges (Fig. 1). There are many possible ways to visualize a connectome (Gerhard et al., 2011; 

LaPlante, Douw, Tang, & Stufflebeam, 2014; Xia, Wang, & He, 2013); we choose a relatively 

simple way, adjacency matrices, as described above. We indicate the strength of connection as 

either the size or contrast of the corresponding matrix element. Showing an adjacency matrix 

requires first sorting all the nodes in some order; we choose to sort by region or type, and within 

that by degree (total weight of connections per node), but other sortings could be equally 

informative. For certain connectomes, experimentalists have measured multiple types of edges. 

We show these “multi-connectomes” with different colors for the different edge types.  

 

A. Caenorhabditis elegans (worm). C. elegans is the only animal for which we have 

estimated a complete connectome where the nodes represent neurons (White, 1985; 

White et al., 1976; White, Southgate, Thomson, & Brenner, 1986). That is, every neuron 

in the animal is a node, and every edge has been estimated. This connectome has two 

types of edges corresponding to two types of neural activities: (1) chemical synapses for 

neurochemical release (Fig. 1A), and (2) gap junctions for electrical activity. Each edge’s 

strength (or weight) corresponds to the approximate total volume of synapses between its 

parent neurons. C. elegans has two sexes, male and hermaphrodite, with different 

numbers of neurons (hermaphrodite 302, male 385, with 290 overlapping shown in Fig. 

1A) (Emmons, 2018; Jarrell et al., 2012). These connectome estimates are derived by 

cumbersome manual tracing of axons and dendrites and identification of synapses, in 

nanoscale electron micrographs, updated by Varshney et al. (Varshney, Chen, Paniagua, 

Hall, & Chklovskii, 2011), Bentley (Bentley et al., 2016), and most recently by Cook et al. 

(Cook, S. J., Jarrell, T. A., Brittin, C., Wang, Y., Bloniarz, A. E., Yakovlev, M. A., Nguyen, 

K. C. Q., Tang, L. T.-H., Bayer, E. A., Duerr, J. S., Buelow, H., Hobert, O., Hall, D. H., and 

Emmons, S. W., 2019). 

B. Drosophila melanogaster (fly). Eichler et al. (Eichler et al., 2017) published an estimate 

larval Drosophila connectome of the left (Fig. 1B) and right mushroom body, also derived 

from serial electron microscopy, using only chemical synapses. These edges are weighted 

(based on counting the number of synapses between a pair of neurons), and directed 

(meaning connections can be from u to v and not vice versa) (Priebe et al., 2017).  

C. Mus musculus (mouse). Calabrese et al. (Calabrese, Badea, Cofer, Qi, & Johnson, 

2015) generated a high-resolution connectivity estimate using ex vivo diffusion magnetic 

resonance imaging (dMRI). This network is undirected, as dMRI lacks directional 

information, and weights correspond to the number of tracts estimated to go between 

regions. Because we do not know the mapping from the absolute magnitude of connection 

weights to any physical connection, we rescale these weights to be between zero and 

one, and depict them on a log scale (Fig. 1C).  

D. Homo sapiens (human). The Consortium for Reliability and Reproducibility collects 

multiple measurements of functional resting-state, anatomical, and/or diffusion magnetic 

resonance imaging (MRI) per individual (Zuo et al., 2014). The functional estimated 
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connectomes are Pearson correlation matrices, converted to ranks and then normalized 

between zero and one, because such a representation is more reliable than raw or 

thresholded correlations (Kiar et al., 2018). The diffusion estimated connectomes are 

normalized as described above for the mouse. This multi-connectome estimate is derived 

from averaging the entire dataset of 3,067 diffusion and 1,760 functional MRI 

connectomes (Zuo et al., 2014) (Fig. 1D).  

Figure 1: Estimated connectomes spanning four levels of the phylogenetic tree, each estimated using 

different experimental modalities and spatial resolutions, ranging from nanoscale (electron microscopy) to 

macroscale (MRI regions). (A) C. elegans chemical multi-connectome estimated from male and 

hermaphrodite connectomes. Size of circles corresponds to the number of synapses between two neurons. 

