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Abstract 

 

Macrophage-initiated inflammation is tightly regulated to eliminate threats such as infections while 

suppressing harmful immune activation. However, individual cells’ signaling responses to pro-inflammatory 

cues are heterogeneous; subpopulations emerge with high or low activation states, though why this occurs 

is unknown. To address this question, we used single-cell tracking and dynamical modeling to develop and 

validate a revised model for macrophage activation by lipopolysaccharide (LPS) that invokes a mechanism 

we term quorum licensing. Bimodal phenotypic partitioning of macrophages is primed during the resting 

state, depends on cumulative history of cell density, is predicted by extrinsic noise in transcription factor 

expression, and is independent of canonical LPS-induced intercellular feedback in the tumor necrosis factor 

(TNF) response. Our analysis shows how this density-dependent coupling produces a nonlinear effect on 

collective TNF production. We speculate that by linking macrophage density to activation, this mechanism 

could amplify local responses to threats and prevent false alarms. 
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In responding to external cues, cells are faced with many options, but by sharing information a population 

of cells can make more effective decisions than can each individual alone1-3. These decisions are generally 

mediated by secreted products. Bacteria use quorum sensing (QS) molecules to coordinate when and 

whether to form biofilms, and social amoeba secrete cyclic AMP to coordinate their aggregation. In each 

case, a proxy is used to convey information about the local number of cells available to coordinate the task. 

In immunology, a canonical example of coordination is the amplification of the response to a perceived 

threat. During infection, cells such as macrophages provide an immediate line of defense by initiating 

inflammation to eliminate invading microbes4. This process often begins when the bacterial membrane 

component lipopolysaccharide (LPS), a canonical pro-inflammatory cue, is sensed by Toll-like receptor 4 

(TLR4). Prior to TLR4 activation, the transcription factor NF-κB is sequestered in the cytoplasm by Inhibitor 

of κB (IκB), and upon activation, IκB kinase (IKK) targets IκB for degradation5,6, allowing NF-κB to 

translocate to the nucleus. There, NF-κB induces the transcription of genes such as tumor necrosis factor 

(TNF), a cytokine that mediates inflammation and pathogen clearance7-9. Other pathways downstream of 

TLR4 increase TNF production by stabilizing the mRNA and promoting translation and cleavage of the pro-

protein for secretion. Extracellular TNF then signals through TNF Receptor 1 (TNFR1), driving NF-κB 

activation in positive feedback10-14, and this is a general explanation for how macrophages and other cells 

amplify their response to LPS. 

 

The regulation of TNF has multiple layers. Recently, it was found that when the concentration of LPS 

exceeds a certain threshold, the induced signaling through NF-κB drives the transcription of its own RelA 

subunit in a process termed the feedback dominance (FBD) switch, producing intracellular positive 

feedback on NF-κB expression and activity15. Other pathways act to constrain the response to LPS and 

ensure its eventual resolution: cell-intrinsic regulators (i.e., those with intracellular origins) include 

microRNAs and mRNA-binding proteins that decrease Tnf stability and translation16, as well as IκB5,17 and 

various inhibitors of IKK6,10,18 induced by NF-κB in negative feedback; cell-extrinsic regulators (i.e., those 

with extracellular origins) include interleukin 10 (IL-10), in that IL-10 signaling via the IL-10 receptor (IL-

10R) antagonizes NF-κB activity and destabilizes Tnf stability and translation. In combination, these 
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interlocking positive and negative motifs confer the functional plasticity necessary for immune cells to 

balance pathogen clearance with harmful side effects such as cytotoxicity and tissue damage19. 

 

Given the complexity of the regulation of NF-κB and TNF, computational models have proven valuable for 

elucidating the dynamical properties of these systems and the roles of individual components. Early models 

explicated intracellular signaling5,6,20-22, and subsequent models included newly appreciated mechanisms 

such as intercellular feedback10,12,13,23-26. Recent studies have incorporated cell heterogeneity, by attributing 

observed differences in gene expression between cells either to stochastic fluctuations27-29 or to variation 

in initial values30, kinetic parameters15,31-33, or timing of signaling events34. A key consideration for 

understanding signaling and regulation in macrophages, in particular, is that these cells characteristically 

exhibit broad phenotypic heterogeneity35-37. It has been proposed that this variation could have important 

functional consequences, e.g., to broaden the repertoire of responses to stimuli38, to propagate or restrain 

coordinated actions, or to convert digital single-cell decisions into analog population-level behaviors39. 

While these ideas are intriguing, specific ways in which such heterogeneity may confer functional gain are 

not well understood.  

 

In this study, we investigate the intriguing observation that when macrophages are treated with LPS, cell 

subpopulations emerge with high and low activation states. We propose a revised model in which 

macrophages use a process that we term quorum licensing to link the history of their density to the 

proportion of cells that become highly activated. This investigation provides new insights into how 

populations of macrophages use density information to regulate their collective activation. 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 17, 2019. ; https://doi.org/10.1101/610592doi: bioRxiv preprint 

https://doi.org/10.1101/610592


   
 

5 

RESULTS 

 

TNF expression is heterogeneous and involves intercellular communication. Macrophage phenotypic 

heterogeneity has been observed in several studies35-37, and non-genetic heterogenous activation has been 

described in the widely used model cell line RAW 264.715,35. Here, we selected the RAW 264.7 model 

system to investigate how perturbations that modulate the response to LPS affect the heterogeneity with 

which macrophages become activated, as represented by expression of TNF (Fig. 1a). Pre-treatment of 

cells with IL-10, prior to treatment with LPS, diminished the average intracellular TNF protein expression 

measured at 3 h post-stimulation (hps), although TNF distributions across IL-10 doses were broad and 

overlapping (Fig. 1b, Supplementary Fig. S1a). Intracellular TNF was not highly correlated with flow 

cytometric proxies for cell size (Supplementary Fig. S1b), suggesting the heterogeneity was not due to 

cell cycle asynchrony alone. 

