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Abstract 

Observers rapidly and seemingly automatically learn to predict where to expect relevant 
items when those items are repeatedly presented in the same spatial context. This form of 
statistical learning in visual search has been studied extensively using a paradigm known 
as contextual cueing. The neural mechanisms underlying the learning and exploiting of 
such regularities remain unclear. We sought to elucidate these by examining behaviour 
and recording neural activity using magneto-encephalography (MEG) while observers 
were implicitly acquiring and exploiting statistical regularities. Computational modelling 
of behavioural data suggested that after repeated exposures to a spatial context, 
participants’ behaviour was marked by an abrupt switch to an exploitation strategy of the 
learnt regularities. MEG recordings showed that the initial learning phase was associated 
with larger hippocampal theta band activity for repeated scenes, while the subsequent 
exploitation phase showed larger prefrontal theta band activity for these repeated scenes. 
Strikingly, the behavioural benefit of repeated exposures to certain scenes was inversely 
related to explicit awareness of such repeats, demonstrating the implicit nature of the 
expectations acquired. This elucidates how theta activity in the hippocampus and 
prefrontal cortex underpins the implicit learning and exploitation of spatial statistical 
regularities to optimize visual search behaviour.  

 

 

Introduction 

Objects are rarely encountered in isolation, but typically within certain spatial contexts. 
The encountered context, or scene, in which objects appear often induces clear 
expectations about where particular objects are likely to be located; e.g. we expect (and 
would more rapidly locate) a computer mouse next to the keyboard and not on top of the 
monitor. Such scene-based contextual expectations can greatly facilitate perception of 
individual elements of the scene (Biederman, 1972; Bar, 2004; Oliva and Torralba, 2007; 
De Lange et al., 2018). Humans are able to automatically and rapidly learn these spatial 
expectations through repeated exposure to the same or similar scenes, as demonstrated 
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most forcefully by the experimental paradigm known as contextual cueing (Chun and 
Jiang, 1998; Chun, 2000; Goujon et al., 2015). 

Contextual cueing is the effect robustly reported that observers engaged in visual search 
tasks become considerably faster in identifying target items in search displays that they 
have encountered before. Importantly, this effect becomes evident after only a few 
exposures to the same scene, and it appears to be fully implicit and automatic, happening 
outside of conscious awareness (Chun and Jiang, 1998). The robust nature and rapid 
establishment of the contextual cueing effect makes it ideally suited to study the neural 
and computational mechanisms involved in the acquisition of scene-based spatial 
expectations (Goujon et al., 2015). 

Some work has been done on elucidating the neural mechanisms underlying this rapid 
learning and exploitation of statistical regularities, yet much remains unknown. Evidence 
from neuropsychology indicates that damage to the hippocampus and/or associated 
medial temporal lobe structures results in deficits in contextual cueing (Chun and Phelps, 
1999; Manns and Squire, 2001), a finding which was later corroborated by functional 
magnetic resonance imaging (fMRI) (Greene et al., 2007; Giesbrecht et al., 2013). 
Additionally, fMRI studies have demonstrated the involvement in contextual cueing of 
parietal and frontal cortical structures associated with the top-down guidance of attention 
(Pollmann and Manginelli, 2009; Giesbrecht et al., 2013), lending support to the 
hypothesis that contextual cueing likely involves top-down guided attention based on a 
learned associative link. If, how, and when the hippocampal and parieto-frontal systems 
interact during learning and exploitation of regularities remains, however, unknown.  

So far, little work has been done in understanding the role of neural oscillations in the 
acquisition and exploitation of the associative link underlying contextual cueing. This is 
surprising, considering the proposed role of especially low-frequency oscillations 
(theta/alpha/beta) in communicating predictive and top-down information within and 
across brain regions (Lisman and Jensen, 2013; Jensen et al., 2014; Kerkoerle et al., 2014; 
Bastos et al., 2015; Michalareas et al., 2016; Spaak et al., 2016; Chao et al., 2018). Given 
this proposed (and reported) role of neural oscillations, we used the contextual cueing 
paradigm to examine the neural oscillatory mechanisms involved in the acquisition and 
exploitation of spatial predictions. 

The learning of an associative link (especially involving the hippocampus, which is 
crucial for declarative memory) and the top-down guidance of attention are often thought 
to be associated with deliberate, conscious thought (Eichenbaum, 2000; Dehaene et al., 
2006; Cohen et al., 2012). Interestingly, the spatial predictions learnt in contextual cueing, 
possibly depending on the same mechanisms, are typically thought to be fully implicit 
and automatic. Many studies have made such a claim, based on an explicit recognition 
task following the main visual search task (e.g. (Chun and Jiang, 1998)) or more elaborate 
target-generation tasks (Chun and Jiang, 2003). However, it has been demonstrated that 
the statistical power to detect conscious awareness in these paradigms was limited, and a 
more powerful meta-analysis has shown that participants were likely aware of the 
contextual repeats to some extent (Vadillo et al., 2016). We therefore additionally set out 
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to quantify to what extent the benefit derived from previous exposures to a scene depends 
on conscious awareness of these exposures or not. 

To answer these questions, we recorded magnetoencephalography (MEG) data while 
participants were performing a variant of the classical contextual cueing search task. To 
preview our results: during the first few blocks, as participants were becoming familiar 
with the repeated scenes, we observed stronger hippocampal theta activity for familiar 
(old) compared to unfamiliar (new) scenes. During these blocks, however, there was no 
behavioural advantage yet for repeated scenes. After the first few blocks, there was a 
marked shift in both neural processing and behavioural performance. Now frontal cortex 
(but not hippocampus) showed elevated theta activity for old compared to new scenes, 
and participants showed a marked behavioural benefit for these familiar scenes. This 
benefit clearly occurred outside of conscious awareness of scene familiarity; in fact, larger 
awareness was associated with a smaller benefit. These findings thus shed light on how 
the brain rapidly extracts statistical regularities from our environment and can use them 
to guide goal-directed behaviour, even without conscious awareness. 