Multiscale node labels: left (L) and right (R), which are bilateral pairs, as well as unpaired (U); and four 

types per side: endorgans (E), interneurons (I), motor neurons (M), and sensory neurons (S). (B) Left 

mushroom body connectome estimated from Drosophila melanogaster. Nodes represent neurons, and are 

assigned into kenyon cells (K), input neurons (I), output neurons (O), and projection neurons (P). Color 

intensity corresponds to the number of synapses between two neurons. (C) Mouse estimated connectomes 

obtained from dMRI scans. Nodes represent regions of the brain, and are assigned into right (R) and left 

(L) hemispheres and then further assigned into superstructures such as frontal (F), hindbrain (H), midbrain 

(M), and white matter (W). Color intensity corresponds to degree of connectivity between two regions. (D) 

Human multi-connectome estimated from averaging 3,067 dMRI and 1,760 fMRI human connectomes. 

Since both networks are undirected, only the upper triangle of fMRI connectome and lower triangle of dMRI 

connectome is shown. Nodes represent regions of the brain, and are assigned into right (R) and left (L) 

hemispheres and then further assigned into frontal (F), occipital (O), parietal (P), and temporal (T), as well 
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as subcortical structures (S). Color intensity corresponds to degree of connectivity and correlation for dMRI 

and fMRI, respectively, between two regions. 

The Purpose of Brain Codes 

A code is a (potentially stochastic) system of rules to convert information from one representation 

into another (Cover & Thomas, 2012; Shannon, 1948).1 For example, neural activity coding can 

be thought of as converting information from past and ongoing events (stimuli and behavior) to 

neural activity, and from neural activity to future events (predictions and behaviors). In other 

words, neural activity codes correspond to the brain’s representation of information. In contrast, 

connectal coding can be thought of as converting information from past and ongoing events 

(ancestral, developmental, and experiential) to brain connectivity, and from brain connectivity to 

future events (behavioral tendencies). In other words, connectal codes correspond to the brain’s 

                                                 
1 We acknowledge that it is common in the neuroscience community to ascribe other meanings to the word 

code, including representational and causal meanings (Brette, 2019). We use “code” the way Shannon and 
information theory uses it, purely as a statistical relationship. 
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storage of information. Therefore, brain activity and connectal codes serve complementary roles 

in understanding the relationship between genetics, body, world, and brain. 

An important aspect of both activity and connectal codes is that they are stochastic. In 

other words, a given ongoing stimuli/behavior can stochastically manifest in multiple different 

patterns of activity, and a given past event can stochastically manifest in multiple different patterns 

of connectivity. The inverse is also true: activity/connectivity can represent multiple different 

current/past/future events, respectively. This stochastic property of brain codes is actually 

required for operating in the world. Even human brains, given finite physical and energetic 

resources, are incapable of representing and storing the large amount of information impinging 

on our sensory faculties. In a similar fashion, the connectivity of a human brain is too complex to 

be explicitly prescribed by their genome. To be concrete, consider that a human brain contains 

approximately 1011 neurons (Herculano-Houzel, 2009) and 1015 connections between pairs of 

neurons, and yet we only have about 104 genes (Ezkurdia et al., 2014). Thus, for the genome to 

encode every single synapse would require five to six variants per gene, and literally every variant 

of every gene would encode the brain’s synapses. More likely, the genome encodes the 

“blueprint”, that is, a number of statistical principles governing the probability of connections 

between nodes across development, as well as all the rules for learning new connections due to 

activity-dependent plasticity. Those rules are the principles of connectal coding. 

 

The Role of Connectomes in Connectal Coding 
 

The above definition of connectome sets the stage for understanding the relationship 

between connectomes and other aspects of an individual or population. By way of analogy, recall 

that a genome is the complete genetic sequence of an individual, whereas a genotype is the part 

of the genetic sequence of an individual that associated with a particular phenotype. In that sense, 

a connectotype is the collection of nodes and edges (and potentially their attributes) associated 

with a given phenotype. We consider two kinds of phenotypes here: individual histories and 

cognitive phenotypes. By individual histories, we mean ancestral, developmental, and experiential 

histories; we may desire to understand the relationship between connectome and genome, 

connectome and developmental stage, or connectome and experience. By cognitive phenotype 

we mean a set of observable characteristics of an individual related to their cognition, including 

personality traits, memories, beliefs, skills, preferences, and psychiatric or learning disorders. We 

may desire to understand the relationship between connectome and these phenotypes as well. 

Regardless of which particular kind of phenotype, there may exist one (or many) connectotypes 

associated with it. Connectal coding is the study of brain structures that encode that information.  

