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Abstract

Techniques of multivariate pattern analysis (MVPA) can be used to decode the dis-
crete experimental condition or a continuous modulator variable from measured brain
activity during a particular trial. In functional magnetic resonance imaging (fMRI),
trial-wise response amplitudes are sometimes estimated from the measured signal us-
ing a general linear model (GLM) with one onset regressor for each trial. When using
rapid event-related designs with trials closely spaced in time, those estimates are highly
variable and serially correlated due to the delayed shape of the hemodynamic response
function (HRF). Here, we describe inverse transformed encoding modelling (ITEM), a
principled approach of accounting for those serial correlations and decoding from the
resulting estimates, at low computational cost and with no loss in statistical power.
We use simulated data to show that ITEM outperforms the current standard approach
in terms of decoding accuracy and analyze empirical data to demonstrate that ITEM
is capable of visual reconstruction from fMRI signals.
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1 Introduction

In functional magnetic resonance imaging (fMRI), data have been traditionally analyzed
with univariate encoding models (Brodersen et al., 2011b) such as general linear models
(GLMs) that construct a relationship between experimental variables and the measured
signal in one voxel which allows to statistically test activation differences between exper-
imental conditions (Smith, 2004; Monti, 2011). Since quite some time ago, however, data
are also being analyzed with multivariate decoding algorithms (Brodersen et al., 2011a)
such as support vector machines (SVMs) that extract experimental variables from the
measured signals in many voxels which allows to reliably decode experimental conditions
from brain activation (Haynes and Rees, 2006; Haynes, 2015). These latter techniques
are collectively refered to as multivariate pattern analysis (MVPA).
Besides directly decoding from samples extracted from pre-processed fMRI time series,
a common approach of MVPA for fMRI consists in calculating session-wise parameter
estimates and the use of linear support vector machines (Cox and Savoy, 2003; LaConte
et al., 2005) to decode experimental manipulations from multivariate signals in a search-
light moving through the brain (Kriegeskorte et al., 2006; Haynes et al., 2007). However,
the same machinery can also be applied to trial-wise parameter estimates which can be
obtained from post-stimulus time-window averaging (Ress and Heeger, 2003), using a
finite impulse response approach (Ress et al., 2000) or via trial-wise response regression
(Rissman et al., 2004). While the higher number of samples in trial-wise estimates and
the lower variance of session-wise estimates should approximately “cancel out”, employ-
ing trial-wise signals comes closer to the original idea of “decoding” as it allows, for each
individual trial, to make a prediction which condition it belongs to.
Trial-wise response amplitudes are most often estimated from the fMRI signal using a
GLM with one onset regressor per trial (Rissman et al., 2004) generated by convolution
with the hemodynamic response function (HRF; Friston et al., 1998; Henson et al., 2001).
When using rapid event-related designs with trials closely spaced in time, those estimates
are highly variable and serially correlated due to the temporally extended shape of the
canonical HRF (Mumford et al., 2012; Turner et al., 2012) which leads to inaccurate
parameter estimates and invalid statistical tests (Mumford et al., 2014).
Mumford and colleagues systematically assessed different methods of obtaining trial-
wise parameter estimates and found that the so-called “least squares, separate” method
(LS-S) performed best in terms of the MVPA decoding accuracy among all methods
considered (Mumford et al., 2012). The LS-S method obtains each trial’s response via
a GLM including a regressor for that trial and another regressor for all other trials
(Mumford et al., 2012). Consequently, each trial requires fitting a separate GLM and
calculating activation patterns for e.g. 100 trials needs 100 GLMs.
In this work, we introduce a new solution to the problem of correlated trial-by-trial
parameter estimates, termed inverse transformed encoding modelling (ITEM). Instead
of modifying the way how trial-wise response amplitudes are estimated, this solution
considers the actual distribution of the trial-wise parameter estimates, as implied by
the trial-wise design matrix that is used to generate them. In this way, correlations are
not artificially reduced, but naturally accounted for in the subsequent decoding analysis.
Importantly, ITEM does not require fitting a separate GLM for each trial, thus extremely
lowering the computational cost of trial-wise MVPA for fMRI.
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The structure of this paper is as follows. First, we will outline the theoretical frame-
work underlying ITEM-based analyses (see Section 2). Practitioners not interested in the
mathematical details can read a brief summary of the methodology (see Section 2.1).
Second, we will perform a simulation study on classification from fMRI data and demon-
strate that ITEMs are as powerful as LS-S or, in certain critical situations, even more
powerful (see Section 3). Third, we will describe an empirical application in which ITEMs
are used for reconstruction of massively parallel visual information in an extremely rapid
event-related design (see Section 4). Finally, we will discuss our results (see Section 5).
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2 Theory

In this section, we introduce the mathematical details of inverse transformed encoding
models (ITEMs). Non-technical readers are recommended to read a brief summary of
the methodology (see Section 2.1) and then directly proceed to the simulation study (see
Section 3) or the empirical validation (see Section 4).

2.1 Brief summary of the methodology

In univariate fMRI data analysis, general linear models (GLMs) are commonly used to
estimate activation patterns associated with experimental conditions (see Section 2.2). In
multivariate fMRI data analysis, a trial-wise GLM is sometimes used to obtain trial-wise
response amplitudes on which decoding analyses are then performed (see Section 2.3). We
use a mapping between the trial-wise and the standard GLM (see Section 2.4) and derive
the full trial-by-trial correlation structure (see Section 2.5) which gives rise to a new model
operating on the trial-wise parameter estimates themselves (see Section 2.6). Extending
this model to multivariate signals (see Section 2.7) and inverting its explanatory direc-
tion (see Section 2.8) allows to classify discrete experimental conditions or reconstruct
continuous parametric modulators (see Section 2.9) while at the same time accounting
for trial-to-trial correlations due to the slow hemodynamic response.

2.2 The standard general linear model

In functional magnetic resonance imaging (fMRI) data analysis, it is common to use
general linear models (GLMs) for statistical inference (Friston et al., 1994; Friston, 1995;
Monti, 2011; Carp, 2012). In a GLM, a single voxel’s fMRI data (y) are modelled as a
linear combination (β) of experimental factors and potential confounds (X), where errors
(ε) are assumed to be normally distributed around zero and to have a known covariance
structure (V ), but unknown variance factor (σ2):

y = Xβ + ε, ε ∼ N(0, σ2V ) . (1)

In this equation, y is the n× 1 measured signal, X is the n× p design matrix, β is a p× 1
vector of regression coefficients, ε is an n× 1 vector of errors or noise, σ2 is the variance
of these errors and V is an n× n temporal correlation matrix where n is the number of
data points and p ist the number of regressors.
The design matrix X usually consists of stimulus functions representing experimental
conditions which are convolved with a hemodynamic response function (HRF; Friston
et al., 1998; Henson et al., 2001) and a set of nuisance regressors not based on HRF
convolution such as movement parameters. The covariance structure V is, at least in Sta-
tistical Parametric Mapping (SPM), obtained from a whole-brain analysis (Friston et al.,
2002a; Friston et al., 2002b) and a whitening matrix W = V −1/2 is applied to measured
data and design matrix. This is equivalent to estimating the regression coefficients using
the weighted least squares (WLS) approach as

β̂ = (XTV −1X)−1XTV −1y . (2)
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Based on estimated model parameters β̂, classical statistical inference can be performed
by defining t- or F -contrasts, calculating the respective t- and F -statistics and comparing
them to the t- or F -distribution under the respective null hypothesis (Ashburner et al.,
2003, ch. 8; Friston et al., 2007, ch. 9).

2.3 The trial-wise general linear model

The standard GLM for fMRI makes the assumption that all trials within one condition,
i.e. all events in one column of the design matrix X, elicit the same response in the
measured signal y. If we wish to relax this assumption or if we want to analyze trial-wise
responses separately, we can specify a trial-wise general linear model :

y = Xtγ + εt, εt ∼ N(0, σ2
t V ) . (3)

In this equation, Xt is an n × t trial-wise design matrix, γ is a t × 1 vector of trial-wise
response amplitudes, εt is an n× 1 vector of errors and σ2

t is the variance of these errors
where t is the number of trials in the experiment.
More precisely, Xt is a matrix with one column for each trial and each column consists
of one single event, convolved with the hemodynamic response function (see Figure 1A).
This allows to obtain trial-wise parameter estimates:

γ̂ = (XT
t V

−1Xt)
−1XT

t V
−1y . (4)

2.4 The transformation matrix T

The standard GLM and the trial-wise GLM are two different encoding models for uni-
variate, i.e. single-voxel fMRI data. The standard GLM allows to estimate condition-
specific effects and contrast them for statistical inference (Friston et al., 1994) whereas
the trial-wise GLM allows to estimate trial-wise response amplitudes from the BOLD
signal (Rissman et al., 2004).
Typically, the n × p design matrix X has a scan-by-regressor structure where each row
corresponds to one fMRI scan and each column corresponds to one experimental condition
(see Figure 1A), i.e. stimulus onsets and durations, convolved with the canonical HRF.
In contrast, the n× t design matrix Xt has a scan-by-trial structure so that each column
corresponds to one event (see Figure 1A) and basically is an onset regressor with a single
HRF at the time of the corresponding trial. The core idea of this contribution is to connect
these matrices via the relation