Figure 1: Experimental design and search task behavioural results. (A) Schematic of an individual 
search task trial. (B) Different trial types: ‘New’ trials are unfamiliar; ‘Old’ trials are repeated every block; 
on ‘Target violation’ trials the target on an Old display swaps place with a random distractor; ‘Distractor 
violation’ trials maintain the spatial configuration of an Old display, but every distractor is rotated a random 
multiple of 90°. (C) Reaction time and accuracy time courses over the experiment for Old and New trials 
(error shading indicates within-participant corrected standard error of the mean). Black bars on the x-axis 
indicate pointwise t-tests p < 0.05 for illustration. (D) Reaction time and accuracy for the four conditions, 
averaged over blocks 9–22 (well after learning has occurred). Coloured dots are individual participants. 
Inside the violin plot, the white dot reflects the median, thick box indicates quartiles, thin line indicates 
quartiles ± 1.5 × inter-quartile range. 
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Results 

Human volunteers (N = 36) participated in a variant of the classical contextual cueing 
task. Participants were instructed to locate a target T stimulus amongst L-shaped 
distractors, and report the orientation of the T (tilted clockwise/counterclockwise) with a 
button press (Figure 1A). The experiment consisted of 22 blocks, and in each block the 
same 20 familiar displays were presented (‘Old’ trials) in random order, randomly 
intermixed with 20 unfamiliar displays (‘New’ trials). In later blocks, we additionally 
included a small amount of violation trials to be able to study the effects of different types 
of violations of the established contextual  predictions. From block 9 onwards, 5 trials per 
block were changed from an Old trial into a ‘Target violation’ trial by exchanging the 
target location with a randomly chosen distractor (thus disrupting the context–target 
association), and 5 trials per block were changed from an Old trial into a ‘Distractor 
violation’ trial by randomly rotating each distractor a random multiple of 90° (yet 
preserving the global context–target association) (Figure 1B). 

 

Search task behaviour demonstrates robust contextual cueing 

Over the course of the experiment, responses became faster and accuracy increased 
(Figure 1C). During the later part of the experiment (a priori defined as blocks 9–22), 
participants showed a clear reaction time benefit for Old displays (678 ± 91 ms; mean ± 
s.d. across participants), compared to New ones (727 ± 82 ms; t35 = 6.59, p = 1.2 × 10−7, 
BF10 = 1.1 × 105), as well as a higher accuracy (Old: 89 ± 7 %; New: 86 ± 8 %; t35 = 5.30, 
p = 6.4 × 10−6, BF10 = 3.1 × 103) (Figure 1D). We thus replicate the classical contextual 
cueing benefit for visual search in repeated displays. 

Responses on Distractor violation trials were slower (710 ± 100 ms) than on Old trials 
(t35 = 5.61, p = 2.5 × 10−6, BF10 = 7.4 × 103), and slightly less accurate (87 ± 8 %; t35 = 
2.32, p = 0.03, BF10 = 1.9); but faster than on New trials (t35 = 3.01, p = 0.0048, BF10 = 
7.9), with no difference in accuracy (t35 = 1.18, p = 0.3, BF10 = 0.34) (Figure 1D). This 
indicates that the contextual cueing effect is, at least partly, due to the global configuration 
of the display, and not exclusively to its local features. 

Reaction times on Target violation trials (735 ± 105 ms) were slower than on Old trials 
(t35 = 5.86, p = 1.2 × 10−6, BF10 = 1.5 × 105), slower than on Distractor violation trials (t 
= 3.05, p = 0.004, BF10 = 8.6), and not distinguishable from New trials (t35 = 0.678, p = 
0.50, BF10 = 0.22). Accuracy on Target violation trials (84 ± 7 %) was substantially lower 
than on Old trials (t35 = 6.22, p = 3.9 × 10−7, BF10 = 4.1 × 105), and also somewhat lower 
than on New (t35 = 2.55, p = 0.015, BF10 = 3.0) and Distractor violation (t35 = 2.54, p = 
0.016, BF10 = 2.9) trials (Figure 1D). This indicates a contextual cost when the spatial 
prediction learned from repeated exposures is violated. 
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Explicit recognition is inversely related to implicit behavioural benefit 

After completion of the main search task, participants were asked whether they had the 
“feeling that some of the search displays occurred multiple times over the course of the 
experiment” and responded with a button press to indicate ‘Yes’ or' ‘No’. Subsequently, 
participants completed a final (unspeeded) block of 20 New and 20 Old search displays, 
where the task was to indicate whether they had seen that particular display before during 
the main task. This allowed us to assess participants’ subjective feeling of recognition 
(question), their objective explicit memory for the search arrays (recognition task), and 
their relationship to each other and the contextual cueing effect. Results for these analyses 
are depicted in Figure 2. 

As commonly reported in studies of contextual cueing in visual search, the experimental 
sample as a whole was at chance (50 %) in distinguishing Old from New displays during 
the recognition task (52 ± 8 %; t-test versus chance level t35 = 1.46, p = 0.15), though the 
data were only ~2 times more likely under the null hypothesis of chance level than under 
the alternative hypothesis (BF10 = 0.47). 16/36 participants (44 %) reported having the 
feeling that some displays were repeated, while 20/36 (56 %) reported having no such 

Figure 2: Recognition task behavioural results. (A) Accuracy in recognizing search displays as Old or 
New during the recognition task; for the whole sample (left, grey), and split by whether participants 
indicated a feeling of repeated displays during the main task (middle, green) or not (right, blue). (B) 
Contextual cueing effect during the main search task (defined as RT difference between Old and New 
trials), for the same groups as in (A). (C) Contextual cueing effect during the main task as a function of 
recognition performance. Dots are individual participants, coloured by their response to the feeling-of-
recognition question. * p < 0.05, ** p < 0.01, *** p < 0.001. Significance bars and violin plot details as in 
Figure 1. 
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feeling. Interestingly, participants who felt that some of the displays were repeated were 
on average also slightly above chance level in recognizing displays as Old during the 
recognition task (55 ± 7 %; t15 = 3.03, p = 0.0084, BF10 = 6.33). In contrast, participants 
who did not have the impression that displays had been repeated were at chance level in 
recognizing the displays (49 ± 7 %; t19 = -0.538, p = 0.60, BF10 = 0.27) (Figure 2A). There 
was thus substantial variability in objective explicit recognition performance among 
participants, which furthermore appears directly related to the subjective feeling of having 
encountered displays before. 