Like genotypes, there is not a one-to-one mapping between connectotypes and 

phenotypes, rather, a given connectotype could stochastically encode in different cognitive 

phenotypes at different times, and a given cognitive phenotype could be associated with many 

different connectotypes. For example, the stomatogastric ganglion circuit of a crab can exhibit 

similar network activity from disparate circuit parameters (Prinz, Bucher, & Marder, 2004).  

In light of this, our view on connectomics is that its primary value is in generating 

hypotheses about connectotypes. This is in contrast to the relatively low-throughput, more 

classical approach to studying neural circuits. For example, detailed physiological and anatomical 
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characterization of the sound localization circuit of a barn owl (Carr & Konishi, 1990) effectively 

confirmed models that explained a certain phenotype. However, the process of hypothesis 

generation was arduous, taking decades, including numerous models that, in retrospect, were not 

possible given the underlying neuroanatomy. If one could rapidly collect data about many 

interwoven neural circuits, and then use those data to screen and/or filter various circuits as 

implicated (or not) in a given behavior, then subsequent experiments could further refine those 

results. Thus, connectomes may not on their own provide data sufficient to test hypotheses about 

how certain genotypes are linked to certain connectotypes and/or how certain connectotypes are 

linked to certain phenotypes. Nonetheless, if these data can accelerate the hypothesis-generation 

process to hone in on a small set of plausible models, they will be extremely valuable. 

Of note, in connectal coding, the role of estimating connectomes is not about describing 

the basic anatomical properties of connectomes, or modeling connectomes as a end unto 

themselves. Rather, in connectal coding, connectomes are interesting insofar as they participate 

in the understanding of the relationship between brain structure and individual histories or 

cognitive phenotypes. Part of the rationale of this focus is that most current experimental 

approaches for estimating connectomes are so error prone, that estimates of the statistical 

properties of brain networks are difficult to interpret in terms of the underlying biology. In fact, 

even if the part of the network that is observed is largely correct, if it represents just a subsample 

of the network of interest, then the resulting network features can be quite different from those 

features of the entire network (Lee, Kim, & Jeong, 2006; Olhede & Wolfe, 2012). Regardless, 

building statistical model relating connectypes to phenotypes requires models of connectomes.  

Models of Connectomes 

 

Every connectomics study utilizes some mathematical and statistical approach to support the 

scientific claims. We organize those approaches into three categories, and demonstrate that only 

one of these frameworks is sufficient for connectal coding, although all three provide 

complementary insights and perspectives on the connectomes themselves. 

 The most common approach, dubbed the “bag of edges” (or edgewise statistics) 

framework. (Craddock et al., 2013; Varoquaux & Craddock, 2013), treats each edge 

independently, without taking into account interactions or relationships between them. Such 

univariate approaches allow researchers to identify easily interpretable relationships between 

phenotypes and edge weights. However, this approach requires performing many statistical tests, 

which must be corrected for multiple comparisons to adequately control for the number of false 

positives. Standard correction techniques such as false discovery rate (Genovese, Lazar, & 

Nichols, 2002) do not model the dependencies between edges, and therefore may result in overly 

liberal or conservative corrections (Efron, 2008). Alternate correction techniques such as network-

based statistics (Zalesky, Fornito, & Bullmore, 2010) or group Benjamini-Hochberg corrections 

(Benjamini & Hochberg, 1995) leverage information about the group structure of connectomes to 

increase statistical power, while attempting to control false positives. Network-based statistics, 

however, lacks theoretical guarantees identifying the settings in which it successfully controls 

false positives. Without such an understanding, interpreting its results is problematic. Benjamini-
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Hochberg has strong theoretical guarantees, but in models that are inappropriate for 

connectomics data, in that their assumptions are often grossly violated (and rarely checked). 

Bonferroni corrections are widely believed to be overly conservative (Simes, 1986) and therefore 

lack the sensitivity desired for connectal coding. 

 A second popular approach we dub the “bag of features” framework. In this approach, 

multiple graph-wise or node-wise statistics are calculated (Mhembere et al., 2013) and compared. 

Possible features include degree distribution, degree sequence, clustering coefficient, number of 

triangles or other motifs, small worldness, efficiency, and modularity (Bullmore & Bassett, 2010). 