 

To obtain a more direct readout of TNF production, we applied brefeldin A (BFA) to inhibit anterograde 

transport from the endoplasmic reticulum to the Golgi apparatus and prevent cytokine secretion40. We 

reasoned that if variation in TNF secretion were a main source of heterogeneity, then BFA would diminish 

heterogeneity, and if gene regulation were the main source, then BFA would exaggerate it. Without LPS, 

BFA had no appreciable effect on intracellular TNF, indicating no detectable basal TNF production. 

However, when added after stimulation with LPS, BFA led to wide-ranging accumulation of on average 

several-fold more TNF cell-1 h-1 (Fig. 1c, Supplementary Fig. S1c). Unexpectedly, while most cells 

accumulated more TNF with longer BFA treatment, some cells accumulated little or no TNF over time. 

When cells were pre-treated with IL-10 prior to LPS, TNF accumulation was less than when treated with 

LPS only, as expected, yet TNF accumulation was still wide-ranging for a majority of cells and low for a 

minority. Therefore, blocking secretion unmasked substantial hidden variation in TNF production and 

showed that the cell population includes both high (wide-ranging) and low responders to LPS, regardless 

of whether cells are pre-treated with IL-10. 

 

Since LPS-induced TNF paracrine signaling is known to contribute to NF-κB activity10-13, we next examined 
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the effect of intercellular communication on TNF production. To modulate communication in a manner that 

is not biased toward or against specific secreted factors, we varied cell density (full, half, or one-eighth of 

typical plating conditions) as a general handle for tuning the magnitude of coupling between cells. Without 

IL-10 and with LPS, a cell density-dependent effect was evident (Fig. 1d, Supplementary Fig. S1d). At 3 

hps, average TNF expression correlated with density. At 6 hps, half and full density were TNF-high while 

one-eighth density remained low, and by 12 hps expression had begun to decrease for each case. All of 

the distributions were heterogeneous, but at high density, intracellular TNF remained skewed toward high 

expression over time, and at low density, it remained skewed toward low expression. With IL-10 or without 

LPS, little to no intracellular TNF was detectable. Thus, the full response to LPS requires intercellular 

communication, with cell density-associated effects on TNF production persisting over time. 

 

To investigate whether secreted TNF sustains its own LPS-induced expression, cells were pre-treated with 

excess soluble TNF receptor (sTNFR) to titrate extracellular TNF from binding cell surface receptors. As 

TNF is bound by sTNFR, TNFR signaling is blocked13. With LPS, cells at high density with sTNFR pre-

treatment expressed TNF at an intermediate level on average—less than at high density without sTNFR, 

and more than at low density without sTNFR—and the distribution remained heterogeneous (Fig. 1e, 

Supplementary Fig. S1e). Therefore, although TNF-mediated intercellular positive feedback is required 

for full TNF production as expected10-14, this mechanism does not account for the wide-ranging TNF 

expression observed, nor does it explain the high and low activation states observed. Thus, an additional 

explanation is required. 

 

The proportion of cells in each activation state depends on cell density. To investigate the phenomena 

described above, we examined regulation upstream of the TNF protein using a previously validated clonal 

macrophage cell line with two genomically integrated reporters15 (Supplementary Fig. S2a). Such a 

reporter system uniquely enables one to resolve the dynamics and heterogeneity of individual cell signaling 

responses. The first reporter is a fusion of enhanced green fluorescent protein (EGFP) and RelA (the p65 

subunit of NF-κB) driven by the Rela promoter. In the resting cell state (pre-LPS), EGFP-RelA is 

sequestered primarily in the cytoplasm, and upon activation, this protein translocates to the nucleus and 
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induces transcription of NF-κB target genes. Above a sufficient LPS dose, EGFP-RelA also induces the 

expression of endogenous RelA (and expression of EGFP-RelA) via an intracellular positive feedback loop 

termed FBD15. Thus, EGFP-RelA tracks both the localization and expression of NF-κB. The second reporter 

is a fusion of mCherry and a destabilizing PEST tag41 driven by the Tnf promoter. mCherry RNA lacks the 

Tnf-specific 3’ UTR and is decoupled from Tnf-specific post-transcriptional regulation. These features make 

the mCherry protein a proxy for transcription from the Tnf promoter (rather than downstream TNF protein 

expression), after accounting for the time delay for mCherry translation and maturation42. 

 

We utilized this reporter system to examine RelA expression and localization, and Tnf promoter activity, 

under the perturbations used above (Fig. 2a, Supplementary Fig. S2b–c). In all cases without LPS, EGFP-

RelA and mCherry expression were low. With LPS, the mCherry distribution shifted from unimodal to 

bimodal, consistent with the observed expression of endogenous TNF (Fig. 1c). At the three high density 

conditions, most cells were mCherryhigh, and at low density, a greater proportion was mCherrylow. The 

outcome at low density was not due to inhibition of EGFP-RelA nuclear translocation (Supplementary Fig. 

S2d). EGFP-RelA mirrored the pattern for mCherry, albeit with more overlap between modes, indicating an 

association between the reporters’ induction (Supplementary Fig. S2c). We also observed that average 

levels of TNF and mCherry ranked differently across conditions. In particular, “high density +IL-10 +LPS” 

yielded greater mCherry expression than did “low density +LPS” (Fig. 2a), and this ranking was reversed 

for TNF (Fig. 1). The difference could be due to post-transcriptional downregulation of Tnf induced by IL-

10R signaling43-46, which would diminish TNF protein more than Tnf transcription, and mCherry is a proxy 

for the latter. 