Of considerable interest is the relationship we observed between the subjective feeling of 
having observed repeats and the strength of the contextual cueing effect during the main 
search task (Figure 2B). There was a clear reaction time benefit for Old versus New 
displays in both the Recognizing group (i.e., those who answered ‘Yes’ to the feeling-of-
repeats question; t15 = 3.02, p = 0.0087, BF10 = 6.1) and the Non-recognizing group (i.e., 
those who answered ‘No’; t19 = 6.58, p = 2.7 × 10−6, BF10 = 7.3 × 103). Surprisingly, the 
contextual cueing effect was considerably larger in the Non-recognizing group (t34 = 24.6, 
p < 10−16, BF10 = 5.9 × 1019) (Figure 2B), suggesting that search benefits were larger when 
participants were not aware of the regularities. Further supporting this notion, individual 
participants’ accuracy on the recognition task was negatively correlated with the 
contextual cueing effect during the main task (r = −0.36, t34 = −2.09, p = 0.044), although 
the evidence for this relationship was anecdotal (BF10 = 1.3) (Figure 2C). This 
relationship between both the objective explicit recognition performance and the 
subjective feeling-of-repeats on the one hand, and the contextual cueing benefit during 
the main search task on the other, is rather striking: individuals with less explicit 
knowledge of context-target associations show a greater behavioural benefit when 
exploiting such associations. 

Figure 3: Reaction time modelling results. (A) Illustration of the five different models that were fit to the 
reaction time data for Old and New trials. Grey dashed line indicates zero in each subpanel; black solid line 
indicates the predicted evolution of the contextual cueing effect (RTNew − RTOld) over the course of the 
experiment. (B) Watanabe-Akaike Information Criterion scores (z-scored across models per participant) 
for each of the models. Significance bars and violin plot details as in Figure 1. 
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The contextual cueing benefit appears suddenly and not gradually 

The curves of reaction time for Old and New trials over the course of the experiment 
(Figure 1C) appear to diverge from about block 5 onwards, after which the difference 
between them appears to remain stable. We sought to quantify the evidence for this 
potentially interesting descriptive observation through Bayesian model comparison. 
Specifically, per participant, we fitted five models to the condition-specific reaction time 
data: No effect (no difference between conditions), No switchpoint (constant difference 
between conditions), Switchpoint (no difference between conditions until a particular 
point in time in the experiment and a constant difference afterwards), Linear (linearly 
increasing difference, trialwise across the experiment time), and Blockwise linear 
(linearly increasing difference, blockwise across the experiment time) (Figure 3A). 

Across our experimental sample, we observed the strongest evidence (quantified by 
Watanabe-Akaike Information Criterion, WAIC) for the Switchpoint model (relative 
WAIC = −288.04), followed by the No switchpoint (WAIC = −227.87), Blockwise linear 
(WAIC = −207.55), Linear (WAIC = −206.34), and No effect (WAIC = −36.99) models. 
The pairwise differences between Switchpoint and all the other models were significant 
and substantial (versus No switchpoint: t35 = 2.71, p = 0.010, BF10 = 4.1; versus Blockwise 
linear: t35 = 6.08, p = 6.1 × 10−7, BF10 = 2.8 × 104; versus Linear: t35 = 3.44, p = 0.0015, 
BF10 = 21; versus No effect: t35 = 5.03, p = 1.5 × 10−5, BF10 = 1.4 × 103) (Figure 3B). This 
indicates that, indeed, observers first acquire the contextual knowledge (implicitly), and 
then switch to a strategy in which they start benefitting from repeated exposures to the 
same display. 

 

Learning a predictive context is associated with hippocampal theta activity 

During the experiment, we continuously recorded magnetoencephalography (MEG) data 
from our participants, allowing us to characterize the neural dynamics during the learning 
and exploitation of the associative link between scene context and target location. We 
were specifically interested in the role of low-frequency neuronal oscillations in 
contextual cueing, with repeated versus novel spatial contexts (i.e., Old versus New trials) 
as the main contrast of interest. We computed time-frequency representations of 
oscillatory power, averaged over all trials per condition in the experiment, and contrasted 
these values between conditions. The data were significantly different between Old and 
New (cluster-based permutation test p = 0.004), with a prominent difference during the 
first 500 ms of stimulus processing in the theta1 frequency band (1–7 Hz). The MEG 
sensor topography of this difference was rather diffuse, with local left frontal/central and 
right anterior temporal peaks (Figure 4A). 

                                                           
1 The frequency band identified here (1–7 Hz) overlaps with the delta frequency range, but given the limited 
spectral resolution of the time window we are dealing with here, and the abundant prior literature on the 
involvement of theta activity in learning, memory, and executive function, we will label these effects as 
‘theta activity’ in the rest of the paper. 
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To get a clearer view of the neural origin of these effects, we performed beamformer 
source analysis of the theta activity (1–7 Hz) in the time window 0–500 ms post stimulus 
onset, and again computed condition contrasts. The strongest source of this effect was 
located in the right hippocampus (peak at 43, −31, −9 mm in Montreal Neurological 
Institute (MNI) space; Figure 4B, left panel). 