While computing these statistics can be informative about the properties of a given connectome, 

using them as features to explain differences between genotypes or phenotypes faces serious 

drawbacks. First, for any particular feature, vastly different networks can produce the same value 

(Matejka & Fitzmaurice, 2017). Second, for a connectome with n nodes, there are 2n*n possible 

subgraphs, each of which could reasonably be considered a feature. Therefore, one cannot 

reasonably search all features (as 2n*n is larger than the number of atoms in the universe for n > 

sixteen!). It is therefore unclear (and somewhat arbitrary) how one should choose relevant 

features for a particular dataset. Third, and perhaps most problematic, is that the different features 

are not typically independent of one another. Therefore, if the question is whether a given 

phenotype depends on a particular feature being a specific value, it is impossible to determine 

whether that particular feature is responsible. Rather, the phenotype may be dependent upon a 

subset of the exponentially many features that correlate with both the feature of interest and the 

phenotype. No experiment could test whether a feature is uniquely informative with regard to the 

covariate of interest, even in theory. Thus, studying most network features will fail to yield the 

principles of connectal coding.  

 The third framework, which is much less popular in connectomics, but much more popular 

in network statistics, is statistical modeling of networks (Kolaczyk, 2014; Zheng, Fienberg, Airoldi, 

& Goldenberg, 2009). The key conceptual herdle associated with using statistical models of 

networks to model connectomes is that it is a model of the entire network, rather than just the 

edges or features, as a random variable. This network is a complex high-dimensional random 

variable, with built-in structure and relationships. The vast majority of work in network modeling 

focuses on modeling a single network, typically undirected, unweighted, and lacking in network-

wise, node-wise, or edge-wise attributes (Bollobas, 1998). However, connectomes are typically 

weighted, sometimes directed, and always include at a minimum node-wise labels (e.g., which 

cell, cellular compartment, or cell ensemble corresponds to a given node). Moreover, 

understanding the relationship between connectypes and phenotypes typically requires 

comparing multiple connectomes. Much of the existing work comparing multiple networks ignores 

the unique node labels that are often available in connectomics (Vishwanathan & Schraudolph, 

2010). Therefore, a full accounting of connectotypes will require statistical models of populations 

of networks with complex attributes. Although a comprehensive theory remains absent, we build 

connectal coding on the foundational work of network modeling (Crane, 2018). 

 

Statistical Models of Connectomes 
 

The simplest random network (graph) model is the Erdos-Renyi model, in which each edge is 

sampled identically and independently (Erdős & Rényi, 1959). This binary model is the connectal 
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coding homolog to the Poisson process in neural coding, which asserts that a neuron’s spikes are 

sampled identically and independently (Rieke, 1997). Although these models are too simple to 

explain much, they are excellent starting grounds to build more complex models, such as the 

inhomogeneous Erdos-Renyi model, which assumes that each edge is an independent coin flip, 

but each edge can be sampled with a different probability (Bollobas, 1998). The next simplest 

binary models are stochastic block models (SBM) (Holland, Laskey, & Leinhardt, 1983; Rohe, 

Chatterjee, & Yu, 2011; Sussman, Tang, Fishkind, & Priebe, 2011; Wasserman & Anderson, 

1987). In an SBM, there are K groups, and each node is in one group. Each edge is again sampled 

independently, but the probability of a connection between a pair of nodes is no longer equal 

everywhere; rather, it is determined by each node’s group (homologous to a heterogeneous 

Poisson process, where spiking has K different rates, dependent on which of K different states 

the brain is in). For example, a simple model of brain connectivity would be that contralateral 

connections have some probability, and ipsilateral connections have a different one. One can 

further generalize this to a hierarchical block model, where each node is in a given set of nested 

groups (Betzel & Bassett, 2017; Lyzinski, Tang, Athreya, Park, & Priebe, 2017; Meunier, 

Lambiotte, Fornito, Ersche, & Bullmore, 2009; Peixoto, 2014). For example, a node might be in a 

lobe within a hemisphere.  