 

Altogether, macrophage activation was bimodal, with subpopulation proportions that varied with cell 

density. This observation held under perturbations to TNF-regulating pathways such as TNFR and IL-10R 

signaling. The dependence of the decision to become highly activated on cell density has some 

resemblance to bacterial quorum sensing (QS), in that the phenotypes of individual cells are determined by 

information shared by the population. However, an important distinction is that while in QS essentially all 

cells become activated if a threshold concentration of QS molecule is surpassed47, here the proportion of 
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highly activated cells increases with density. At the population level, this relationship produces an analog 

response rather than a digital one. To distinguish these two phenomena, we refer to the macrophage 

behavior as quorum licensing. 

 

Single-cell analysis of RelA and Tnf dynamics. We next investigated whether heterogeneous regulation 

of activation was due to variation in the magnitude and/or timing of the response to LPS. Variation in the 

magnitude of the response would indicate a role for intrinsic or extrinsic noise, due to stochastic fluctuations 

or to deterministic outcomes of variation in initial (pre-LPS) conditions, respectively. Variation in the timing 

of the response could indicate a domino effect where early high-expressing cells activate other cells. To 

track the dynamics of EGFP-RelA localization and expression and mCherry expression, cells were 

stimulated and monitored over a one-day timecourse using confocal laser-scanning microscopy. 

Quantification of individual trajectories using image analysis software48 showed that Tnf promoter activation 

varied primarily in magnitude rather than timing (Fig. 2b). For EGFP-RelA (at high density with sTNFR and 

LPS), the mean expression increased and peaked at 14±4 hps (± standard deviation among cells), after 

the peak nuclear intensity (10±6 hps) and near the time of peak cytoplasmic intensity (15±4 hps). The 

magnitude of EGFP-RelA peak intensity was greater in the cytoplasm than the nucleus (1.4±0.4 fold), and 

depletion of the nuclear portion mid-timecourse coincided with cytoplasmic accumulation. Expression of 

mCherry was initially low, and it increased and peaked at 18±5 hps. A small subpopulation of cells 

expressed very little mCherry or EGFP-RelA (consistent with the earlier flow cytometry observations for 

TNF and the reporters), and reporter expression appeared unrelated to the number of cells in physical 

contact with one another (Supplementary Fig. S2e). Intriguingly, although high induction of both reporters 

co-occurred in the same cells, the bimodality in TNF expression (measured at 3 hps in Fig. 1c) was evident 

before the observed increase in EGFP-RelA fluorescence (Fig. 2b), even considering the ~1 h 

chromophore maturation time. This sequence of events was also observed for cells cultured at low density 

(Supplementary Fig. S2f). Since target gene expression would be expected to increase after an increase 

in the expression of a transcriptional regulator for that gene, the observed sequence indicates that the RelA 

FBD switch cannot be causal for the early TNF burst observed. Instead, these events are conditionally 

independent, i.e., regulated by an upstream process, and not by each other. 
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The microscopy analysis revealed additional features of the single-cell responses. For nuclear-localized 

EGFP-RelA, while the average profile underwent an overall increase and subsequent decrease, some cells 

exhibited multiple peaks with varied amplitudes (Supplementary Fig. S2g–h) in agreement with a recent 

study33. There was also variation in an apparent nuclear reservoir of transcription factor (Fig. S2i–j), in 

agreement with another study32. For total EGFP-RelA, the pre-LPS expression varied and was correlated 

with the post-LPS cumulative expression (Fig. 2c–d, Supplementary Fig. S2k). The predictive power of 

this initial condition indicates a role for extrinsic noise (i.e., variation initially present in the system) in 

determining the post-FBD amount of transcription factor. Cumulative nuclear EGFP-RelA and cumulative 

mCherry were also correlated, as expected for the pairing of a transcription factor and a target promoter 

(Fig. 2e). These outcomes indicate that extrinsic noise in RelA expression propagates to activity at the Tnf 

promoter. To further examine promoter activity, we quantified mCherry trajectories under each perturbation 

(Fig. 2f). At high density with LPS, mCherry increased for 16±2 hps, indicating continued transcription after 

measurements of intracellular TNF protein showed a decrease (Fig. 1d). This protein decrease is consistent 

with known post-transcriptional mechanisms that eventually downregulate Tnf16, and such simultaneously 

opposing trends of transcriptional and post-transcriptional regulation represent a type of control that has 

been likened to operating both the throttle and brake pedals of a vehicle49. Cells at low density took more 

time to reach peak mCherry intensity post-LPS compared to cells growing at high density. Cells pretreated 

with IL-10 increased in mCherry for 12±3 hps and then decreased toward basal levels. Cells treated with 

sTNFR responded to LPS similarly to cells without this antagonist. Together, the measurements from flow 

cytometry and microscopy show how TNF is differently regulated under each perturbation (summarized in 

Supplementary Fig. S2i). 