We next investigated the evolution over the course of the experiment of the difference in 
stimulus-related hippocampal theta activity between Old and New trials. Interestingly, 
this difference was primarily evident during blocks 3–6, but not during the later part of 
the experiment (Figure 4C, left panel). For the majority of this time period, a behavioural 
contextual cueing effect was not yet evident (Figures 1C, 5A). This suggests that the 
hippocampal theta rhythm is specifically associated with the learning of the predictive 
link between spatial context and target location, and that, once learned, hippocampal theta 
activity returns to baseline levels. 

 

Exploiting a predictive context is associated with frontal theta activity 

In addition to the peak in right hippocampus, several sources in frontal cortex also 
contributed to the difference in theta power between Old and New trials. The strongest 
frontal contribution was from the left superior frontal cortex (MNI x, y, z = −12, 24, 64 

Figure 4: Theta band activity differences between Old and New trials. (A) Time-frequency 
representation of sensor-level power difference between Old and New trials across the whole experiment. 
Opacity mask indicates cluster-corrected significant differences (p < 0.05) for illustration. Inset shows the 
sensor topography of the effect; significantly contributing sensors are highlighted with a dot. (B) Source-
level contrast of the time-frequency window of interest identified in (A), projected on the average Montreal 
Neurological Institute (MNI) template brain. MNI coordinates given are of two local maxima; anatomical 
labels are from the Automated Anatomical Labeling (AAL) atlas. (C) Source-level power values for Old 
and New trials separately, for the two identified regions in (B), as a function of experiment time. 
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mm; Figure 4B, right panel), with additional, weaker, local maxima in right middle frontal 
gyrus (44, 24, 48 mm) and left precentral gyrus (−44, 0, 40 mm). 

Interestingly, the evolution of this frontal effect over the time course of the experiment 
was markedly different from that observed in the hippocampus. Theta power for Old and 
New trials started to diverge significantly from block 7 onwards, and remained distinct 
throughout the experiment (Figure 4C, right panel). The frontal theta effect thus emerged 
as the hippocampal effect was ramping down, and closely mirrored the behavioural 
benefit for reaction times (Figure 5A). 

Although frontal theta was clearly different between Old and New trials, there were no 
significant pairwise differences between either of the violation conditions (Distractor 
violation or Target violation) and Old or New (all p > 0.05), with evidence for the null 
hypothesis of no difference ranging from moderate to inconclusive (0.19 < BF10 < 0.88). 
We therefore cannot exclude the possibility that the absence of an effect here is due to the 
substantially lower trial count for the violation conditions (65 per condition for each 
violation condition, versus 355 for Old). 

The time courses in Figure 5A suggest that the reaction time benefit is primarily driven 
by theta activity in the frontal cortex, presumably reflecting top-down driven guidance of 
attention based on context-induced predictions about target location. If this is the case, 

Figure 5: Relationship between neural and behavioural modulation. (A) Evolution of theta power 
differences (Old − New) over the course of the experiment in the right hippocampus and frontal cortex 
clusters identified in Figure 4, as well as the contextual cueing reaction time effect (New − Old). (B) Scatter 
plots of the behavioural contextual cueing effect versus theta power in the two identified clusters, separately 
for Old and New trials. Each dot is a participant; black lines are the best-fitting linear regression, with grey 
shading indicating the 95% confidence interval. 
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then theta power should correlate with the reaction time benefit specifically on Old trials 
(and not on New, since no predictive link was learned for these), and specifically in the 
frontal cortex (and not the hippocampus). This is indeed what we found: frontal theta 
power on Old trials was significantly correlated across participants with the contextual 
cueing effect (r = 0.34, t34 = 2.13, p = 0.041), but there was no such relationship for the 
hippocampus or for New trials (all p > 0.10, 0.18 < BF10 < 0.45) (Figure 5B). However, 
we note that the evidence for the correlation between frontal theta and the contextual 
cueing effect, although significant, was inconclusive (BF10 = 1.3), and should thus be 
interpreted with caution. 

 

Neither hippocampal nor frontal theta is associated with explicit recognition 

As mentioned, we observed substantial variability among participants in explicit 
recognition performance, and a striking inverse relationship with the behavioural 
contextual cueing benefit (Figure 2). An interesting possibility therefore would be that 
either the hippocampal or the frontal theta effect dissociates between recognizers and non-
recognizers. However, we found neither to be the case. We found no evidence that frontal 
theta in blocks 9–22 was different between the Recognizing and Non-recognizing groups 
(t34 = 1.69, p = 0.10, BF10 = 0.97), and frontal theta was not correlated with recognition 
performance (r = 0.11, t34 = 0.65, p = 0.52, BF10 = 0.22). We also found no evidence that 
hippocampal theta in blocks 3–6 was different between the Recognizing and Non-
recognizing groups (t34 = 1.47, p = 0.15, BF10 = 0.75), or that it was correlated with 
recognition performance (r = 0.29, t34 = 1.79, p = 0.08, BF10 = 0.76). The theta band 
effects described above are thus specifically related to the implicit learning and 
behavioural exploitation of scene-based spatial predictions, and are unlikely to be 
explained by either the recognizers or the non-recognizers showing the effects, and not 
the other. 

 

Discussion 

We set out to elucidate the neural oscillatory mechanisms underlying the acquisition and 
exploitation of predictive links between global scene context and search target location. 
Repeated displays were associated with elevated hippocampal theta power early in the 
experiment, while there was no behavioural benefit yet. Strikingly, as the hippocampal 
activity difference receded, stronger frontal theta activity became apparent for repeated 
scenes, concomitantly with a clear reaction time benefit. This reaction time benefit was 
furthermore positively correlated with frontal theta power for repeated scenes, and 
negatively related to participants’ explicit recognition of repeated search displays. A 
hippocampal-prefrontal interplay in the theta band thus underlies the acquisition and 
exploitation of unconscious scene-based spatial predictions, demonstrating a potential 
mechanism through which perception can be facilitated by prior expectations 
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(Biederman, 1972; Bar, 2004; Oliva and Torralba, 2007; Summerfield and de Lange, 
2014; de Lange et al., 2018). 