A further generalization asserts that each node is in its own group, and therefore has a 

“latent position” that characterizes its probability of connecting with other nodes (homologous to 

latent variable models in neural coding) (Hoff, Raftery, & Handcock, 2002). A particularly popular 

version of these models assumes that the probability of connections between a pair of nodes is 

equal to the dot product between the nodes’ latent positions (Scheinerman & Tucker, 2009; 

Sussman, Tang, & Priebe, 2014; Young & Scheinerman, 2007). In these models, an extensive 

set of theoretical investigations have established the kinds of claims we desire when using a 

statistical model to make inferences about our data (Athreya et al., 2013; Tang & Priebe, 2016), 

as well as a number of extensions, including a generalized random dot product (Rubin-Delanchy, 

Priebe, Tang, & Cape, 2017), a random dot product with node-wise covariates (Binkiewicz, 

Vogelstein, & Rohe, 2017), and a latent structure model (Athreya, Tang, Park, & Priebe, 2018) 

(for review, see (Athreya, Fishkind, et al., 2018)). However, these models typically only operate 

on single, unweighted networks lacking attributes.  

Some of these single-network models have been generalized to population models. One 

of the first such models was a non-parametric Bayesian model of populations of networks 

(Durante, Dunson, & Vogelstein, 2017). This model is essentially a network generalization of 

mixed effects models popular in biostatistics (Gelman & Hill, 2006), where the mean network is a 

fixed effect, and each individual has a unique low-rank distortion relative to the mean. Two 

extensions of this approach are essentially non-Bayesian variants that enable faster computation 

(L. Wang, Zhang, & Dunson, 2017; S. Wang, Vogelstein, & Priebe, 2017), which was generalized 

to a mixture of random dot product models (Nielsen & Witten, 2018). Estimation in each of these 

models can be thought of as specific tensor factorizations (Zhang, Allen, Zhu, & Dunson, 2018). 

Although these models still lack much neuroscientific insight or attributes, they establish the 

statistical foundation for learning connectal codes. 

Statistical Model for Connectal Coding 
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To formalize connectal coding, we introduce the connectal coding model, which is designed to 

enable investigation of the links among connectypes, individual histories and cognitive 

phenotypes. Like all models, the connectal coding model makes simplifying assumptions for 

tractability. Although statisticians like to remind practitioners of George Box’s quip, “all models are 

wrong; some are useful”, we find this aphorism to be misleading. Models are maps, designed to 

get us from one place to another. The question is not “is a given map right or wrong?” but rather, 

“is the map useful for getting us to our destination?” The connectome coding model is designed 

to get us to a deeper understanding of the relationship among connectotypes, individual histories, 

and cognitive phenotypes. Insofar as it does that, it is useful.  

In statistics, a code is a conditional distribution characterizing the probability of one 

random variable taking some value given another random variable taking some value. Let X and 

Y be random variables; their marginal distributions, P[X] and P[Y], characterize the probability of 

any particular x or y, and their joint distribution P[X,Y] characterizes the probability of observing x 

and y. The conditional distribution P[Y|X] characterizes the probability that Y takes a particular 

value, given that X is some value. In connectal coding, we have the following four random 

variables: 

● B = cognitive phenotypes of an individual, including and as measured by behaviors, 

● C = connectome of an individual, spanning spatial and temporal scales,  

● D = developmental history of an individual, including past experiences  

● E = the current environment acting on individuals, and 

● G = genome of an individual, including epigenetic factors. 

Connectal coding concerns estimating the statistical relationships among connectomes and 

genomes, developmental histories, cognitive phenotypes, and the current environment. More 

formally, in connectal coding, we may seek to estimate the probability of a connectotype, given a 

genotype and environment, P[C | D, E], and the probability of a cognitive phenotype, given a 

connectype and environment, P[B | C, E]. We are also interested in P[C | D], P[B | C], and other 

conditional and joint distributions. In all cases, there exists a random variable that models the 

connectome, which therefore warrants further study. One random variable which may appear 

missing to many neuroscientists is brain activity. Much like one does not require modeling a 

connectome to characterize the relationship between stimuli/behaviors and brain activity, one 

does not require modeling activity to characterize the relationship between cognitive 

phenotypes/developmental history/genomes and brain connectivity. Although joint modeling of 

brain activity and connectivity would be more comprehensive, connectal coding is sufficiently 

challenging and interesting to warrant its own investigations. 

This formalization of connectal coding, is, to our knowledge, novel. That said, this 

conceptual and formal model can be used to interpret previous connectomics studies, which often 

have similar conceptual frameworks (Mill, Ito, & Cole, 2017). More importantly, we hope it will help 

guide the development and ideation of new connectomic studies, by providing a paradigm within 

which to ask, formalize, and eventually answer questions about neural circuit mechanisms, how 

they work, how they fail, and how they can be improved. 