X = Xt T (5)

where the t× p transformation matrix T is defined such that it converts trial-wise HRFs
into condition regressors (see Figure 1). In the case of a purely categorical design, T will
simply be a binary indicator matrix where tij = 1 indicates that the i-th trial belongs
to the j-th condition (see Figure 1A). If there is a parametric modulator in the design
matrix, T will have a corresponding column with the modulator values belonging to this
regressor (see Figure 1B).
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Usually, the design matrix also includes nuisance regressors Xr, e.g. events of no interest,
movement parameters, filter regressors or the implicit baseline (see Figure 1B). These
nuisance regressors prohibit a trial-to-scan mapping since they are not based on trial-wise
modulation. In this case, to preserve equation (5), these regressors are simply appended
to Xt and T takes on a block-diagonal structure as

X∗t =
[
Xt Xr

]
T ∗ =

[
T 0
0 Ir

]
(6)

where X∗t is the n×(t+r) “augmented” trial-wise design matrix, T ∗ is the (t+r)×(p+r)
“augmented” transformation matrix (see Figure 1B) and r is the number of nuisance
regressors. In what follows, when we use the symbols Xt and T as well as t and p, we
almost always refer to the augmented quantities X∗t and T ∗ as well as (t+ r) and (p+ r).

2.5 The uncorrelation matrix U

Given that trial-wise parameter estimates γ̂ – representing BOLD signal response ampli-
tudes during individual trials – have been estimated from the data via (4), there will be
a certain covariance between them due to the fact that trial-wise HRF regressors overlap
and are thus temporally correlated with each other. It can be shown that this covariance
is a function of the trial-wise design matrix Xt (see Appendix A):

U = (XT
t V

−1Xt)
−1 . (7)

We refer to this matrix as the uncorrelation matrix, because it allows to decorrelate trial-
wise response amplitudes when their HRFs are overlapping in time. Using this covariance
matrix that directly derives from the trial-wise design matrix, the correlation between
adjacent trials imposed by temporally close HRFs can be easily accounted for in a second
model on the trial-wise parameter estimates (see next section).
Notably, the U matrix does not only capture correlations between trial-wise parameter
estimates alone (see Figure 2A), but also accounts for possible correlations between trial-
wise HRFs and nuisance variables such as filter regressors (see Figure 2B). This suggests
not to regress nuisance variables beforehand, but instead to include all processes of interest
and of no interest into the model at once (see Figure 1B).
Note that the present derivation is based on assuming constant trial-wise response ampli-
tudes within experimental conditions. If this assumption is to be relaxed, the covariance
of the trial-wise parameter estimates becomes more complicated (see Appendix B) and
restricted maximum likelihood (ReML) estimation is required. We have used this ReML
extension in the simulation study of this paper (see Section 3), but have found no evi-
dence of improvement in empirical analyses (see Section 4), and therefore only present it
as a possible extension of our framework (see Appendix B).
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Figure 1. The transformatrix matrix. This figure illustrates how the T matrix maps from
the trial-wise design matrix Xt to the standard design matrix X. Generally, T has as many
rows as Xt has columns (the number of trials) and as many columns as X (the number
of conditions). (A) In a very simple case (from our simulation example, see Section 3), T
is just a binary indicator matrix that collects individual trials from Xt into experimental
conditions in X. (B) In a more complicated case (from our empirical validation, see
Section 4), T also has columns with continuous values to emulate parametric modulators
in X and an identity matrix at the bottom right to append nuisance regressors to X.
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Figure 2. The uncorrelation matrix. This figure illustrates how the U matrix derives
from the trial-wise design matrix Xt and scan-to-scan covariance matrix V . Generally,
the inverse of U is a product of Xt with itself, weighted by the inverse of V . (A) In a very
simple case (from our simulation example, see Section 3), U only encodes correlations
between adjacent trials. The closer two trials are to each other in time, the stronger are
their HRFs correlated, illustrated by red entries in U for short inter-stimulus-intervals in
Xt. (B) In a more complicated case (from our empirical validation, see Section 4), the
augmented X∗t also includes nuisance regressors, such that U not only encodes trial-by-
trial correlations (upper left portion), but also the shared variation between trial-wise
HRFs and regressors of no interest (rightmost columns and lowermost rows). Note that
the U matrix does not depend on the measured data (except by V which is usually
estimated from a whole-brain data matrix Y ) and can in principle be constructed once
the experimental design is fixed.
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2.6 The transformed encoding model

Together, the transformation matrix T and the uncorrelation matrix U can be used to
define a new linear model on the trial-wise parameter estimates γ̂ (see Appendix A):

γ̂ = Tβ + η, η ∼ N(0, σ2U) . (8)

We refer to this trial-level GLM as a transformed encoding model (TEM), because it
operates on a transformed version of the data, namely the trial-wise response amplitudes
γ̂, and uses the transformation matrix T as its design matrix.
Importantly, information about trials is not hidden in X or Xt anymore, but directly
accessible via the rows of T which makes the model suitable for trial-wise decoding
analyses. Parameter estimates for β are given by

β̂ = (T TU−1T )−1T TU−1γ̂ . (9)

and it can be shown (see Appendix A) that they are identical to the parameter estimates
of the standard GLM given by (2).

2.7 The multivariate transformed encoding model

Given that trial-wise response amplitudes γ̂ have been estimated in a number of voxels,
e.g. a searchlight or a ROI, we can turn the univariate GLM (8) into a multivariate GLM
(Allefeld and Haynes, 2014), the multivariate transformed encoding model (MTEM):

Γ̂ = TB +H, H ∼ MN(0, U,Σy) . (10)

In this equation, Γ̂ = [γ̂1, . . . , γ̂v] is a t × v matrix of horizontally concatenated trial
responses over voxels, B and H are the corresponding extensions of β and η, MN indicates
a matrix-normal distribution and Σy is the v×v unknown spatial covariance matrix where
v is the number of voxels currently analyzed.
Importantly, while the voxel-to-voxel covariance changes depending on the set of voxels
considered and actually allows for the multivariate encoding exploited in decoding analy-
ses, the trial-to-trial covariance remains the same, namely U , because it only depends on
the trial-wise design matrix Xt and the scan-to-scan covariance matrix V used to generate
them, as indicated by equations (4) and (7).
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2.8 The inverse transformed encoding model

In principle, our investigation could stop here and data analysis proceed by statistically
inferring single-voxel activation differences using the the univariate TEM (see Section 2.6)
or multi-voxel pattern differences using the multivariate TEM (see Section 2.7). This
would only require to transform measured data Y into trial-parameter estimates Γ̂ via (4),
to incorporate the trial-to-trial covariance U calculated from (7) and could operate in the
standard frameworks for the univariate GLM (Friston et al., 1994) and the multivariate
GLM (Allefeld and Haynes, 2014).
However, our goal here is not statistical inference, i.e. describing the trial-wise response
amplitudes Γ̂ in terms of the experimental design T , but decoding analysis, i.e. recovering
the experimental design from trial-wise response amplitudes. Therefore, we define an
extraction filter W as the inverse of the activation pattern B. Then, it can be shown
(see Appendix C) that the forward GLM (10) implies the following backward GLM, the
inverse transformed encoding model (ITEM):

T = Γ̂W +N, N ∼ MN(0, U,Σx) . (11)

In this equation, T occurs as the “data” matrix, Γ̂ becomes the “design” matrix1, N is a
t× p “noise” matrix, MN again denotes a matrix-normal distribution and Σx is the p× p
unknown covariance matrix across experimental design variables.
In the present work, to assess decoding accuracy, ITEMs will be estimated by cross-
validation (CV) across fMRI recording sessions. More precisely, we will perform leave-
one-session-out cross-validation across S sessions.
In each CV fold j = 1, . . . , S, a weight matrix Ŵ¬j is estimated from all except the j-th
session via weighted least squares which is the best linear unbiased estimator (BLUE) in
this situation (see Appendix C):

Ŵ¬j = (Γ̃T Ũ−1Γ̃)−1Γ̃T Ũ−1T̃

T̃ = ∪i6=j Ti
Γ̃ = ∪i6=j Γ̂i

Ũ = ∪i6=j Ui .