 

Contextual cueing is driven by overall configuration, implicit in nature, and all-or-
none 

It has been claimed that scene-based expectations are generated based on a rapid 
extraction of low spatial frequency information from an encountered scene, which can 
subsequently guide more fine-grained explorations (Bar, 2004). The Distractor violation 
condition allowed us to investigate to what extent the contextual cueing effect depends 
on local or global aspects of the search displays. Rotating individual distractors preserves 
the low spatial frequency distribution of the display, but perturbs the location of 
individual high spatial frequency edges. If global features, and thus low spatial frequency 
content, are indeed exclusively responsible for contextual cueing, then Distractor 
violations should be processed as efficiently as Old displays. We found that Distractor 
violations are instead processed less efficiently than Old displays (slower RT, slightly 
lower accuracy), yet still considerably more efficient (faster and more accurate) than New 
displays. Overall configuration thus indeed seems critical for the contextual cueing effect, 
though not exclusively responsible for it. This is in line with previous findings (Chun and 
Jiang, 1998; Jiang and Wagner, 2004). 

Our experimental sample of participants was at chance level in recognizing individual 
displays as Old or New after the main search task. This is a common finding in contextual 
cueing studies, and is interpreted as evidence that the familiarity after repeated search 
displays is a form of fully implicit knowledge (Chun and Jiang, 2003; Goujon et al., 
2015). The implicit nature of this effect has been called into question, however, because 
individual studies have lacked the statistical power to detect above-chance performance 
(Vadillo et al., 2016). Also in our case, the evidence for the null hypothesis of chance 
level was only anecdotal across the whole sample, as indexed by Bayesian analysis. A 
more powerful meta-analysis has instead demonstrated evidence for a weakly above-
chance recognition of search displays (Vadillo et al., 2016). In our experiment, we 
included a subjective ‘sense of repeated exposure’ question after the main search task, 
only after which the participants performed the recognition task. Some participants 
appeared to exhibit some awareness of the repeats (as indicated by the group answering 
that they felt that there were repeats indeed being above-chance at recognition 
performance), while some had no such awareness (substantial evidence for at-chance 
performance, no feeling of repeats). We found a considerably larger contextual cueing 
effect in the group without awareness, and a negative correlation of behavioural benefit 
with recognition performance. This demonstrates that the behavioural contextual cueing 
effect is, indeed, likely implicit in nature. Nonetheless, observers might additionally 
acquire explicit recognition knowledge of the search displays (thus explaining the above-
chance result found in the meta-analysis by Vadillo et al.) 
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The inverse relationship between awareness of the regularities and the performance 
benefit derived from the regularities is in line with the idea that statistical learning biases 
sensory and decision processing in an automatic and non-deliberate fashion. Indeed, the 
benefits of statistical learning in visual search have previously been reported particularly 
when participants were instructed to “be as receptive as possible and let the [target] ‘pop’ 
into [their] mind”, but not when participants were instructed to “actively search for the 
target” (Mühlenen and Lleras, 2004). This corroborates the notion that contextual cueing 
appears grounded in automatic, unconscious, perception; or, in Kahneman’s terms, 
“System 1” thought (Kahneman, 2013); with any involvement of System 2 (deliberate, 
conscious thought) abolishing, or at least reducing, the effect.  

A final result we observed in our behavioural data is that the contextual cueing effect 
likely emerges suddenly, and not gradually. To our knowledge, this has not been reported 
(or explicitly tested) before. This suggests that contextual cueing is a form of all-or-none 
learning (Jones, 1962; Estes, 1964), which has also been shown to underpin simple paired 
associate learning (Brainerd and Howe, 1978). The all-or-none nature of the phenomenon 
under study here ties nicely to the fact that synaptic long-term potentiation (LTP) is 
thought to be discrete and not continuous (Murthy, 1998). Synapses between 
hippocampal CA3 and CA1 subregions, specifically, are strengthened or weakened in an 
all-or-none manner (Petersen et al., 1998), which is especially interesting given the 
hippocampal effects we report in this study. 

 

Hippocampal and prefrontal theta activity underlies learning and exploitation of 
scene-based predictions 

A wide body of evidence has linked the hippocampal theta rhythm to the encoding of 
memories, both spatial and non-spatial in nature (O’Keefe and Nadel, 1978; O’Keefe and 
Recce, 1993; Hasselmo, 2005; Buzsaki and Moser, 2013; Colgin, 2013, 2016; Lisman 
and Jensen, 2013; Staudigl and Hanslmayr, 2013; Backus et al., 2016; Bellmund et al., 
2018). We now demonstrate, for the first time, that specifically the acquisition, and not 
the retrieval, of memories for spatial context in a visual search task involves the 
hippocampal theta rhythm. Although the involvement of the theta rhythm in contextual 
cueing has not been reported before, the hippocampus per se has been linked to contextual 
cueing through several strands of evidence. First, lesions to the hippocampus and/or 
associated medial temporal lobe structures result in severe deficits in the contextual 
cueing effect (Chun and Phelps, 1999; Manns and Squire, 2001). Second, BOLD activity 
in the right hippocampus is reduced for Old displays compared to New ones during the 
learning phase of a contextual cueing task (Giesbrecht et al., 2013). We observed an 
increase in hippocampal theta power for Old versus New displays, whereas Giesbrecht et 
al. reported a decrease in BOLD for Old versus New. This apparent discrepancy can be 
reconciled by noting that hippocampal theta and BOLD activity tend to be anti-correlated, 
specifically during memory encoding (Fellner et al., 2016). Our observation of theta 
activity specifically in the right, and not the left, hippocampus, is in line with the fact that 
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the right, and not the left, hippocampus appears specifically involved in spatial memory 
(Burgess et al., 2002). 