 

Connectal Coding Theories 
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Equipped with the statistical formalization of connectal coding, two questions we can ask are: (1) 

to what extent is a connectome statistically associated with  “X” (e.g., genotype or cognitive 

phenotype), and (2) where in the connectome is that statistical association (that is, what is the 

connectotype associated with that genotype/phenotype)? An example of the first question is, “if 

the genomes of two individuals differ, to what extent are their connectomes different?” An example 

of the second question is: “where in the connectome are those differences?” Causal questions, 

such as which connectotype is part of the implementation-level causal mechanism of a given 

cognitive phenotype, are also possible, but beyond the scope of this article because they are 

much more difficult to answer convincingly (but see (Mill et al., 2017) for a wonderful article on 

this topic focused largely on fMRI based connectome estimates).  

Formally asking these questions requires assuming a statistical model. The first kind of 

question is essentially a hypothesis-testing question. The data required to answer it are two 

collections of estimated connectomes: C1,...Cn are estimated connectomes from individuals with 

one property (e.g., genotype or cognitive phenotype), and Cn+1,..., Cn+m are estimated 

connectomes from individuals with another property. Assume that C1,...Cn are all sampled 

independently and identically from some distribution P0 = P[C | X = 0], and Cn+1,...,Cn+m are 

sampled independently and identically from another distribution P1 = P[C | X = 1]. Then, the formal 

statement of the hypothesis is: 

 

H0: P0 = P1  vs.  HA: P0 ≠ P1 

 

Applying such a test requires defining a test statistic, which quantifies the effect size, and 

computing the distribution of the test statistic under the null. Such two-sample tests have been 

developed for random graphs (Ghoshdastidar & von Luxburg, 2018; Ginestet, Li, Balachandran, 

Rosenberg, & Kolaczyk, 2017; Tang, Athreya, Sussman, Lyzinski, Park, et al., 2017; Tang, 

Athreya, Sussman, Lyzinski, & Priebe, 2017). The theoretical claims associated with each of 

these two-sample testing results depends on an underlying statistical model of random graphs, 

such as those described in the previous section. These tests are holistic: they tell the researchers 

that there are differences between these populations and the magnitude of those differences (the 

test statistic), but they do not indicate where those differences are. 

 To answer the second question, global graph features (such as modularity) are inadequate 

because they cannot indicate where the differences are. Moreover, edge-wise statistics are 

typically underpowered when suitably adjusted for multiple comparisons, given our small sample 

sizes. Instead, we can search for a “signal subgraph”, that is, a small set of nodes and edges 

among them that confer the majority of the signal (the signal subgraph is an estimate of the 

connectotype). Signal subgraph searches are akin to feature screening, where one seeks to 

determine which features are most informative about a specific covariate (Fan & Lv, 2008). The 

main difference is that signal subgraph methods take advantage of the graph structure to improve 

their sensitivity and specificity (Arroyo-Relión, Kessler, Levina, & Taylor, n.d.). The first signal 

subgraph method used a variant of a sparse inhomogeneous Erdos-Renyi random graph model 

(Vogelstein, Gray Roncal, Vogelstein, & Priebe, 2013). These methods have been extended to 

operate under latent variable model assumptions (S. Wang, Shen, Badea, Priebe, & Vogelstein, 

2018), and also to deal with continuous (rather than categorical) covariates (L. Wang, Zhang, & 
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Dunson, 2018). Formally, signal subgraph detection is an estimation, rather than testing, problem: 

it seeks to estimate the smallest set of nodes such that the covariate is independent of the 

remaining nodes, and the signal subgraph is the set of edges among those nodes that carry 

information about the covariate.  

Applications 

 

Consider the connectome of the larval Drosophila mushroom body (Eichler et al., 2017) (Figure 

1B). Priebe et al. (Priebe et al., 2017) conducted an extensive empirical investigation of this 

connectome, leveraging spectral modeling, and resulting in the development of the latent 

structure random graph model (Athreya, Tang, et al., 2018). Specifically, they discovered that 

kenyon cells of the mushroom body form a one-dimensional submanifold in a six-dimensional 

latent space. Figure 2 shows the quality of fit of several of these models to a binary simplification 

of the left larval mushroom body Drosophila data. These models provide a foundation from which 

to formulate statistical tests to answer the connecal coding questions described above. 