(13)

Then, this weight matrix is used to obtain decoded design variables T̂j via simple out-of-
sample prediction in the left-out session j:

T̂j = Γ̂j Ŵ¬j . (14)

1More precisely, the inverse transformed encoding model reads

T = [Γ̂, 1t]W + N, N ∼ MN(0, U,Σx) (12)

where a t × 1 vector of ones is added to the “design matrix” Γ̂ as a constant regressor, such that the
model is able to reconstruct discrete differences with arbitrary offsets in the “data matrix” T .
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2.9 Decoding by classification or reconstruction

In the ITEM framework, decoding is generally understood as recovering an independent
variable and two types of decoding analysis are possible: (i) classification, i.e. decoding
discrete categories, e.g. experimental conditions; and (ii) reconstruction, i.e. decoding
continuous variables, e.g. parametric modulators.
In cases of classification, we measure decoding accuracy based on proportion correct. First,
a p× q contrast matrix C is defined where q is the number of classes to discriminate and
cij = 1 indicates that the i-th regressor in T belongs to the j-th class.2 The design
variables to be decoded are then given by

T̃ = TC . (15)

When predicted variables have been calculated from (14), decoding accuracy is deter-
mined as the proportion of trials in which the class with the largest decoded value is
identical with the class that was actually present, i.e.3

Pcorr =
t∑
i=1

q∑
j=1

[
t̂ij = max

({
t̂i1, . . . , t̂iq

})]
· t̃ij . (16)

In cases of reconstruction, we measure decoding accuracy via correlation coefficients. First,
a p×q contrast matrix C is defined where q is the number of variables to reconstruct and
cij = 1 indicates that the i-th regressor should be evaluated.4 Then, the design variables
to be decoded are again given by equation (15).
When predicted variables have been calculated from (14), decoding accuracy is deter-
mined as the Pearson correlation between original regressor and reconstructed regressor
for each variable of interest, i.e.

rj = corr(t̂•j, t̃•j), j = 1, . . . , q . (17)

Note that, when T has been reconstructed via T̂ , any desired measure of decoding ac-
curacy may be applied. For example, if parametric regressors represent basis functions
over stimulus space (e.g. Brouwer and Heeger, 2009), it may be more informative to re-
cover the stimulus by combining information across reconstructed basis functions within
trials (e.g. Sprague et al., 2016, suppl. eq. 5) rather than calculating the reconstruction
accuracy of each basis function across trials.

2When there are just two classes, C can also be a p× 1 vector with +1’s and –1’s.
3Equation (16) uses Iverson bracket notation, i.e. [p] = 1, if p true and [p] = 0, if p false.
4In our implementation of the method (see Section 6), C can also be a p× 1 vector.
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Figure 3. A hypothetical reconstruction. This figure summarizes our approach and illus-
trates trial-wise reconstruction of experimental design information. (A) Using the multi-
variate transformed encoding model (see Section 2.7), the trial-wise parameter parame-
ters Γ̂ are assumed to be a linear combination of experimental conditions T , weighted by
voxel-wise regression coefficients B, and a noise matrix H with trial-by-trial correlations
U and voxel-to-voxel covariance Σy. For this example, T and U were obtained from an
SPM template data set on face repetition priming (Henson et al., 2002) while B and Σy

were chosen as ground truth. B was set such that voxels exhibit an overall effect (e.g.
voxel 1), main effects (voxels 3 & 7) or an interaction effect (voxel 9) in the 2× 2 design.
(B) Using the inverse transformed encoding model (see Section 2.8), a reconstruction T̂
is obtained by multiplying the trial-wise response amplitudes Γ̂ with a weight matrix Ŵ ,
estimated from the inverse model. As one can see when comparing T̂ with T , experimen-
tal conditions can be read out from the reconstruction (see Section 2.9). The product of
activation pattern and estimated weight matrix, BŴ , approximates the identity matrix
– confirming an assumption made when deriving the inverse model (see Appendix C).
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3 Simulation

3.1 Methods

For simulation validation, we repeat and adapt a simulation reported earlier (Mumford
et al., 2012) that was designed to investigate different methods of obtaining trial-wise
response amplitudes for multivariate pattern analysis in fMRI.
In our simulation, we compare three approaches of inference from trial-wise parame-
ter estimates: the näıve approach ignoring trial-by-trial correlations (Mumford: “least
squares, all”, LS-A), the state-of-the-art approach found optimal in the previous simu-
lation (Mumford: “least squares, separate”, LS-S) and the approach proposed here, i.e.
inverse transformed encoding modelling (ITEM). Within our framework, LS-A is equiv-
alent to setting U = It, i.e. assuming no correlation between adjacent trials. LS-S cannot
be represented within our approach, because it is based on obtaining trial-wise parameter
estimates using a separate design matrix for each trial, including one regressor for this
trial and one regressor for all other trials (Mumford et al., 2012).
In the simulation, data were generated as follows: First, trials were randomly sampled
from two experimental conditions, A and B. Second, trial-wise response amplitudes γ were
sampled from normal distributions with means µA = 5 and µB = 3 and variances σ2

A and
σ2
B where σA = σB = 0.5. Third, inter-stimulus-intervals tisi were sampled from a uniform

distribution U(tmin, tmax) where tmin ∈ {0, 2, 4} and tmax = tmin + 4 seconds. Fourth, the
design matrix Xt was generated based on the sampled inter-stimulus-intervals tisi and
convolution with the canonical hemodynamic response function (cHRF). An exemplary
design matrix for the case tisi ∼ U(0, 4) is given on the left of Figure 1A. Finally, data
were generated by multiplying the trial-wise design matrix Xt with the sampled trial-wise
response amplitudes γ and adding zero-mean Gaussian noise ε with variance σ2

ε where
σε ∈ {0.8, 1.6, 3}. In this way, N = 1,000 simulations with S = 2 sessions (for cross-
validation) and t = 60 trials (30 per condition) were performed. A detailed description of
the simulation and our modifications is given in Appendix E.
After data generation, models were estimated as follows: For LS-A and ITEM, trial-wise
parameter estimates γ̂ were obtained by equation (4) using design matrix Xt (Mumford:
XS). For ITEM, γ̂ was subjected to an additional restricted maximum likelihood (ReML)
analysis, as described in Appendix B, in order to separate the natural trial-to-trial vari-
ability (coming from σ2

A and σ2
B) from the induced trial-by-trial correlations (coming from

Xt). For LS-S, γ̂ was obtained as described above using trial-specific design matrices Xi

where i = 1, . . . , t (Mumford: XT i). Afterwards, parameter estimates were subjected to
a two-sample t-test in order to assess statistical power (by calculating the proportion of
positive results when the alternative hypothesis is true) and a logistic regression in order
to assess decoding accuracy (see next section).
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3.2 Results

The present simulation entails a comparison between activation patterns from two ex-
perimental conditions. The classical equivalent to decoding between two conditions is
a two-sample t-test. For LS-A and LS-S, trial-wise parameter estimates γ̂ are simply
grouped into two vectors which are t-tested against each other. For ITEM, in order to
account for correlations in trial-wise parameter estimates γ̂, the transformed encoding
model given by (8) is estimated using (9) with T and U given by Figure 1A and 2A, re-
spectively. Then, standard contrast-based inference, as implemented in SPM, is performed
(Ashburner et al., 2003, ch. 8; Friston et al., 2007, ch. 9).
Each procedure leads to one p-value per simulation and the null hypothesis H0 : µA = µB
is rejected, if p < 0.05. We found that, when setting µA = µB, such that H0 is true,
all approaches considered have a false positive rate (FPR) of around 5% (results not
shown) for all levels of trial collinearity (tisi) and signal-to-noise ratio (σ2). Therefore,
none of the approaches inflates the FPR beyond its nominal level. Furthermore, when
setting µA 6= µB, such that H1 is true, the true positive rate (TPR) of LS-A drastically
suffers from a combination of low stimulus intervals and high noise variance (see Figure 4)
whereas ITEM reaches our outperforms LS-S in terms of power (see Figure 4). Therefore,
ITEM offers the most powerful test across all scenarios considered.
Of course, the two experimental conditions cannot only be statistically tested against
each other, but also read out from the generated data. A very simple method for decoding
between two conditions is a logistic regression. For LS-A and LS-S, condition labels for
A and B are coded as 1 and 2 and the corresponding logistic model is estimated. Then,
log-odds for the left-out session are predicted from trial-wise response amplitudes and
trials are classified into conditions A and B (Mumford et al., 2012). For ITEM, as the
presence of correlations in trial-wise parameter estimates makes logistic regression more
difficult, the decoding procedure outlined above (see Sections 2.8 and 2.9) was employed
for cross-validated classification of trial types. For all approaches, proportion correct, i.e.
the percentage of trials correctly assigned, was used as the measure of decoding accuracy
and decoding accuracy was averaged over the two sessions.
Each procedure leads to one Pcorr per simulation the distributions of which are visualized
as box plots across simulations. We found that, when setting µA = µB, such that no dif-
ference between the conditions exist, all approaches considered have an average decoding
accuracy of around 50% (results not shown) for all levels of trial collinearity (tisi) and
signal-to-noise ratio (σ2). Therefore, there is no evidence for above-chance classification
in the absence of a real effect. Furthermore, when setting µA 6= µB, such that there is a
real effect, LS-A drastically suffers from a combination of low stimulus intervals and high
noise variance (see Figure 5) whereas ITEM decoding accuracies are up to 8% higher
than the those of LS-S (see Figure 5). Therefore, the ITEM approach outperforms the
original simulation’s best approach in terms of sensitivity, especially for low inter-stimulus
intervals and high amount of noise.
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Figure 4. Simulation validation (1): statistical power. For each combination of inter-
stimulus-intervals (tisi) and noise variance (σ2), the true positive rate (TPR) of a two-
sample t-test between trial-wise response amplitudes from two experimental conditions
is given for the näıve approach (LS-A, red), the standard approach (LS-S, blue) and the
proposed approach (ITEM, green). For high tisi and low σ2, all tests have power of 100%.
When the noise variance is high (bottom row) or inter-stimulus-intervals are low (left
column), the ITEM approach outperforms or levels with the state-of-the-art approach.
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Figure 5. Simulation validation (2): decoding accuracies. For each combination of inter-
stimulus-intervals (tisi) and noise variance (σ2), decoding accuracies for classification be-
tween two experimental conditions are given for the näıve approach (LS-A, red), the
standard approach (LS-S, blue) and the proposed approach (ITEM, green). For high tisi
and low σ2, decoding accuracies of all algorithms are close to 1. When the noise variance
is high (bottom row) or inter-stimulus-intervals are low (left column), the ITEM approach
outperforms or levels with the state-of-the-art approach.
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4 Application