It has been debated whether MEG is sensitive enough to measure signals from deep brain 
structures, such as the hippocampus. In recent years, however, a consensus has emerged 
that, given proper source reconstruction techniques, MEG is indeed able to measure 
signals from the hippocampus (Dalal et al., 2013; Pu et al., 2018; Pizzo et al., 2019). We 
furthermore note that we did not start with an anatomical hippocampus-based region of 
interest and test the signals coming from that region, but instead used a data-driven 
approach which subsequently yielded the hippocampus as a strong and significant source 
of sensor-level effects. Considering these facts, together with the well-established role of 
the hippocampal theta rhythm in (spatial) memories (thus rendering the effect a priori 
plausible), we consider the hippocampus to be indeed a likely source of the observed 
sensor-level effects. 

The exploitation of the learned link between spatial context and target location was 
associated with a clear theta frequency band effect in prefrontal cortex. The peak source 
of this effect was located in superior prefrontal cortex, which is known to be associated 
with the top-down guided orienting of (spatial) attention (Corbetta and Shulman, 2002). 
We believe attentional orienting to be the most likely explanation for the frontal theta 
effect reported here, since it has been shown that participants locate the target more 
efficiently in repeated displays due to rapid orienting of spatial attention (Zhao et al., 
2012, 2013). Frontal theta activity is also commonly linked to the retrieval of memories 
(Kahana et al., 2001; Osipova et al., 2006; Addante et al., 2011), which might additionally 
partly explain the involvement of this rhythm in our experiment. Finally, it is interesting 
to note that several authors have suggested that these two phenomena (i.e., memory 
retrieval and attentional orienting) should be considered two sides of the same coin, 
(partly) dependent on the same neural mechanisms (Chun and Turk-Browne, 2007; Awh 
et al., 2012; Hutchinson and Turk-Browne, 2012).  

Intriguingly, the two neural systems identified here (hippocampus during learning; frontal 
cortex during exploitation) to underlie clearly implicit memory are typically associated 
with explicit processes. The hippocampus is crucial for declarative memories, which are 
by definition amenable to conscious access (Eichenbaum, 2000). The top-down guided 
(i.e., endogenous) orienting of attention by frontal cortex is often thought to be intimately 
related to deliberate, conscious thought (Dehaene et al., 2006; Cohen et al., 2012) 
(although this relationship is fiercely debated, see Koch and Tsuchiya (2007)). We now 
demonstrate that learning and exploitation of fully implicit knowledge is associated with 
these two brain structures, and explicit awareness of the same knowledge is not. An 
interesting corollary is thus that activity in these regions is not necessarily associated with 
conscious awareness of what is being learned. 
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Conclusion 

Recent years have seen considerable interest in and support for the idea that the brain is 
essentially a prediction machine, continuously trying to minimize the mismatch between 
expectations and sensory inputs (Clark, 2013). The ubiquitous context effects in 
perception (Bar, 2004; Oliva and Torralba, 2007; de Lange et al., 2018), established 
through statistical learning (Turk-Browne et al., 2010), are thus explained by noting that 
perception depends strongly on prior expectations and not solely on sensory input. These 
prior expectations, in turn, are continuously fine-tuned in order to optimally process 
future input, and so on. We demonstrate that the acquisition and exploitation of scene-
based expectations involve theta-band dynamics in an interplay between the hippocampus 
and the prefrontal cortex, which happens outside of conscious awareness. These results 
shed light on how humans are able to rapidly adapt their prior expectations in order to 
optimally guide perception and behaviour. 

 

Methods 

Participants 

We recruited 36 healthy right-handed participants (23 female; 13 male; age 24 ± 5 years 
(mean ± standard deviation), range 17–45 years) from the Radboud University participant 
pool. The sample size was chosen to obtain ≥ 80 % power for detecting a medium effect 
size (d = 0.5) with a two-sided paired t-test at an alpha level of 0.05. All participants had 
normal or corrected-to-normal vision. Participants received € 12 compensation for their 
participation in the main MEG experiment, and an additional € 5 in case they returned for 
an anatomical magnetic resonance imaging (MRI) scan (i.e., if no such scan was available 
yet from participation in other experiments). The study was approved by the local ethics 
committee  (CMO Arnhem-Nijmegen, Radboud University Medical Center) under the 
general ethical approval for the Donders Centre for Cognitive Neuroimaging (“Imaging 
Human Cognition”, CMO 2014/288). Participants provided written informed consent 
prior to the experiment. 

 

Stimuli, task, and experimental design 

Throughout the experiment, a fixation dot (outer white diameter 8 pixels; inner black 
diameter 4 pixels) was presented in the center of the screen. Participants were asked to 
blink as little as possible and keep looking at the central fixation dot. Participants were 
instructed to search for a T-shaped target stimulus amongst L-shaped distractors (all 
stimuli measured 1.5 × 1.5 ° of visual angle and were coloured white, presented on a grey 
background). Distractor L shapes were rotated a random multiple of 90 °. The target T 
could be rotated 90 ° to the left or right, and participants made a left or right handed index 
finger button press to indicate the orientation of the T. Each trial started with a 1 s fixation 
period, and search displays were presented for 1.5 s or until the response button press. 
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After the button press, participants were informed whether their response was correct or 
not by the white part of the fixation dot turning green (correct) or red (incorrect) for 0.5 s 
(Figure 1A). Search stimuli were arranged pseudorandomly on an 8 × 6 regular grid 
spanning −9 to +9 ° horizontal and −6 to +6 ° vertical from the center of the screen, with 
an added amount of random jitter ± 0.4 ° per stimulus to prevent exact collinearities (Chun 
and Jiang, 1998). The target was constrained to always appear between 6 ° and 8 ° of 
excentricity, and the mean distance between the target and all distractors was constrained 
to be between 9 ° and 11 °. 