Second, consider sex differences in the mouse brain estimated via diffusion magnetic 

resonance imaging (Fig. 1C). From scans of 55 mouse brains, 32 male and 23 female, 

connectomes were estimated on 332 nodes, 166 per hemisphere, using the Waxholm atlas (G. 

A. Johnson et al., 2010). The signal subgraph method of Wang et al. (S. Wang et al., 2018) reveals 

that 10 of the original 332 nodes contain more signal than noise about sex. The top-ranked nodes 

include a thalamic component and the periaqueductal gray, both of which are important in sexually 

dimorphic mouse brain development (Raznahan, Probst, Palmert, Giedd, & Lerch, 2013; Spring, 

Lerch, & Henkelman, 2007). 

Third, we consider the COBRE data set (Aine et al., 2017), a collection of 123 functional 

MRI scans of schizophrenic and healthy human patients. Each scan yields an estimated 

connectome with 264 nodes, corresponding to 264 brain regions of the Power parcellation (Power 

et al., 2011), with edge weights given by correlations between BOLD signals measured in those 

regions. The data set contains scans for 54 schizophrenic patients and 69 healthy controls (like 

the one shown in Figure 1D). Levin at al. (Levin et al., 2017) apply their omnibus embedding to 

jointly estimate a random dot product graph for each connectome, resulting in an estimated three-

dimensional latent position for each node of each connectome. For each node, Hotelling’s T2 test 

yields a p-value assessing whether or not the latent positions from healthy connectomes are 

drawn from the same (normal) distribution as the latent positions from the schizophrenic 

connectomes. Because the Power parcellation is hierarchical, the nodes can be further organized 

into 14 parcels. Visualization of the distribution of these p-values within each parcel suggests that 

the connectomes of schizophrenics differ from those of healthy controls in certain subnetworks 

but not others (Fig. 3). Specifically, nodes in the default mode network tend to have significantly 

smaller p-values than nodes in, for example, the visual subnetwork. Independent investigations 

also implicate the default mode in schizophrenia (Hu et al., 2017; Ongür et al., 2010), suggesting 

that our framework can provide statistical rigor to support previous scientific claims. 
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Figure 2: Connectome model fitting and complexity. Left larval Drosophila mushroom body adjacency 

matrix, followed by random samples from four different statistical models of connectomes with decreasing 

complexity: random dot product graph (RDPG), degree-corrected stochastic block model (DCSBM), 

stochastic block model (SBM), and Erdos-Renyi (ER). The bottom left shows the number of parameters 

for each, as compared to the 40,000+ number of edges for the connectome. All graphs are sorted by 

node degree within each block. 

Figure 3: Normalized histograms of the distribution of p-values obtained from applying Hotelling’s 

T2 test to the omnibus embeddings of brain regions from a few selected Power parcels. The red 

dashed lines indicate the uniform density, which would be expected to hold if there were no 

difference between healthy and schizophrenic patients. The default mode network clearly displays 
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a non-uniform p-value distribution, suggesting that this parcel differs in schizophrenic patients 

compared to their healthy counterparts. In contrast, p-values in the auditory, visual, and fronto-

parietal task control subnetworks appear approximately uniform, providing weak evidence that 

these systems are not implicated in schizophrenia. 

Discussion 

The connectome coding framework can be widely applied. Here, we discuss a few additional 

applications. First, one can use connectal coding to study cognitive disorders, such as 

schizophrenia, as described above. The consensus report of the American Psychiatry 

Association’s working group on neuroimaging markers of psychiatric disorders concluded that 

“there are currently no brain imaging biomarkers that are currently clinically useful for any 

diagnostic category in psychiatry.” (Michael First, Kelly Botteron, Cameron Carter, Francisco 

Xavier Castellanos, Daniel P. Dickstein, Wayne Drevets, Kerri L. Kim, Matthew F. Pescosolido 

Scott Rausch, Karen E. Seymour, Yvette Sheline, Jon-Kar Zubieta, n.d.). This is despite nearly 

30 years (at the time of that report) of brain imaging. A widely held belief is that psychiatric 

illnesses are disorders of neural circuitry, or connectopathies (Braun et al., 2018; Castellanos, Di 

Martino, Craddock, Mehta, & Milham, 2013; Elliott et al., 2018; Powell, Garcia, Yeh, Vettel, & 