4.1 Experiment

For empirical validation, we re-analyze data from an earlier experiment on visual receptive
fields (Heinzle et al., 2011) that was designed to investigate relationships between sensory-
visual and cortico-cortical receptive fields.
Four right-handed, healthy subjects participated in a retinotopic mapping experiment
that was used to define regions of interest (ROI) for visual cortices (left and right, V1
through V4) as well as a visual stimulation experiment that is used for ITEM-based visual
reconstruction in the present work.
In the main experiment, subjects were viewing a dartboard-shaped flickering checker-
board stimulus (see Figure 6A). The whole display was subdivided into 4 rings and 12
segments, giving rise to 48 sectors (see Figure 6B). Across trials, these sectors changed
their local contrast independently between 4 levels generated using M-sequences (Buračas
and Boynton, 2002). These intensity levels were logarithmically spaced between 0.1 and 1
and used for analysis as linearly spaced between 0 and 1 in steps of 1/3. The duration of
one trial was 3 s and there was no inter-stimulus-interval (tisi = 0 s). In total, 100 trials
were presented in each of the 8 sessions.
Magnetic resonance imaging (MRI) data were collected on a 3-Tesla Siemens Trio with
a 12-channel head coil. In each session of the visual stimulation experiment, 220 T2*-
weighted, gradient-echo EPIs were acquired at a repetition time TR = 1,500 ms, echo time
TE = 30 ms, flip angle α = 90° in 25 slices (slice thickness: 2 mm (+ 1 mm gap); matrix
size: 64× 64) resulting in a voxel size of 3× 3× 3 mm. During the separate retionotopic
mapping experiment, 160 T2*-weighted volumes were acquired with 33 slices, TR = 2,000
ms and all other parameters as above.

A B

Figure 6. Empirical validation (1): experimental paradigm. (A) Exemplary stimulus
display during a single trial of the receptive field mapping experiment. (B) Schematic
view of the 48 sectors which the stimulus display consists of.
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4.2 Analysis

In pre-processing, functional MRI data were converted from 3D into 4D NIfTIs, trans-
formed into the BIDS format (Gorgolewski et al., 2016), reoriented to the commissura
anterior (AC), acquisition-time-corrected (slice timing) and head-motion-corrected (spa-
tial realignment) using SPM12. The retinopic mapping was based on a standard traveling
wave method (Wandell et al., 2007) and analyzed to yield flattened angular and eccen-
tricity maps (Heinzle et al., 2011).
For statistical analysis, a standard design matrix X was specified with the following re-
gressors: (i) 1 onset regressor describing visual stimulation throughout the experiment; (ii)
48 parametric modulators describing intensity levels in the 48 sectors of the visual stimu-
lus; (iii) 2 onset regressors describing the control fixation task during the experiment; (iv)
6 motion regressors describing head movements; (v) 5 filter regressors describing periodic
drifts; and (vi) 1 constant regressor describing the implicit baseline. An example design
matrix for one session from one subject is given on the left of Figure 1B. Using this
model, the temporal covariance matrix V was estimated using SPM’s AR(1) model. Af-
terwards, estimation of trial-wise response amplitudes and linear trial-wise reconstruction
was performed.
The ITEM-based analysis performed here consisted in four steps: First, using SPM-
compatible MATLAB code (see Section 6), the trial-wise design matrix Xt and the
transformation matrix T (see Figure 1B) were generated based on design information
assembled by SPM during model specification. Second, trial-wise parameter estimates γ̂
and the uncorrelation matrix U (see Figure 2B) were calculated using equations (4) and
(7), respectively.
Third, as our goal was not searchlight decoding, but visual reconstruction from V1, voxel
selection was performed via cross-validated Bayesian model selection (cvBMS; Soch et al.,
2016) using routines from the MACS toolbox (Soch and Allefeld, 2018). To this end, 48
single-sector models, each describing intensity levels in one of the 48 sectors, and 1 null
model, describing no individual sector, were specified as design matrices T predicting trial
responses Γ̂. Then, models were assessed using the cross-validated log model evidence
(cvLME) and the family of single-sector models was compared against the null model to
identify voxels processing visual information. In each hemisphere, the 48 V1 voxels with
the highest evidence in favor of the single-sector models were used for reconstruction in
the left-out session, thereby avoiding circularity of the analysis.
Finally, session-wise transformation matrices T , uncorrelation matrices U and response
amplitudes within the selected voxels Γ̂ were used for cross-validated reconstruction of
intensity levels in the 48 sectors using equations (13) and (14). For all reconstructions,
correlation coefficient was used as a measure of decoding accuracy and decoding accuracy
was averaged over sessions and subjects, but not sectors.

4.3 Results

Using an ITEM-based analysis, visual contrast in almost all parts of the visual field could
be reliably decoded from fMRI signals in left and right V1 (see Figure 7C). Reconstruction
performance is better for sectors which are far from the center (e.g. 45 vs. 9) and for
sectors which are close to the horizontal axis (e.g. 45 vs. 48) of the visual field, providing
evidence for the so-called “oblique effect” in visual cortex (Li et al., 2003).
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To compare the ITEM approach against LS-A and LS-S, the same reconstruction was
applied without incorporating the temporal covariance matrix U (LS-A) and to trial-wise
response amplitudes estimated via separate design matrices Xi (LS-S). As expected, LS-A
suffers extremely from trial-by-trial correlations induced by low inter-stimulus-intervals
(see Figure 7A). LS-S improves significantly over LS-A in terms of decoding accuracies
(see Figure 7B), but is still outperformed by ITEM (see Figure 7C).
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Figure 7. Empirical validation (2): decoding accuracies. For each sector (see Figure 6B),
cross-validated decoding accuracies are given as correlation coefficients between presented
contrast and reconstructed contrast, when using (A) the näıve approach ignoring trial-by-
trial correlations (LS-A, red), (B) the standard approach using separate design matrices
(LS-S, blue) and (C) the proposed approach, i.e. inverse transformed encoding modelling
(ITEM, green). In each panel, correlations are averaged over 8 sessions and 4 subjects,
with uncertainty intervals representing standard errors over subjects only. For comparison
purposes, all panels use the same y-axis. ITEM-based reconstruction (mean r: 0.311)
strongly outperforms LS-A (mean r: 0.070; p < 0.001) and mildly outperforms LS-S
(mean r: 0.247; p < 0.001).
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From the correlation coefficients across all subjects, sessions and sectors obtained with
ITEM-based reconstruction, the highest correlation, the lowest absolute correlation and
the median correlation were selected as examples for a particularly good, a particularly
bad and a medium-quality reconstruction (see Figure 8). Time courses of presented con-
trast and reconstructed contrast can be plotted with each other, showing considerable
covariation for the best reconstruction (see Figure 8C).
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Figure 8. Empirical validation (3): exemplary reconstructions. From all ITEM-based
decoding analyses (see Figure 7C), (A) the worst reconstruction, corresponding to the
lowest absolute correlation coefficient, (B) a medium reconstruction, corresponding to
the median among all correlations, and (C) the best reconstruction, corresponding to
the highest correlation coefficient, were selected for display. Each panels shows actually
presented contrast (red) and reconstructed contrast (blue) across trials.
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5 Discussion