The main search task consisted of 22 blocks of 40 trials each. Participants were given the 
option to take a short break (while remaining seated in the MEG chair) every second 
block. We embedded repeats of search displays in each block to establish the classical 
contextual cueing effect, i.e. the ‘Old’ displays. The search configuration of an Old trial 
was exactly the same across blocks, i.e. the location and rotation of all distractors was 
maintained, as well as the location of the target. Importantly, the orientation of the target 
was always randomly chosen and not repeated, so participants could not learn 
associations between a given display and the appropriate response, only between the 
display and the target location. All search blocks contained 20 ‘New’ trials, i.e., newly 
randomly generated search displays. The first 8 blocks contained 20 Old trials. 

Blocks 9–22 contained 10 Old displays included as-is, with the remaining 10 Old displays 
modified to yield the ‘Target violation’ and ‘Distractor violation’ conditions (5 trials per 
violation condition per block each). To generate a Target violation display, the target was 
swapped with a randomly chosen distractor, while leaving all other parameters (i.e., 
distractor location and rotation) untouched. To generate a Distractor violation display, the 
target location remained the same, but each individual distractor was rotated a random 
multiple of 90 ° (Figure 1B). Within each block, different Old displays were selected to 
be converted into a violation display, and trials were presented in random order. 

After the main search task, participants were asked “Did you have the feeling that some 
of the search displays occurred multiple times over the course of the experiment?” and 
indicated their answer with a left (‘yes’) or right (‘no’) button press. Next, they were 
asked: “How sure are you about your answer to the previous question?” and again pressed 
the left (‘very sure’) or right (‘not very sure’) button. 24/36 (75 %) of participants 
indicated ‘not very sure’ to this confidence question, so we did not investigate this 
confidence rating in further detail and instead pooled responses across confidence levels. 

Finally, participants performed a recognition block, consisting of the 20 Old trials and 20 
newly generated New trials, randomly intermixed, and were instructed to indicate 
whether they thought they had seen the display during the main search task. Responses 
were now self-paced (unspeeded), and participants could freely move their eyes. No 
feedback was presented during the recognition block. 
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Apparatus 

Stimuli were presented using Matlab (The Mathworks, Inc., Natick, Massachussetts, 
United States) and custom-written scripts using the Psychophysics Toolbox (Brainard, 
1997), and back-projected onto a translucent screen (48 × 27 cm) using a ProPixx 
projector (VPixx Technologies, Saint-Bruno, Québec, Canada) at a resolution of 1920 × 
1080 pixels and a refresh rate of 120 Hz. Participants were seated at a distance of 85 cm 
from the screen. 

Brain activity was recorded using a 275-channel axial gradiometer MEG system 
(VSM/CTF Systems, Coquitlam, British Columbia, Canada) in a magnetically shielded 
room. 5 faulty channels were disabled during the recording, leaving 270 recorded MEG 
channels. During the experiment, head position was monitored using three fiducial coils 
(nasion/left ear/right ear). Whenever participants’ head movement exceeded ~5mm, the 
experiment was manually paused and the head position was shown to the participant, who 
would subsequently reposition (Stolk et al., 2013). Eye position and blinks were recorded 
using an Eyelink 1000 eye tracker (SR Research Ltd., Mississuaga, Ontario, Canada). All 
data were on-line low-pass filtered at 300 Hz and digitized at a sampling rate of 1200 Hz. 
Immediately prior to the MEG session, participants’ headshape and the location of the 
three fiducial coils were digitized using a Polhemus 3D tracking device (Polhemus, 
Colchester, Vermont, United States) in order to facilitate subsequent source analysis. 

Anatomical MRI scans were acquired using a 3T MRI system (Siemens, Erlangen, 
Germany) and a T1-weighted MP-RAGE sequence with a GRAPPA acceleration factor 
of 2 (TR = 2.3 s, TE = 3.03 ms, voxel size 1 mm isotropic, 192 transversal slices, 8 ° flip 
angle). 

 

Behavioural data analysis 

The main behavioural variable of interest for the main search task was reaction time (RT), 
with accuracy being of secondary interest. The evolution of RT and accuracy over the 
time course of the experiment (Figure 1C) were smoothed ± 1 blocks (i.e., the data plotted 
at block n represents the mean of blocks n−1, n, and n+1). Statistical assessment of the 
RT data was done for the a priori defined window of interest of blocks 9–22 
(unsmoothed). RT data for trials with incorrect responses was discarded. Since RT 
distributions are typically heavily skewed, the RT data was log-transformed prior to any 
analysis to improve normality. Furthermore, since performance improved substantially 
over the course of the experiment (see Figure 1C), a linear trend over experiment time 
was fitted and removed from the (condition-pooled) log-transformed RT data per 
participant before performing group-wise analyses (Figures 1D, 2B, 2C, 3, 5A). Although 
these preprocessing steps improved the sensitivity of our analyses considerably, we note 
that our conclusions do not depend on them and also hold when analyzing raw RT. 
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Behavioural data modelling 

We performed Bayesian model comparison in order to determine whether the reaction 
time difference between Old and New trials exhibited a switchpoint or not. Detrended, 
log-transformed reaction times were modelled as drawn from a normal distribution with 
a given standard deviation σ, and mean μ that could be determined by one of five models 
(Figure 3A): No effect (no difference in mean between conditions), No switchpoint 
(constant difference in mean between conditions), Switchpoint (no difference in mean 
between conditions until a particular point in time in the experiment and a constant 
difference afterwards), Linear (linearly increasing difference in mean, trialwise across the 
experiment time), and Blockwise linear (linearly increasing difference in mean, 
blockwise across the experiment time). Specifically, the detrended log-RT for an 
individual Old or New trial y with index k was modelled according to the following prior 
and likelihood structure: 

𝑦𝑦New(𝑘𝑘) ∼ Normal(𝜇𝜇New,𝜎𝜎2) 
𝑦𝑦Old(𝑘𝑘) ∼ Normal(𝜇𝜇Old(𝑘𝑘),𝜎𝜎2) 

𝜎𝜎 ∼ HalfNormal(2 · sObs) 
𝜇𝜇New ∼ Normal(𝑥̅𝑥Obs, 2 · sObs) 