 

An additional phenomenon related to cell density is that EGFP-RelA levels differed between low and high 

density conditions, both with and without LPS stimulation (Fig. 2a). This difference suggests that secreted 

factors might affect cells’ resting states in a way that predicts the response to LPS. To more carefully 

investigate how exposure to high density culture-associated conditions impact the patterns described 

above, we exposed cells to combinations of: standard or higher density passaging (for at least three days), 
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low or high density plating (at 36 h pre-LPS), and exposure to different conditioned media (fresh, low, or 

high; at 12 h pre-LPS). In general, exposure to more high density-associated conditions increased the basal 

and inducible reporter expression (Fig. 2g, Supplementary Table S1). For cells that were passaged at 

higher density and later provided conditioned media from high density cells, the outcomes were similar 

regardless of cell density at plating (which determines the number of cells present), indicating that sustained 

exposure to high density-associated secreted factors was sufficient to prime and enable full LPS-induced 

activation regardless of cell density (Supplementary Fig. S2m). For the highest-density combination of 

conditions, reporter bimodality was prominent and right-shifted, even prior to LPS stimulation (Fig. 2g). The 

effect of passaging (which took place over several days prior to plating, which was itself 36 h pre-LPS) on 

the distributions shows it is heritable across cell generations. These observations motivate a revised model 

for macrophage activation in which factors secreted during the resting state modulate the propensity for 

cells to become highly activated (Fig. 2h). The number of cells and the density-dependent proportion that 

become highly activated have a multiplicative effect on TNF production. 

 

A new computational model for heterogeneous macrophage activation. To integrate our observations 

with prior knowledge on macrophage activation, we developed a computational model for the intracellular 

and intercellular signaling network. We reasoned that a dynamical model could elucidate how TNF is 

regulated and the role of cell heterogeneity. Such a framework could enable us to investigate whether 

heterogeneity confers advantageous properties to a population, and how different regulatory influences on 

TNF are coordinated over time. Given the complexity of this system, key aspects of model development50 

were to include the most essential components, formulate equations to concisely portray biochemical 

processes, identify salient features of the data, calibrate parameters, and evaluate the extent to which 

model simulations could explain the experimental observations. 

 

To start, we examined prior experimental and computational studies on NF-κB signaling and TNF 

regulation12-15,21,26,32,33,43-45,51-56 (Supplementary Information) and synthesized this information to produce 

a system of ordinary differential equations (ODEs) representing a cell that can inducibly express, secrete, 

and sense TNF. Model reduction principles were applied to decrease complexity57. For instance, we 
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removed non-rate limiting steps and non-influential variables. Then, through several iterations, various 

network topologies and corresponding model formulations (sets of equations) were proposed, evaluated, 

and refined. Since extrinsic noise featured prominently in the data, we hypothesized that it might be possible 

to first calibrate a homogeneous model (i.e., a model of one cell) based on mean-average flow cytometry 

and microscopy data, and then incorporate heterogeneity at a later point. Calibration was conducted using 

parameter sweeps, multi-objective optimization, and an evolutionary algorithm to score, cull, repopulate, 

and mutate parameter sets over many generations (Supplementary Information). 

 

The nonlinearity of the system combined with high dimensionality of the search space presented a 

challenge for calibration, so we took a strategy of splitting the parameters into two groups to be fitted in 

separate rounds. The first round used a cell-intrinsic model of NF-κB activation, which covered TLR4 

signaling; NF-κB activation, nucleocytoplasmic translocation, and inactivation; IκB expression; and the FBD 

switch (Supplementary Fig. S3a–b). A fit to data for sTNFR and LPS (to exclude the influence of TNFR) 

resulted in a family of parameter subsets yielding similar outcomes. The second round of parameter 

estimation used the full model, which incorporates Tnf transcriptional, post-transcriptional, and translational 

regulation; mCherry expression; effects of IL-10 pre-treatment on NF-κB and TNF expression (at multiple 

stages of regulation); TNF secretion and its inhibition by BFA; the effect of population growth on 

extracellular TNF (using time-dependent logistic growth, Supplementary Fig. S3c, noting that neither LPS 

nor IL-10 affected cell viability); and TNFR signaling. Experimental perturbations (Fig. 1–2) were simulated 

by modifying the equations to capture each perturbation’s mode of action (Supplementary Fig. S3d). A 

simultaneous fit to all of the data, in which some parameters were constrained to the subsets from the first 

round and the others underwent a free search, yielded the homogeneous model (depicted in Fig. 3a, 

Supplementary Tables S2–S5). 

 

We next adapted this model to represent a population of cells that are coupled by paracrine feedback, and 

in which each cell has the same topology but varies in extrinsic noise in NF-κB. To this end, initial values 

for the NF-κB variable were assigned based on EGFP-RelA measurements from confocal microscopy (Fig. 

2d). Additionally, we observed that EGFP-RelA distributions differed between high and low density cultures 
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by a shift in values and a shift between the two activation modes (Fig. 3b), and applying a transformation 

in silico to the initial values at high density could produce a distribution in comparable units for initial values 

at low density. In summary, the model was trained on homogeneous post-LPS data and initialized with 

heterogeneous pre-LPS data. 

 

Remarkably, the use of varied EGFP-RelA levels prior to LPS stimulation, and the transformation of this 

distribution between high and low density conditions, enabled the resulting simulations to accurately capture 

heterogeneity in the data post-LPS, including intracellular TNF expression across perturbations and over 

time (Fig. 3c, compare to Fig. 1d–e) and accumulation with BFA (Fig. 3d, compare to Fig. 1c). These 

simulations also accounted for the majority of the variation in cumulative transcription factor expression and 

localization (Fig. 3e–f). Furthermore, they closely tracked the distributions and trajectories of reporter 

expression (Fig. 3g–h), and supported that cells in both the high and low activation subpopulations 

underwent FBD (Fig. 3h). These findings support our strategy of first training the model on population 

average data and then introducing cell heterogeneity in a way that incorporates the effects of cell density 

to capture how cells’ pre-LPS state predicts the response to LPS. 

 

Model validation on a distinct test dataset. We next sought to validate the model by testing whether it 

could predict responses to conditions not included in model development and parameter estimation. To this 

end, we simulated populations of cells growing at different densities and treated with varied doses of LPS. 