Verstynen, 2018; Spronk et al., 2018; Van Dam et al., 2017). If true, our ability to develop clinically 

useful prognostic, diagnostic, and treatment protocols will depend on connectal coding. The same 

strategy could be applied to study healthy brains as well. For example, memories are believed to 

be stored in “engrams”, which are defined as biophysical or biochemical changes in the brain 

underlying memories (Lashley, 1950). While engrams for specific memories largely remain 

elusive (Berlot, Popp, & Diedrichsen, 2018), connectal coding could accelerate this search, by 

formulating the specific memory as a cognitive phenotype.  In these settings, heterogeneity of 

connectomes may be a significant impediment which would require further methodological 

developments. Further, the methodologies developed to study contrasts within and across 

individuals within a species can also be applied across species (Rilling & van den Heuvel, 2018; 

van den Heuvel, Bullmore, & Sporns, 2016), although such studies should also take into account 

differences in body plan and life cycle. 

  Second, in other fields of inquiry such as particle physics and geology, simulations play a 

key role in understanding nonlinear dynamical systems. In brain science, however, simulations 

remain in their infancy. That said, recently, several high-profile efforts have emerged to simulate 

the brain of various species, including humans (Arena, Patané, & Termini, 2010; Markram et al., 

2015; Niebur & Erdös, 1993; Sanz Leon et al., 2013). While the precise detailed requirements for 

biofidelic and useful simulations of a brain remain fiercely debated (Theil, 2015), it is unambiguous 

that some assumptions about nodes, their properties, and connections are required for any such 

simulation. Therefore, connectal coding could be exploited to learn which connectotypes are 

required for the simulation to exhibit which cognitive phenotypes. 

 Third, as alluded to above, the idea that understanding biological intelligence can inform 

machine intelligence dates back to the early days of computer science and the so-called first wave 

of artificial intelligence (AI). The first serious artificial neural networks were simple one-layer 

networks, called perceptrons (Rosenblatt, 1957). The second wave of AI began when a few 
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people realized that artificial neural networks, like biological neural networks, could have multiple 

layers to increase their expressive capacity. More formally, while perceptrons (one-layer 

networks) can only represent linear functions (Minksy & Papert, 1969), multi-layer perceptrons 

(with only one hidden layer) can represent arbitrarily complex functions (Cybenko, 1989; Hornik, 

1991). The third wave artificial intelligence, brought about by deep learning (Goodfellow, Bengio, 

Courville, & Bengio, 2016), appreciated that real connectomes do not have huge unstructured 

single hidden layers, but rather, many relatively small hidden layers (Cepelewicz, 2016; Hassabis, 

Kumaran, Summerfield, & Botvinick, 2017). Perhaps incorporating more biological constraints in 

these searches could further improve their efficiency (Pham, Guan, Zoph, Le, & Dean, 2018). 

Indeed, there are some signs that the third wave of artificial neural networks might be waning 

and/or asymptoting, and some posit that their main hope for continued rapid improvement is to 

incorporate more ideas from connectomics (Underwood, 2016). 

 Fourth, connectal coding could help explain evolution. Recall that for individuals to thrive 

in a given environment, they must exhibit certain phenotypes with sufficiently high probability. 

Further, for parents to increase their offspring’s ability to thrive, they must transmit phenotypes to 

them that tend to increase survival probabilities. The primary strategy parents have for 

transmitting these proclivities is via a genome whose resulting developmental program tends to 

result in a body and brain structure that tends to yield the selected phenotypes. For all cognitive 

phenotypes, this includes connectomes (Seung, 2012). Thus, for the genome to encode the 

probabilistic rules of behavior to facilitate the organism winning the evolutionary game, it must act 

through the connectome. Connectal codes are a key component of the link from genotype to 

phenotype, and from generation to generation.  

 In Sydney Brenner’s Nobel lecture he quoted his own review article (Brenner, 1974), 

stating:  “Behavior is the result of a complex ill-understood set of computations performed by 

nervous systems and it seems essential to decompose the question into two: once concerned 

with the question of the genetic specification of nervous systems and the other with the way 

nervous systems work to produce behavior.”  Connectal coding is an approach to provide a partial 

answer to both of those questions by modeling brain structure as a network, and applying the 

wealth of statistical pattern recognition techniques to answer them. To facilitate using these ideas 

in practice, we have developed an open source python toolbox for statistical analysis of 

populations of networks, available at https://neurodata.io/graspy/ (Chung, Pedigo, Bridgeford, 

Varjavand, & Vogelstein, 2019). 
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