We have introduced inverse transformed encoding modelling (ITEM), an integrated frame-
work for trial-wise linear decoding of experimental manipulations from fMRI data that
accounts for trial-by-trial correlations and thus avoids suboptimal decoding accuracies
resulting from inaccurate parameter estimates. ITEM allows for classification of discrete
experimental conditions as well as reconstruction of continuous modulator variables. In a
simulation study on binary classification, ITEM outperformed LS-S, the previously best
known approach (Mumford et al., 2012), when noise variance is high or inter-stimulus-
intervals are low (see Figure 5). In an empirical application to visual reconstruction,
ITEM was used to successfully decode visual stimulation from multivariate signals in left
and right V1 (see Figure 7).
The problem of correlated trial-by-trial parameter estimates has already been discussed
several times in the fMRI/MVPA literature (Mumford et al., 2012; Turner et al., 2012;
Mumford et al., 2014; Weeda, 2018). Previous contributions have pointed out that a
näıve approach ignoring trial-by-trial correlations (i.e. LS-A) leads to suboptimal param-
eter estimates and found that a revised method estimating each trial’s activation using a
separate design matrix (i.e. LS-S) better controls for trial-to-trial covariance. This proce-
dure is based on the idea that including a regressor modelling all other trials in addition
to the regressor modelling the trial of interest will largely reduce collinearity between
trials (Mumford et al., 2012). Here, we extend this previous work by providing a princi-
pled approach, based on the actual distribution of the trial-wise parameter estimates (i.e.
ITEM), as implied by the trial-wise design matrix (see Section 2.6 and Equation 7; see
also Mumford et al., 2014, p. 132).
However, ITEMs are not only applicable to rapid event-related designs, but generally
useful when fMRI-based trial-wise linear decoding is the goal. Other than a decoding
algorithm, e.g. a linear SVM applied to trial-wise response amplitudes, ITEM also controls
for correlation of trial-specific activations with any covariate present in the experimental
design (see Figure 2B and Equation 6). A disadvantage compared to other approaches (e.g.
Weeda, 2018) is that ITEM requires an assumption about the shape of the hemodynamic
response in the form of an HRF – which is however provided by the canonical HRF,
implemented in most software packages.
The ITEM approach is very similar to the technique of inverted encoding models (IEM;
Sprague et al., 2015) that is used frequently for reconstruction of sensory information
(Brouwer and Heeger, 2009; Saproo and Serences, 2014). In Appendix D, we outline
two key differences between ITEMs and IEMs, namely (i) the reversed order of model
estimation and inverting the model in the reconstruction process and (ii) the fact that
IEM in its most frequent implementation does not account for possible covariance between
trials by not considering the U matrix.
ITEM has been made available as an SPM plug-in on GitHub (see Section 6). Currently,
it supports decoding from regions of interest (ROI); an implementation for decoding from
searchlights (SL) will be added soon. We hope that ITEM-based decoding will increase
the sensitivity of MVPA for rapid event-related fMRI designs.
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6 Software Note

An SPM12-compatible MATLAB implementation of the ITEM approach is available from
GitHub (https://github.com/JoramSoch/ITEM).
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8 Appendix

A Derivation of the transformed encoding model

The following derivation of the transformed encoding model (TEM) makes use of the
affine transformation theorem for the multivariate normal distribution:

Theorem 0: Let x follow a multivariate normal distribution:

x ∼ N(µ,Σ) . (A.1)

Then, any linear transformation of x is also multivariate normally distributed:

y = Ax+ b ∼ N(Aµ+ b, AΣAT ) . (A.2)

Proof: This is standard textbook knowledge (see e.g. Koch, 2007, eq. 2.202).

To recapitulate (see Sections 2.2–2.3), the standard general linear model (GLM) and the
trial-wise GLM for first-level fMRI data analysis are given by

y = Xβ + ε , ε ∼ N(0, σ2V ) , (A.3)

y = Xtγ + εt, εt ∼ N(0, σ2
t V ) . (A.4)

These two models are linked to each other by the transformation matrix (see Section 2.4):

X = Xt T . (A.5)

Parameter estimates for the trial-wise GLM are given by weighted least squares:

γ̂ = (XT
t V

−1Xt)
−1XT

t V
−1y . (A.6)

The distribution of these parameter estimates is specified by the 1st TEM theorem:

Theorem 1: The trial-wise parameter estimates γ̂ are distributed as

γ̂ ∼ N
(
Tβ, σ2U

)
(A.7)

where the covariance matrix U is given by

U = (XT
t V

−1Xt)
−1 . (A.8)

Proof: Combining (A.3) with (A.2), we have:

y ∼ N
(
Xβ, σ2V

)
. (A.9)

Note that the γ̂ given in (A.6) is a linear transformation of the y given by
(A.9). Thus, we can again apply (A.2) which gives:

γ̂ ∼ N
([

(XT
t V

−1Xt)
−1XT

t V
−1]Xβ, σ2

[
(XT

t V
−1Xt)

−1XT
t V

−1]V [V −1Xt(X
T
t V

−1Xt)
−1])

∼ N
(
(XT

t V
−1Xt)

−1XT
t V

−1Xt Tβ, σ
2(XT

t V
−1Xt)

−1XT
t V

−1Xt(X
T
t V

−1Xt)
−1)

∼ N
(
Tβ, σ2(XT

t V
−1Xt)

−1) .
(A.10)
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This distribution can be also be written as the following equation which is referred to as
the transformed encoding model (TEM):

γ̂ = Tβ + η, η ∼ N(0, σ2U) . (A.11)

The U matrix is an important component of the transformed encoding model framework,
because it accounts for the covariance induced into trial-wise response amplitudes by
overlapping HRFs in rapid event-related designs. Being derived from the “first-level”
trial-wise design matrix (A.4), it simply adjusts for its perturbations in the “second-
level” trial-wise encoding model (A.11).
Parameter estimates for this model are again given by weighted least squares:

β̂ = (T TU−1T )−1T TU−1γ̂ . (A.12)

An equivalence of these parameter estimates is stated by the 2nd TEM theorem:

Theorem 2: The parameter estimates of the TEM

β̂ = (T TU−1T )−1T TU−1γ̂ (A.13)

are equivalent to the parameter estimates of the standard GLM

β̂ = (XTV −1X)−1XTV −1y . (A.14)

Proof: To see this, apply the inverse covariance matrix from (A.8), the trans-
formation matrix definition in (A.5) and the trial-wise parameter estimates
given by (A.6) to the condition-wise parameter estimates given by (A.12):

β̂
(A.12)

= (T T U−1 T )−1 T T U−1 γ̂

(A.8)
= (T T

[
XT
t V

−1Xt

]
T )−1 T T

[
XT
t V

−1Xt

]
γ̂

(A.5)
= (XTV −1X)−1 T T XT

t V
−1Xt γ̂

(A.6)
= (XTV −1X)−1 T T XT

t V
−1Xt

[
(XT

t V
−1Xt)

−1XT
t V

−1y
]

= (XTV −1X)−1 T T XT
t V

−1y

(A.5)
= (XTV −1X)−1XTV −1y

(A.15)

This demonstrates that parameter estimates from the “second-level” (trial-wise) model
(A.11) are equivalent to parameter estimates from the “first-level” (scan-wise) model
(A.3) when the transformation matrix T is chosen in a way that maps from the trial-
wise design matrix Xt to the standard design matrix X (see Figure 1). This is achieved
by virtue of the “second-level” covariance matrix U that is derived from Xt to accom-
modate the correlation introduced into trial-wise parameter estimates γ̂ by using HRFs
overlapping in time (see Figure 2).
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B Extension using restricted maximum likelihood

Note that, when proving Theorem 1, y was assumed to be generated by the standard GLM
(A.3) assuming equal trial-wise response amplitudes within experimental conditions. In
contrast, if y is assumed to be generated by the trial-wise GLM (A.4) allowing for variation
of trial-wise response amplitudes within experimental conditions, the distribution of γ̂
becomes more complicated, as asserted by the 3rd TEM theorem:

Theorem 3: When the true model is the trial-wise GLM

y = Xtγ + εt, εt ∼ N(0, σ2
t V ) , (B.1)

and the trial-wise response amplitudes γ follow the equation

γ = Tβ + ξ, ξ ∼ N(0, σ2
γIt) , (B.2)

then the trial-wise parameter estimates γ̂ are distributed as

γ̂ ∼ N
(
Tβ, σ2

γ It + σ2
tU
)

(B.3)

where σ2
γ is the trial-to-trial variance and U is given by (A.8).

Proof: When the trial-wise GLM is true, this means that response amplitudes
differ across trials which is equivalent to the assumption that the trial-to-trial
variance σ2

γ is not zero. Here, we make the assumption that the true trial-wise
response amplitudes are drawn as i.i.d. samples with a mean that is a function
of the trial matrix T and condition-wise activations β, as indicated by (B.2).
Together with (B.1) and (A.5), this implies:

y = XtTβ +Xtξ + εt = Xβ +Xtξ + εt . (B.4)

Applying (A.2) to (B.4), it follows that (cf. Mumford et al., 2014, eq. 4):

y ∼ N(Xβ, σ2V ) = N(Xβ, σ2
γ XtX

T
t + σ2

t V ) . (B.5)

The γ̂ given in (A.6) is a linear transformation of the y given by (B.5). Thus,
we can again apply (A.2) which gives (cf. Mumford et al., 2014, eq. 6):

γ̂ ∼ N
([

(XT
t V

−1Xt)
−1XT

t V
−1]Xβ,[

(XT
t V

−1Xt)
−1XT

t V
−1] (σ2

γ XtX
T
t + σ2

t V )
[
V −1Xt(X

T
t V

−1Xt)
−1])

∼ N
(
(XT

t V
−1Xt)

−1XT
t V

−1Xt Tβ, σ
2
γ X

T
t V

−1Xt(X
T
t V

−1Xt)
−1 + σ2

t (X
T
t V

−1Xt)
−1)

∼ N(Tβ, Σγ̂) = N(Tβ, σ2
γ It + σ2

tU) .