The FBD switch was included for conditions corresponding to LPS doses at or above 1 ng/ml (our estimate 

for a threshold at which this mechanism is active, based on the original study15). To obtain an analogous 

test dataset, reporter expression was measured by flow cytometry at 12 hps (Fig. 4a, Supplementary Fig. 

S4a). We observed that the model predictions were broadly in agreement with the experimental data: 

distributions for EGFP-RelA and mCherry had more rightward shifts with higher LPS doses, and two 

subpopulations were present with density-dependent proportions across doses. At lower doses and 

densities, the characteristic high-activation subpopulation had diminished reporter expression, resulting in 

more overlap between subpopulations within each distribution. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 17, 2019. ; https://doi.org/10.1101/610592doi: bioRxiv preprint 

https://doi.org/10.1101/610592


   
 

13 

To test if any of the above observations were specific to TLR4 signaling, we evaluated the same conditions, 

but exchanged LPS for phorbol 12-myristate 13-acetate (PMA), a membrane-permeable small molecule 

that activates protein kinase C (PKC), which then activates IKK and by extension NF-κB. As was observed 

with LPS stimulation, PMA-induced expression of both reporters was bimodal with cell density dependence, 

and mCherry expression was ligand dose-dependent (Fig. 4a). Therefore, quorum licensing-associated 

activation of the Tnf promoter, via NF-κB, does not require that NF-κB be activated via TLR4. Interestingly, 

unlike trends observed with LPS, RelA expression following PMA addition differed little from the case 

without PMA, which indicates that FBD is induced by NF-κB activation via TLR4 but not via PKC. 

 

Model analysis elucidates phenotypic and functional roles for TNF regulatory mechanisms. We next 

employed the validated model to examine the roles of different TNF regulatory mechanisms. As a first step, 

we evaluated the robustness of simulations to global parameter variation, by sampling values for the fitted 

parameters from sets of distributions with different coefficients of variation (CV) centered on the fitted 

values. Variation was tolerated to some extent (Supplementary Fig. S4b), which is consistent with the 

general phenomenon of sloppy parameter sensitivities in systems biology models58, generally indicating 

that a range of values for any one parameter or combination of parameters can yield similar fits to available 

data. However, once parameter values were varied beyond a CV of ~0.1–0.2, outcomes began to noticeably 

diverge, suggesting the system might be sensitive to certain mechanisms. We then used the model as a 

testbed to explore how key behaviors may depend upon the quantitative characteristics of individual 

mechanisms. To that end, the effect magnitudes of individual mechanisms were varied in the model, and 

the consequences were evaluated by quantifying relevant simulated outcomes: the mean average 

cumulative amounts of NF-κB and mCherry (phenotypic consequences, as they report on intracellular 

regulation) and of TNF secretion (a functional consequence, as it intercellularly coordinates the response 

to LPS). Of the mechanisms evaluated, FBD was the only one to which the NF-κB readout was sensitive, 

and all three readouts were strongly affected by FBD (Fig. 4b, Supplementary Fig. S4c). Expression of 

mCherry and TNF were both sensitive to transcriptional induction by NF-κB, as expected. TNF expression 

had the highest sensitivity to stabilizing regulation, destabilizing regulation, and TLR4 signal transduction. 

Interestingly, TNFR signal transduction arising from intercellular feedback affected mCherry and TNF 
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expression only modestly, suggesting that even if cells had greater signal transduction efficiency, there 

would not be a large functional gain. Overall, the analysis indicated that the most consequential 

mechanisms in the system behaviors studied were FBD and transcriptional induction by NF-κB. 

 

Lastly, we used the model to investigate whether the observed cell heterogeneity could produce outcomes 

that differ from a hypothetical homogeneous population. Specifically, we examined scenarios of high and 

low cell density in combination with high and low resting state levels of NF-κB. Homogeneous cells were 

defined with the mean-average value (i.e., without extrinsic noise) from the corresponding heterogeneous 

distribution, and LPS-induced outcomes were assessed using the same readouts as in Fig. 4b, along with 

the total TNF secreted by the population. Unexpectedly, across scenarios, the homogeneous population 

was slightly more activated and secreted more TNF than did the heterogeneous population (Fig. 4c left 

panel, Supplementary Fig. S4d). Within both populations, for individual cells, the initial conditions had a 

larger effect on the readouts than did the number of cells, as depicted by a greater distinction between rows 

than columns in the heatmaps. For the total TNF secretion, both of these factors were important, and the 

coupling of initial NF-κB to cell density produced a greater fold change in TNF than would be the case if 

these factors were independent (Fig. 4c right panel, diagonal arrow vs. horizontal arrows). This coupling 

was also more consequential than the distinction between population heterogeneity and homogeneity. 

Therefore, we conclude that it is not heterogeneity per se that is important for decision-making, but instead 

that the heterogeneity is regulated in a density-dependent manner leading to bimodal activation.  
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DISCUSSION 

 

This study explores the observation that within a clonal population of genetically identical macrophages, a 

potent activating stimulus (LPS) drives high expression of TNF in only a subset of cells. The observation of 

TNF heterogeneity is consistent with a recent study that showed cellular responses vary widely in response 

to such cues59. In examining the regulation that underlies this variation, we observed heterogeneity in 

transcription factor expression and localization, Tnf promoter activation, and TNF expression. Furthermore, 

the measured distributions showed states for high (wide-ranging) and low (approximately off) activation. 

This bimodality was tunable by modulating conditions related to cell density, indicating a role for intercellular 

communication potentially via secreted proteins, metabolites, or extracellular vesicles60. Using single-cell 

tracking and dynamical modeling, we proposed, developed, and validated a revised model for activation by 

quorum licensing, in which a population’s experience of density over time impacts the extent to which cells 

become poised for activation. 