(B.6)
Formally, with moving from (A.4) to (B.4), the first-level GLM changes from a fixed-
effects model into a random-effects model, because γ becomes a random variable by
(B.2). This also allows for a new interpretation of (A.3), since its covariance σ2V can be
seen as consisting of two components from (B.5).
As one can nicely see from (B.6), the covariance of the trial-wise parameter estimates
also consists of two components, one coming from the original trial-to-trial variability
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assumed by (B.2) (the “natural” covariance) and the other due to the trial-wise design
matrix Xt via U (the “induced” covariance).
If the trial-to-trial variance is assumed to be zero, i.e. σ2

γ = 0, the distribution becomes

γ̂ ∼ N(Tβ, σ2
tU) , (B.7)

such that the model can be estimated via weighted least squares (WLS):

β̂ = (T TU−1T )−1 T TU−1γ̂ . (B.8)

On the other hand, if inter-stimulus-intervals are sufficiently long, such that trial-wise
HRF regressors are not correlated, then U = ut It and the distribution becomes

γ̂ ∼ N(Tβ, (σ2
γ + σ2

t ut)It) , (B.9)

such that the model can be easily estimated via ordinary least squares (OLS):

β̂ = (T TT )−1T T γ̂ . (B.10)

However, in the presence of covariates (see Figure 2B) or in rapid event-related designs
(see Figure 2A), this is practically never fullfilled so that U 6= ut It and a variance
components model (VCM; Searle et al., 1992) with known covariance components (It, U)
and unknown variance factors (σ2

γ, σ
2
t ) has to be estimated.

Let Γ̂ = [γ̂1, . . . , γ̂v] be a t × v matrix of horizontally concatenated trial responses over
voxels with number of voxels v. Then, the VCM in (B.2) can be inverted using SPM’s
restricted maximum likelihood (ReML) algorithm (Friston et al., 2002a) which has to be
implemented via the SPM command

(σ̂2
γ, σ̂

2
t ) = spm reml(YY, X, Q1, Q2) (B.11)

where YY = (1/v) Γ̂Γ̂T , X = T , Q1 = It and Q2 = U . The function output can then be
used to calculate ReML estimates as

Σ̂γ̂ = σ̂2
γ It + σ̂2

tU

β̂ = (T T Σ̂−1γ̂ T )−1 T T Σ̂−1γ̂ γ̂ .
(B.12)

In principle, ReML estimation can be performed when v = 1, but estimates of variance
components become more accurate with increasing number of signals, i.e. voxels. In our
simulation study, we have used (B.11) with v = 1,000 signals to improve ITEM-based
classification (see Appendix E). In our empirical validation, we have found no improve-
ment of ITEM-based reconstruction by ReML estimation which is why this extension is
currently not implemented in the released code (see Section 6).
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C Conversion from forward to backward model

Extending the univariate transformation encoding model (TEM) from (A.11) to several
voxels, one arrives at the multivariate TEM (see Section 2.7) which also forms the basis
for motivating the inverse TEM (see Section 2.8). This way of proceeding from the MTEM
to the ITEM is the subject of the 4th TEM theorem:

Theorem 4: The multivariate transformed encoding model

Γ̂ = TB +H, H ∼ MN(0, U,Σy) (C.1)

implies the inverse transformed encoding model

T = Γ̂W +N, N ∼ MN(0, U,Σx) (C.2)

with the covariance matrix Σx = W TΣyW .

Proof: Let W be a v × p matrix, such that BW = Ip (cf. Haufe et al., 2014,
eq. A.1), i.e. imagine an extraction filter W that is the inverse of the activation
pattern B. Such a matrix exists, if the rows of B are linearly independent or,
in other words, if all regressors in T have mutually dissociable activation pat-
terns, in which case the extraction filter is given by W = Σ−1y BT (B Σ−1y BT )−1.
Then, right-multiplying the multivariate forward model with W yields

Γ̂W = TBW +HW, HW ∼ MN(0, U,W TΣyW ) . (C.3)

Applying BW = Ip and rearranging, we have

T = Γ̂W −HW, HW ∼ MN(0, U,W TΣyW ) . (C.4)

Substituting N = HW and Σx = W TΣyW , we get

T = Γ̂W −N, N ∼ MN(0, U,Σx) . (C.5)

Because N is mean-free and a zero-mean (matrix-)normal distribution is sym-
metric around zero, −N has the same distribution as +N , such that

T = Γ̂W +N, N ∼ MN(0, U,Σx) . (C.6)

Note that in step (C.3), because are multiplying with W from the left and not from the
right, Theorem 0 (see eq. A.2) does not affect the temporal covariance U , but has to be
applied to the spatial covariance Σy. In fact, because the dependent variable in (C.6) is
T , this is not a spatial covariance anymore, but rather a “logical” covariance now, as it
pertains to correlations between trial-wise experimental design variables.
This actually makes the new model somewhat problematic, because other than B in
(C.1), the parameter matrix W enters in (C.2) as the mapping from Γ̂ to T and in the
distribution of the noise matrix N . However, if the estimation of W can be understood
as separate column-by-column operations on T , this problem can be ignored as Σx only
applies to relations between columns of T . In fact, the estimates used for reconstruction
in (13) are in some sense optimal, as stated by the 5th TEM theorem:
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Theorem 5: Given the inverse transformed encoding model

T = Γ̂W +N, N ∼ MN(0, U,Σx) , (C.7)

the weighted least squares solution for the weight matrix

Ŵ = (Γ̂TU−1Γ̂)−1Γ̂TU−1T (C.8)

is the best linear unbiased estimator (BLUE) of W .

Proof: If we rearrange (C.7) for Γ̂W , we obtain

Γ̂W ∼ MN(T, U,Σx) (C.9)

which, with a non-informative prior on T , yields

T ∼ MN(Γ̂W,U,Σx) . (C.10)

1) First, Ŵ is a linear estimator, because it is of the form Ŵ = MT where
M is an arbitrary v × t matrix.

2) Second, a linear estimator of the form Ŵ = MT is unbiased, if ˆ〈W 〉 = W .
By applying (A.2) to (C.10), the distribution of Ŵ is

Ŵ = MT ∼ MN(M Γ̂W,MUMT ,Σx) , (C.11)

which requires thatM Γ̂ = Iv. This is fulfilled by any matrixM = (Γ̂TN Γ̂)−1Γ̂TN
with a t× t matrix N (which is different from the t× v matrix N in eq. C.7).

3) Third, the best linear unbiased estimator is the one with minimum variance,
i.e. the one that minimizes the expected Frobenius norm

Var(Ŵ ) =
〈

tr
[
(Ŵ −W )T (Ŵ −W )

]〉
. (C.12)

Using the distribution of Ŵ from (C.11)

(Ŵ −W ) ∼ MN(0,MUMT ,Σx) (C.13)

and the Wishart distribution property

X ∼ MN(0, U, V ) ⇒
〈
XXT

〉
= tr(V )U , (C.14)

this variance can be evaluated to give

Var(N) = tr(Σx) tr
[
(Γ̂TN Γ̂)−1 Γ̂TNUNT Γ̂ (Γ̂TN Γ̂)−1

]
(C.15)

and its partial derivative with respect to N is

dVar(N)

dN
= −2 tr(Σx)

[
Γ̂ (Γ̂TN Γ̂)−1 Γ̂TNUNT Γ̂ (Γ̂TN Γ̂)−2 Γ̂T − Γ̂ (Γ̂TN Γ̂)−2 Γ̂TNU

]
.

(C.16)
Setting this derivative to zero yields the equation

Γ̂ (Γ̂TN Γ̂)−1 Γ̂TNUNT Γ̂ (Γ̂TN Γ̂)−2 Γ̂T = Γ̂ (Γ̂TN Γ̂)−2 Γ̂TNU (C.17)

which is only satisfied, if (Γ̂TN Γ̂)−1 Γ̂TNUNT Γ̂ = Iv and NU = It, thus
implying N = U−1 and producing Ŵ as in (C.8).
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D Relation of ITEMs to inverted encoding models

Let Γ̂ be the t × v matrix of voxel-and-trial-wise response amplitudes, T be the t × p
matrix of trial-wise experimental manipulations and B be the p × v matrix of voxel-
wise activation patterns. For simplicity, we assume that t > v > p, i.e. there are more
trials than voxels and there are more voxels than conditions to classify or variables to
reconstruct.
Consider the multivariate transformed encoding model (MTEM) given by

Γ̂ = TB +H . (D.1)

This model can be inverted with respect to the parameter matrix

B̂ = (T TT )−1T T Γ̂ (D.2)

or, when treating B as a constant, with respect to the design matrix

T̂ = Γ̂BT (BBT )−1 . (D.3)

In an inverted encoding model (IEM) analysis, one applies step (D.2) in the training data
and then applies step (D.3) to the test data which yields the following reconstruction
(e.g. Brouwer and Heeger, 2009, eq. 3; Saproo and Serences, 2014, eq. 3):

T̂2 = Γ̂2

[
B̂T

1 (B̂1B̂
T
1 )−1

]
. (D.4)

Now consider the inverse transformed encoding model (ITEM) given by

T = Γ̂W +N, N ∼ MN(0, U,Σx) . (D.5)