 

Although bacterial QS provides a useful conceptual reference point, quorum licensing more closely 

resembles other types of phenotypic bimodality in genetically uniform populations, which have been found 

in native and synthetic contexts, across species, and can stem from various mechanisms. Some of these 

mechanisms do not require intercellular communication. For example, continuous variation in protein 

expression in a population has been shown to produce digital outcomes for growth factor-induced kinase 

activation in individual cells due to threshold effects61, and synthetic positive feedback on a promoter with 

multiple binding sites has been shown to support stochastic activation through transcriptional bursting62. 

Other instances of phenotypic bimodality do involve intercellular communication. For example, T cell 

secretion of the cytokine IL-2 feeds back through IL-2R signaling to promote further IL-2 expression. Since 

the sensing step involves capturing extracellular IL-2, the feedback is confined to local regions and only 

some cells sense sufficient to IL-2 to proliferate63. Competitive cytokine uptake is involved in TNF paracrine 

signaling as well64. In the case of a synthetic genetic circuit implemented in yeast, with topological similarity 

to TNF intercellular feedback and that exhibited strong positive feedback and rapid degradation of the 

secreted cue, the proportions of cells in upper and lower modes of activation were found to depend on cell 
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density65. Mathematical modeling showed that if there is increased reliance on autocrine signaling at low 

density compared to high density, and if at low density few cells can activate through autocrine signaling 

alone, then at high density more cells should activate as the balance shifts toward paracrine signaling where 

a cue is shared. Quorum licensing could belong to a family of bimodal activation behaviors, which may 

comprise a general phenomenon—many cytokines are regulated by pathways that overlap with those that 

regulate expression of TNF45, and single-cell RNA-seq analysis has revealed bimodality in hundreds of 

immune response gene transcripts66,67. In addition, macrophages were recently found to use a quorum-

based mechanism to resolve inflammatory processes via production of nitric oxide68. Investigating how 

various modes of heterogeneity and coordination interact represents an exciting avenue for future 

investigation. 

 

Our study suggests nuanced interpretations for several recently identified phenomena. First, it was shown 

that NF-κB can induce RelA in intracellular positive feedback termed the FBD switch15. We found that this 

effect persists over the long-term and coincides with sustained Tnf promoter activity. However, these 

dynamics differ from those of intracellular TNF protein, which undergoes a burst (in which bimodality in its 

production is evident) before FBD takes effect, and then begins to decline before mCherry reaches peak 

expression. Second, phenotypic variation among genetically identical cells is often attributed to stochasticity 

(intrinsic noise). However, in this system, the predictive power of the pre-LPS state indicates a substantial 

role for extrinsic noise. If additional species were measured to more fully characterize the pre-LPS state, 

we anticipate that the multivariate initial conditions would provide further predictive power as to how 

individual cells are poised to respond to LPS. Third, the role of TNF in intercellular communication has been 

widely studied10-14. However, we found that as an intercellular signal, TNF had a modest influence on FBD 

and Tnf promoter activity. Intercellular TNF signaling had a larger effect on TNF protein expression, 

consistent with known mechanisms through which TNFR signaling enhances TNF expression through post-

transcriptional regulation54. Since chronic TNF production is implicated in various diseases, therapeutic 

strategies have focused on blocking TNF from binding surface receptors by administering anti-TNF 

antibodies or soluble TNFR69, or administering antagonists of TLR4 or associated proteins70. While we did 
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not identify specific molecules that mediate the observed quorum licensing, if these factors can be identified 

in future work, they may represent additional targets for immunomodulation.  

 

Looking beyond the scope of this investigation, it is interesting to speculate whether quorum licensing may 

be adaptive for immune function. Such a mechanism could provide a way for a cell population to 

preemptively coordinate a response to microbial incursion prior to LPS-induced intercellular signaling. As 

an example, we consider a scenario in which a wound is experienced, resulting in microbial incursion. Since 

tissue damage can immediately trigger local sterile inflammation (via damage-associated molecular 

patterns, DAMPs)71, macrophages among other cells could locally accumulate and become primed for high 

activation through quorum licensing. Then, should replication of invading microbes produce more pathogen-

associated molecular patterns (PAMPs) such as LPS, the local inflammatory response would escalate. 

Another consequence would be to limit potent inflammation to local environments. In the scenario posed 

above—a wound experiencing an infection—some DAMPs may travel to sites that are remote from the 

wound, even if the microbes are limited to the wound site. Quorum licensing could act to limit the most 

potent macrophage-mediated responses to sites characterized by both the presence of DAMPs and the 

local accumulation of macrophages, nonlinearly driving local cytokine production. If macrophage 

recruitment could be coupled to activation in this way, then quorum licensing would enhance the specificity 

of this potent but potentially harmful facet of innate immune function. Conversely however, for conditions 

such as sarcoidosis, fibrosis, and atherosclerosis72,73 characterized by abnormal accumulation of 

macrophages and related cells, quorum licensing would be maladaptive by supporting chronic 

inflammation. These ideas each comprise compelling avenues for future investigation, building upon the 

insights gained here into mechanisms linking heterogenous macrophage activation to intercellular 

communication. 
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METHODS 

 

Cell culture. RAW 264.7 cells were cultured in complete DMEM medium (containing DMEM, 10% heat-

inactivated FBS, and 4 mM L-glutamine) in tissue culture-treated dishes (Corning). A typical plating prior to 

a flow cytometry experiment used 1.35 ml of cell culture per well of a 6-well plate (3.3×105 cells/ml for high 

density, 4.1×104 cells/ml for low density). To obtain sufficient cells at very low density (Fig. 4), 8 ml of cell 

culture was used in a 10 cm dish (5.2×103 cells/ml). Cells were treated as indicated with IL-10 at 12 h pre-