This model can be estimated using weighted least squares

Ŵ = (Γ̂TU−1Γ̂)−1Γ̂TU−1T (D.6)

and the predicted, estimated or fitted signals are given by

T̂ = Γ̂Ŵ . (D.7)

In an ITEM-based analysis, one applies step (D.6) in the training data and then applies
step (D.7) to the test data which yields the following reconstruction (see Equation 14):

T̂2 = Γ̂2Ŵ1 = Γ̂2

[
(Γ̂T1U

−1
1 Γ̂1)

−1Γ̂T1U
−1
1 T1

]
. (D.8)

When comparing (D.4) with (D.8), one can see that both of them right-multiply an
operator matrix to the test data Γ̂2, but these matrices are quite different from each
other: One difference is that the IEM operator results from inversion of an estimated
model whereas the ITEM operator results from estimation of an inverse model. Another
and more important difference is that the IEM approach ignores covariance between trials
(and covariance of trials with other covariates) indicated by the matrix U in (D.6), simply
because the parameter matrix is estimated via ordinary least squares in (D.2).
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E Simulation adpated from Mumford et al. (2012)

The generative model underlying Mumford et al.’s simulations can be described as follows.
First, in each session from each simulation run, t = 60 trials are evenly distributed into
2 experimental conditions or trial types

tti = 1 or tti = 2 (E.1)

where p(tt = 1) = p(tt = 2) = 1/2.
Second, trial-wise activations are independently sampled from a normal distribution

γi ∼ N(µtti , σ
2
β), i = 1, . . . , t (E.2)

where µ1 = 5, µ2 = 3 and σ2
β = 0.52.

Third, inter-stimulus-intervals are independently sampled from a uniform distribution

ti ∼ U(tmin, tmax), i = 1, . . . , t− 1 (E.3)

where tmin ∈ {0, 2, 4} and tmax = tmin + 4.
Based on the sampled inter-stimulus-intervals (ISIs), the canonical hemodynamic re-
sponse function (cHRF) as well as stimulus duration tdur and repetition time TR, a
trial-wise design matrix Xt is generated which instantiates the sampled ISIs (see Fig-
ure 1A as an example for tisi ∼ U(0, 4)). Moreover, a temporal correlation matrix V
embodying an AR(1) process is generated with ρ = 0.12 as

vij = ρ|i−j|, i, j = 1, . . . , n . (E.4)

Finally, fMRI signal noise is sampled with error variance σε ∈ {0.8, 1.6, 3} as

εt ∼ N(0, σ2
εV ) (E.5)

and the simulated data are generated according to the trial-wise GLM as

y = Xtγ + εt . (E.6)

The combination of the 3 different options for tmin/tmax and the 3 different options for σ2
ε

leads to 9 different simulation scenarios (see Figures 3 and 4). In each scenario, N = 1,000
simulations with S = 2 sessions per simulation were performed.

After data generation, trial-wise activations are estimated and trial types are decoded. In
the “least squares, all” (LS-A) approach, γ̂ was obtained via equation (4) and a logistic
regression was trained on the estimates from one session to predict trial types in the
other session and vice versa (Mumford et al., 2012, App. A). Decoding accuracy was
quantified as the proportion of trials correctly assigned to trial types 1 and 2 based on
calculated log-odds in the test session. In the “least squares, separate” (LS-S) approach,
γ̂ was obtained using a separate design matrix for each trial, including one regressor for
this trial and one regressor for all other trials (Mumford et al., 2012, Fig. 1), and the
same logistic regression was applied. For inverse transformed encoding modelling (ITEM),
also referred to as the “least-squares, transformed” (LS-T) approach, γ̂ was obtained via
equation (4) and trial types were decoded via equations (7), (13) and (14), with decoding
accuracy being assessed via equation (16).
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The present simulation differs from Mumford et al.’s in the following respects:
• In the original simulation, the simulated data were filtered although no temporal drifts

were in the ground truth. In the present simulation, data were not filtered.
• In the original simulation, the simulated data were not whitened altough mild au-

tocorrelation was induced into the ground truth (see Equation E.4). In the present
simulation, this was handled by using the V matrix in equations (4) and (7).

• These two differences may have contributed to the fact that decoding accuracies re-
ported in the present simulation (see Figure 5) were generally higher than in the original
simulation (Mumford et al., 2012, Fig. 3).

• The stimulus duration tdur and repetition time TR from the original simulation were
not reported in the respective paper and could not be recalled by the corresponding
author, so tdur = 2 s and TR = 2 s were used.

• The simualtion scenarios characterized by tmin = 6 and tmax = 10, i.e. with ISIs dis-
tributed as tisi ∼ U(6, 10), were omitted from the simulation, because no changes
relative to tisi ∼ U(4, 8) could be observed.

• In the present simulation, the design matrix was identical for all simulation runs be-
longing to one simulation scenario (as opposed to tt and tisi being resampled in every
simulation run). This was necessary for applying the ReML approach within the ITEM
framework (see Appendix B, esp. Equation B.11) and is consistent with typical fMRI
data analysis where the same design matrix (and covariance matrix) is used to analyze
all voxels (which correspond to simulation runs).

• In the present simulation, N = 1,000 (instead of N = 500) simulation runs were used
for higher precision in estimating statistical power and decoding accuracies.

• In the present simulation, S = 2 (instead of S = 3) sessions per simulation were
used, because there was no need for the double cross-validation procedure for hyper-
parameter tuning required by some other estimation methods considered in the original
simulation (Mumford et al., 2012, Fig. 1).
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Buračas, G.T., Boynton, G.M., 2002. Efficient Design of Event-Related fMRI Experiments
Using M-Sequences. NeuroImage 16, 801–813. URL: http://www.sciencedirect.com/
science/article/pii/S105381190291116X, doi:10.1006/nimg.2002.1116.

Carp, J., 2012. On the Plurality of (Methodological) Worlds: Estimating the Analytic
Flexibility of fMRI Experiments. Frontiers in Neuroscience 6. URL: http://journal.
frontiersin.org/article/10.3389/fnins.2012.00149/abstract, doi:10.3389/fnins.2012.
00149.

Cox, D.D., Savoy, R.L., 2003. Functional magnetic resonance imaging (fMRI) “brain
reading”: detecting and classifying distributed patterns of fMRI activity in human
visual cortex. NeuroImage 19, 261–270. URL: http://www.sciencedirect.com/science/
article/pii/S1053811903000491, doi:10.1016/S1053-8119(03)00049-1.

Friston, K., 1995. Analysis of fMRI Time-Series Revisited. NeuroImage 2,
45–53. URL: http://linkinghub.elsevier.com/retrieve/doi/10.1006/nimg.1995.1007,
doi:10.1006/nimg.1995.1007.

Friston, K., Glaser, D., Henson, R., Kiebel, S., Phillips, C., Ashburner, J., 2002a. Clas-
sical and Bayesian Inference in Neuroimaging: Applications. NeuroImage 16, 484–
512. URL: http://linkinghub.elsevier.com/retrieve/pii/S1053811902910918, doi:10.
1006/nimg.2002.1091.

Friston, K., Penny, W., Ashburner, J., Kiebel, S., Nichols, T. (Eds.), 2007.
Statistical Parametric Mapping: The Analysis of Functional Brain Images.
1st edition ed., Academic Press. URL: https://www.elsevier.com/books/

31

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 16, 2019. ; https://doi.org/10.1101/610626doi: bioRxiv preprint 

https://doi.org/10.1101/610626
http://creativecommons.org/licenses/by-nc-nd/4.0/


statistical-parametric-mapping-the-analysis-of-functional-brain-images/penny/
978-0-12-372560-8.

Friston, K., Penny, W., Phillips, C., Kiebel, S., Hinton, G., Ashburner, J., 2002b.
Classical and Bayesian Inference in Neuroimaging: Theory. NeuroImage 16, 465–
483. URL: http://linkinghub.elsevier.com/retrieve/pii/S1053811902910906, doi:10.
1006/nimg.2002.1090.

Friston, K.J., Fletcher, P., Josephs, O., Holmes, A., Rugg, M.D., Turner, R., 1998. Event-
Related fMRI: Characterizing Differential Responses. NeuroImage 7, 30–40. URL: http:
//www.sciencedirect.com/science/article/pii/S1053811997903062, doi:10.1006/nimg.
1997.0306.

Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.P., Frith, C.D., Frackowiak, R.S.J.,
1994. Statistical parametric maps in functional imaging: A general linear approach. Hu-
man Brain Mapping 2, 189–210. URL: http://doi.wiley.com/10.1002/hbm.460020402,
doi:10.1002/hbm.460020402.

Gorgolewski, K.J., Auer, T., Calhoun, V.D., Craddock, R.C., Das, S., Duff, E.P., Flandin,
G., Ghosh, S.S., Glatard, T., Halchenko, Y.O., Handwerker, D.A., Hanke, M., Keator,
D., Li, X., Michael, Z., Maumet, C., Nichols, B.N., Nichols, T.E., Pellman, J., Poline,
J.B., Rokem, A., Schaefer, G., Sochat, V., Triplett, W., Turner, J.A., Varoquaux, G.,
Poldrack, R.A., 2016. The brain imaging data structure, a format for organizing and
describing outputs of neuroimaging experiments. Scientific Data 3, 160044. URL:
https://www.nature.com/articles/sdata201644, doi:10.1038/sdata.2016.44.

Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.D., Blankertz, B., Bießmann,
F., 2014. On the interpretation of weight vectors of linear models in multivariate
neuroimaging. NeuroImage 87, 96–110. URL: http://www.sciencedirect.com/science/
article/pii/S1053811913010914, doi:10.1016/j.neuroimage.2013.10.067.

Haynes, J.D., 2015. A Primer on Pattern-Based Approaches to fMRI: Principles, Pitfalls,
and Perspectives. Neuron 87, 257–270. URL: http://linkinghub.elsevier.com/retrieve/
pii/S0896627315004328, doi:10.1016/j.neuron.2015.05.025.

Haynes, J.D., Rees, G., 2006. Decoding mental states from brain activity in humans.
Nature Reviews Neuroscience 7, 523–534. URL: http://www.nature.com/doifinder/10.
1038/nrn1931, doi:10.1038/nrn1931.

Haynes, J.D., Sakai, K., Rees, G., Gilbert, S., Frith, C., Passingham, R.E., 2007.
Reading Hidden Intentions in the Human Brain. Current Biology 17, 323–328.
URL: http://www.sciencedirect.com/science/article/pii/S0960982206026583, doi:10.
1016/j.cub.2006.11.072.

Heinzle, J., Kahnt, T., Haynes, J.D., 2011. Topographically specific functional connec-
tivity between visual field maps in the human brain. NeuroImage 56, 1426–1436.
URL: http://www.sciencedirect.com/science/article/pii/S1053811911002540, doi:10.
1016/j.neuroimage.2011.02.077.

32

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 16, 2019. ; https://doi.org/10.1101/610626doi: bioRxiv preprint 

https://doi.org/10.1101/610626
http://creativecommons.org/licenses/by-nc-nd/4.0/


Henson, R., Rugg, M.D., Friston, K.J., 2001. The choice of basis functions in event-
related fMRI. NeuroImage 13, 149. URL: http://www.fil.ion.ucl.ac.uk/spm/data/
face rfx/pdf/hbm-fir.pdf.

Henson, R.N.A., Shallice, T., Gorno-Tempini, M.L., Dolan, R.J., 2002. Face Repetition
Effects in Implicit and Explicit Memory Tests as Measured by fMRI. Cerebral Cortex
12, 178–186. URL: http://www.cercor.oxfordjournals.org/cgi/doi/10.1093/cercor/12.
2.178, doi:10.1093/cercor/12.2.178.

Koch, K.R., 2007. Introduction to Bayesian Statistics. 2nd, updated and enlarged ed.
2007 edition ed., Springer, Berlin ; New York.

Kriegeskorte, N., Goebel, R., Bandettini, P., 2006. Information-based functional brain
mapping. Proceedings of the National Academy of Sciences 103, 3863–3868. URL:
https://www.pnas.org/content/103/10/3863, doi:10.1073/pnas.0600244103.

LaConte, S., Strother, S., Cherkassky, V., Anderson, J., Hu, X., 2005. Support vec-
tor machines for temporal classification of block design fMRI data. NeuroImage 26,
317–329. URL: http://www.sciencedirect.com/science/article/pii/S1053811905000893,
doi:10.1016/j.neuroimage.2005.01.048.

Li, B., Peterson, M.R., Freeman, R.D., 2003. Oblique Effect: A Neural Basis in the Visual
Cortex. Journal of Neurophysiology 90, 204–217. URL: https://www.physiology.org/
doi/full/10.1152/jn.00954.2002, doi:10.1152/jn.00954.2002.

Monti, M., 2011. Statistical Analysis of fMRI Time-Series: A Critical Review of the GLM
Approach. Frontiers in Human Neuroscience 5. URL: http://journal.frontiersin.org/
article/10.3389/fnhum.2011.00028/abstract, doi:10.3389/fnhum.2011.00028.

Mumford, J.A., Davis, T., Poldrack, R.A., 2014. The impact of study design on pattern
estimation for single-trial multivariate pattern analysis. NeuroImage 103, 130–138.
URL: http://www.sciencedirect.com/science/article/pii/S105381191400768X, doi:10.
1016/j.neuroimage.2014.09.026.

Mumford, J.A., Turner, B.O., Ashby, F.G., Poldrack, R.A., 2012. Deconvolving BOLD
activation in event-related designs for multivoxel pattern classification analyses.
NeuroImage 59, 2636–2643. URL: http://www.sciencedirect.com/science/article/pii/
S1053811911010081, doi:10.1016/j.neuroimage.2011.08.076.

Ress, D., Backus, B.T., Heeger, D.J., 2000. Activity in primary visual cortex predicts
performance in a visual detection task. Nature Neuroscience 3, 940–945. URL: https:
//www.nature.com/articles/nn0900 940, doi:10.1038/78856.

Ress, D., Heeger, D.J., 2003. Neuronal correlates of perception in early visual cor-
tex. Nature Neuroscience 6, 414–420. URL: https://www.nature.com/articles/nn1024,
doi:10.1038/nn1024.

Rissman, J., Gazzaley, A., D’Esposito, M., 2004. Measuring functional connectiv-
ity during distinct stages of a cognitive task. NeuroImage 23, 752–763. URL:
http://www.sciencedirect.com/science/article/pii/S105381190400360X, doi:10.1016/
j.neuroimage.2004.06.035.

33

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 16, 2019. ; https://doi.org/10.1101/610626doi: bioRxiv preprint 

https://doi.org/10.1101/610626
http://creativecommons.org/licenses/by-nc-nd/4.0/


Saproo, S., Serences, J.T., 2014. Attention Improves Transfer of Motion Information
between V1 and MT. Journal of Neuroscience 34, 3586–3596. URL: http://www.
jneurosci.org/content/34/10/3586, doi:10.1523/JNEUROSCI.3484-13.2014.

Searle, S.R., Casella, G., McCulloch, C.E., 1992. Variance Components. Wiley Se-
ries in Probability and Statistics. 1st edition ed., John Wiley & Sons, Inc., Hobo-
ken, USA. URL: https://onlinelibrary.wiley.com/doi/book/10.1002/9780470316856,
doi:10.1002/9780470316856.

Smith, S.M., 2004. Overview of fMRI analysis. The British Journal of Radiology 77, S167–
S175. URL: http://www.birpublications.org/doi/abs/10.1259/bjr/33553595, doi:10.
1259/bjr/33553595.

Soch, J., Allefeld, C., 2018. MACS – a new SPM toolbox for model assess-
ment, comparison and selection. Journal of Neuroscience Methods 306, 19–31.
URL: http://www.sciencedirect.com/science/article/pii/S0165027018301468, doi:10.
1016/j.jneumeth.2018.05.017.

Soch, J., Haynes, J.D., Allefeld, C., 2016. How to avoid mismodelling in GLM-
based fMRI data analysis: cross-validated Bayesian model selection. NeuroImage
URL: http://linkinghub.elsevier.com/retrieve/pii/S1053811916303615, doi:10.1016/
j.neuroimage.2016.07.047.

Sprague, T.C., Ester, E.F., Serences, J.T., 2016. Restoring Latent Visual Work-
ing Memory Representations in Human Cortex. Neuron 91, 694–707. URL:
http://www.sciencedirect.com/science/article/pii/S089662731630352X, doi:10.1016/
j.neuron.2016.07.006.

Sprague, T.C., Saproo, S., Serences, J.T., 2015. Visual attention mitigates informa-
tion loss in small- and large-scale neural codes. Trends in Cognitive Sciences 19,
215–226. URL: http://www.sciencedirect.com/science/article/pii/S1364661315000297,
doi:10.1016/j.tics.2015.02.005.

Turner, B.O., Mumford, J.A., Poldrack, R.A., Ashby, F.G., 2012. Spatiotemporal ac-
tivity estimation for multivoxel pattern analysis with rapid event-related designs.
NeuroImage 62, 1429–1438. URL: http://www.sciencedirect.com/science/article/pii/
S1053811912005459, doi:10.1016/j.neuroimage.2012.05.057.

Wandell, B.A., Dumoulin, S.O., Brewer, A.A., 2007. Visual Field Maps in Human Cortex.
Neuron 56, 366–383. URL: https://www.cell.com/neuron/abstract/S0896-6273(07)
00774-X, doi:10.1016/j.neuron.2007.10.012.

Weeda, W., 2018. Estimating Single-trial BOLD Amplitude and Latency in Task-based
fMRI Data with an Unknown HRF, in: Organization for Human Brain Mapping,
OHBM, Singapore. p. Poster #2532. URL: https://files.aievolution.com/hbm1801/
abstracts/30911/2532 Weeda.pdf.

34

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 16, 2019. ; https://doi.org/10.1101/610626doi: bioRxiv preprint 

https://doi.org/10.1101/610626
http://creativecommons.org/licenses/by-nc-nd/4.0/