LPS (10 mg/ml, except as otherwise indicated, Fig. 1b), recombinant mouse sTNFR (8.3 μg/ml, R&D 

Systems) at 1 h pre-LPS, E. coli 055:B5 LPS (Sigma-Aldrich) or phorbol myristate acetate (Cayman 

Chemical) at the 0 h time point (36 h after plating), or brefeldin A (Sigma-Aldrich, 2 μg/ml) at 1 or 2 h post-

LPS. Media was not changed during the span of ligand treatments. For passaging, cells were incubated 

briefly in PBS-EDTA (5 mM EDTA in PBS pH 7.4), suspended by gentle scraping, pelleted by centrifugation 

(125×g, 5 min), and resuspended in medium and plated. For the higher density passaging (Fig. 2), cells 

were grown to cover a large majority of surface area of the dish prior to passaging, and this condition was 

maintained for several days leading up to the experiment. RAW 264.7 cells were a gift from David Segal 

(NIH), and reporter cells were a gift from Iain Fraser (NIH)15. 

 

Fixing samples. Media was aspirated, and cells were incubated in PBS-EDTA, detached from the plate, 

and pelleted. Supernatant was decanted, paraformaldehyde (4% PFA in PBS, 30 μl) was added, and 

samples were incubated at 4°C for 20 min. PBS-EDTA was added, cells were pelleted, and supernatant 

was decanted; this step was repeated. Several drops of flow buffer (5 mM EDTA and 0.1% BSA in PBS) 

were added, and samples were stored at 4°C until staining or flow cytometry. 

 

Immunostaining. RAW cells were fixed and then suspended in permeabilization wash buffer (0.5% 

saponin and 0.2% BSA in PBS). Surface and intracellular non-specific binding was blocked using mouse 

serum. PE-conjugated rat anti-mouse TNF antibody (BD Bioscience #554419) was added to mouse serum-

containing cell samples. Cells were incubated at 4°C for 1 h, washed two times with flow buffer, and 

collected for flow analysis. Isotype control samples used a PE-conjugated rat isotype control antibody (BD 
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Bioscience #554685). 

 

Flow cytometry. Samples were run on a BD LSRII or BD LSR Fortessa flow cytometer, using the FITC 

parameter for EGFP-RelA and the PE-Texas Red parameter for mCherry. Data were analyzed using 

FlowJo software. For experiments with reporter cells, compensation controls were made by transfecting 

HEK293FT cells with plasmids for constitutive EGFP or mCherry expression. Samples were gated on live 

(FSC-A vs. SSC-A) and single-cell (FSC-A vs. FSC-H) bases, and fluorescence values were exported from 

FlowJo and imported into Matlab for further analysis. 

 

Confocal microscopy. Experiments were conducted using a Zeiss inverted Axio Observer Z1 confocal 

microscope within a custom environmental control chamber for CO2, humidity, and temperature control. 

Fluorescence intensity was quantified using ImageJ software. At each time point, the mean background 

pixel intensity (based on multiple sampled regions) was subtracted from the mean intensity of each cell, 

and this value was multiplied by the area enclosed by the plasma membrane in the 2-D image slice to yield 

the total intensity in arbitrary units (a.u.). A similar method was applied to the area enclosed by the nucleus 

to yield the nuclear intensity for EGFP-RelA. At high density, 30 cells were quantified. Cells were excluded 

from quantification if they divided or exited the field of view during the timecourse. At low density, 20 cells 

were quantified; due to the low number of cells that could be tracked within the field of view, some traces 

start or end within the timecourse.  

 

Visualization. Flow cytometry data were plotted as probability distributions with a logicle x-axis, a standard 

method that uses linear scaling near the zero mark and log10-scaling farther from zero74. Confocal 

trajectories were plotted with a linear y-axis. For simulations corresponding to flow cytometry, to 

approximate logicle scaling and facilitate comparisons with experimental data, a small arbitrary constant 

value was added uniformly to the simulated values, and probability distributions were plotted with a log10 x-

axis. 

 

Statistical analysis. P-values for Fig. 2d–e and Fig. 3e–f were determined using one-tailed permutation 
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tests (n = 30 cells). 

 

Code availability. Model formulation, development, and calibration is discussed in Supplementary 

Information. Upon publication, model files will be made available online at github.com/bagherilab. 

 

Data availability 

Data are available in supplementary information files and from the corresponding authors upon request. 
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FIGURES 

 

 

 

Figure 1 | The TNF response to LPS is heterogeneous and requires intercellular communication. (a) 

The diagram summarizes the perturbations and stimuli applied to investigate TNF expression and 

intercellular communication (hps, hours post-stimulation with LPS). LPS activates TLR4 signaling, which 
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induces TNF expression. IL-10 pre-treatment activates IL-10R signaling, which inhibits LPS-induced TNF 

expression. Secreted TNF activates TNFR signaling, which induces TNF further through intercellular 

feedback. BFA prevents cytokine secretion, causing TNF to accumulate intracellularly. Varying the cell 

density modulates the concentrations of secreted factors such as TNF. sTNFR binds extracellular TNF to 

prevent TNFR signaling. (b) IL-10 pre-treatment diminishes LPS-induced TNF expression. In b–e, x-axes 

are on a logicle scale (linear near zero, and log10-scaled farther from zero). (c) TNF expression is 

heterogeneous with high-expressing and low-expressing subpopulations. After pre-treatment with IL-10 (10 

ng/ml) and/or treatment with LPS (100 ng/ml), cells were treated with BFA at 1 h or 2 hps. Arrows in c–e 

indicate low and high modes of the TNF distributions. (d) The full TNF response to LPS requires intercellular 

communication. (e) Intercellular feedback through secreted TNF is necessary for the full response. 
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Figure 2 | Cell density modulates the heterogeneity of macrophage activation. (a) Reporter protein 

fluorescence was measured by flow cytometry for the indicated cell densities, time points, and ligand 

treatments (IL-10 and sTNFR treatments as in Fig. 1). Percentages of highly activated cells were 

determined using a threshold (dotted vertical line) at the nadir between the two modes (arrows) of mCherry 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 17, 2019. ; https://doi.org/10.1101/610592doi: bioRxiv preprint 

https://doi.org/10.1101/610592


   
 

30 

distributions. (b) Reporter trajectories for cells at high density after treatment with sTNFR (1 h pre-LPS) and 

LPS. Cells (rows) are rank-ordered by cumulative mCherry expression and color-coded by fluorescence 

magnitude within heat maps. (c) Single-cell trajectories of total EGFP-RelA expression are color-coded red-

to-magenta, for low-to-high rank-ordered cumulative mCherry expression. The population mean is in bold. 

(d–e) Relationship between initial and cumulative total EGFP-RelA (R2 = 0.61, one-tailed permutation test 

p = 2×10–7) and between cumulative nuclear EGFP-RelA and cumulative mCherry (R2 = 0.59, one-tailed 

permutation test p = 3×10–7). Dotted lines are linear fits; axes are linearly scaled. (f) Single-cell mCherry 

trajectories, with the population mean in bold. Values are in a.u. specific to each subpanel. (g) Effect of 

culture density-associated conditions on macrophage activation and heterogeneity. Fluorescence units are 

comparable within each reporter protein and passaging density. Vertical lines are to guide the eye to low 

and high activation states. (h) Revised conceptual model for macrophage activation with differently 

activated cell density-dependent subpopulations. 
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Figure 3 | Dynamical population model for the signaling and regulatory network. (a) The diagram 

summarizes the variables, reactions, and mechanisms in the model of macrophage activation with quorum 

licensing. Symbols: bold non-italicized text for variables; horizontal bars for compartment boundaries; n for 

nuclear and c for cytoplasmic; asterisks for activated receptors or kinases; δ and circles for perturbation-

specific effects; diagonal arrows for ON/OFF effects; graphs for time-dependent processes. (b) Generation 

of comparable distributions of initial values. The observed distributions in (i) are in non-comparable units; 

to initiate simulations with NF-κB distributions that vary between high and low cell density and that match 

experimental observations for EGFP-RelA, we impute from an observed high density distribution (black) a 
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low density distribution (teal) that matches the observed low density distribution (blue). The transform shifts 

the distribution (ii) and adjusts the proportion of cells in high vs. low states using a Gaussian mixture model 

of two populations fit to the high density distribution (iii), such that the combined transform (iv) generates 

an imputed distribution matching the observed low-density distribution (blue) with units relatable to high 

density (black). (c–d) Simulated TNF distributions from the calibrated model match experimental trends for 

cell density and ligand conditions (Fig. 1d–e) and BFA conditions (Fig. 1c). All cells have the topology in a 

and are heterogeneous in the initial value and transcription of Rela RNA and the initial value of cytoplasmic 

NF-κB–IκB, derived from b. To approximate logicle scaling characteristic of flow cytometry data and to 

prevent stretched scaling approaching log zero, simulated outcomes were plotted after adding a constant 

value uniformly and log-transforming the values. (e–h) Comparison of simulated and experimental 

outcomes for cells at high density with sTNFR and LPS. (e–f) Cumulative total EGFP-RelA (R2 = 0.61, one-

tailed permutation test p = 3×10–7) and cumulative nuclear EGFP-RelA (R2 = 0.60, one-tailed permutation 

test p = 4×10–7). Dotted lines are linear fits; axes are linearly scaled. (g) Coefficient of variation (CV) in 

mCherry and total EGFP-RelA expression over time. (h) Trajectories were grouped post hoc by high or low 

activation. Mean averages are in bold. Simulations are shown with and without FBD.  
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Figure 4 | Phenotypic and functional consequences for mechanisms of TNF regulation. (a) Predicted 

and measured distributions of reporter expression across cell densities and doses of LPS or PMA at 12 

hps. Very low density is 1/8th of low density. Arrows indicate the modes of the distributions for high density 

without stimulus or with 100 ng/ml of LPS or PMA. X-axes are on a logicle scale for flow cytometry and 

transformed for simulations as previously (Fig. 3). For simulations: low and very low density used the same 
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initial values; mCherry distributions without stimulus were obtained without FBD and without paracrine 

feedback; and FBD was applied for LPS doses at and above 1 ng/ml. (b) Simulated outcomes after 

individually varying the effect magnitudes of mechanisms that regulate TNF, with perturbations numbered 

as depicted in the diagram. Outcomes were assessed using the 12 hps time-integrated amounts of total 

EGFP-RelA, mCherry, and secreted TNF (i.e., cumulative secreted flux) per cell at high density. Conditions 

corresponding to the origin on the x-axis indicate base case effect magnitudes (1x on the color scale for 

outcomes). Abbreviations: stabilizing regulation (SR), destabilizing regulation (DSR). (c) Comparison of 

activation for homogeneous (hypothetical) or heterogeneous (observed) initial distributions of transcription 

factor. For each readout, a value of 1x was set for the outcome given a heterogeneous population at low 

density with low initial values. Homogeneous initial values were set at the mean averages of corresponding 

heterogeneous distributions. In the right panel, the effect of the number of cells is incorporated into the total 

amount of secreted TNF. Arrows indicate relevant comparisons, with key trends noted in bold text. 
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