𝜇𝜇Old(𝑘𝑘) =  𝜇𝜇New − Δ𝜇𝜇(𝑘𝑘) 

where sObs and 𝑥̅𝑥Obs are the sample standard deviation and sample mean of the condition-
pooled RT data, respectively. The No effect model was defined by Δ𝜇𝜇 = 0. The No 
switchpoint model was defined by: 

Δ𝜇𝜇 ∼ Normal(𝑥̅𝑥Obs, 2 · sObs) 

The Switchpoint model included an extra switchpoint parameter γ and was defined by: 

Δ𝜇𝜇(𝑘𝑘) ≃ � Normal(𝑥̅𝑥Obs, 2 · sObs), 𝑘𝑘 > 𝛾𝛾
0, 𝑘𝑘 ≤ 𝛾𝛾 

𝛾𝛾 ∼ DiscreteUniform(0, 22) 

The Linear model included an extra parameter λ for the trialwise linearly increasing 
reaction time benefit and was defined by: 

Δ𝜇𝜇(𝑘𝑘) = Δ𝜇𝜇Const + 𝜆𝜆𝜆𝜆 
Δ𝜇𝜇Const ∼ Normal(𝑥̅𝑥Obs, 2 · sObs) 

λ ∼ Normal(𝑥̅𝑥Obs, 2 · sObs) 

Analogously, the Blockwise linear model incorporated a blockwise linear increase: 

Δ𝜇𝜇(𝑘𝑘) = Δ𝜇𝜇Const + 𝜆𝜆 �
𝑘𝑘

40
� 

with � 𝑘𝑘
40
� representing zero-based block index, and the other quantities as above for the 

Linear model. 
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Posterior probability distributions for the model parameters given the data were obtained 
per participant using Markov Chain Monte Carlo (MCMC) with a Metropolis-Hastings 
sampling scheme. Four chains were sampled for each model, with 40,000 samples per 
chain. We discarded the first 20,000 samples (burn-in), and used every 5th sample of the 
remaining samples (i.e., thinning factor of 5). Convergence of the chains was checked by 
visual inspection. We computed the Watanabe-Akaike Information Criterion (WAIC) 
(Watanabe, 2010; Gelman et al., 2014) for each model, given the resulting MCMC 
posterior probability distribution. In order to compare the different models across the 
sample of participants, we z-scored the resulting WAIC scores across models per 
participant before testing. Relative WAIC scores reported in the text are expressed 
relative to the model with highest WAIC (i.e., the worst fitting model) per participant. 
Models and sampling scheme were implemented using the PyMC3 library for Python 
(Salvatier et al., 2016), along with Numpy (van der Walt et al., 2011) and SciPy (Jones et 
al., 2001). 

 

MEG data preprocessing and trial selection 

All MEG data analyses were performed using custom-written scripts and the FieldTrip 
toolbox (Oostenveld et al., 2011). MEG data were segmented from −1 to +1.5 s around 
each search display onset. The CTF MEG system records noise in separate reference 
sensors, concomitantly with brain activity. As a first preprocessing step, the signals from 
these reference sensors were used to denoise the recorded MEG data. Next, the per-trial 
and per-channel mean across time was subtracted from the data. Data were screened for 
outliers including eye blinks or eye movements, MEG SQUID jumps, and muscle 
artifacts, using a semi-automatic routine (FieldTrip’s ft_rejectvisual), rejecting artifactual 
segments and/or excessively noisy MEG channels. This resulted in 268.9 ± 1.4 (mean ± 
standard deviation) MEG channels retained of the total 270 recorded, and 795.9 ± 34.5 
trials per participant retained out of a total of 880. After artifact rejection, data were 
downsampled to 400 Hz (after applying an anti-aliasing filter) to speed up subsequent 
analyses. Infomax Independent Component Analysis (ICA; (Bell and Sejnowski, 1995)) 
was then used to clean the data of artifacts caused by ongoing cardiac activity and any 
residual eye movements. 

 

Time-frequency analysis of power 

To obtain time-frequency representations of the evolution of oscillatory power over trial 
time (Figure 4A), we first computed an approximation of the MEG planar gradient to 
facilitate the interpretation of the resulting topography (Hari and Salmelin, 1997; 
Bastiaansen and Knösche, 2000). Power was estimated using a 500 ms sliding Hann 
window, centered from −0.5 to +1 s around search array onset, in steps of 50 ms, with 
frequency steps of 1 Hz from 1 Hz to 30 Hz. To attenuate edge artifacts, trials were zero-
padded to a length of 3 s before spectral estimation. After estimating single-trial power, 
the two orientations of the planar gradient were combined by summing. Subsequently, 
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we regressed out a linear trend across the experiment time from the power data to remove 
very slow drifts, and normalized the single-trial data by z-scoring (Grandchamp and 
Delorme, 2011). Power data was averaged per condition, using only those trials for which 
the participant responded correctly. For visualization purposes only, the time-frequency 
representation of the power contrast (Figure 4A) was smoothed and interpolated using a 
512 × 512 grid. 

 

MRI preprocessing and source analysis 

Anatomical MRI images were realigned to individuals’ CTF space by using the three 
fiducial coil locations and the recorded headshape information, using an automatic 
procedure followed by manual inspection and optional correction. A source model was 
created by non-linearly warping a regular 8 mm isotropic grid defined in Montreal 
Neurological Institute (MNI) space to the individual participants’ CTF space. For each 
grid point, the lead field was computed using a realistic single-shell volume conduction 
model (Nolte, 2003). 

The cross-spectral density required for source analysis was estimated on the condition-
pooled axial gradiometer data at the frequency of interest, as identified in the sensor-level 
statistical contrast (specifically: center frequency of interest 4 Hz, ± 3 Hz smoothing by 
using multitapers, resulting in frequency window 1–7 Hz). Beamformer spatial filters 
were computed from the lead field and cross-spectral density using Dynamic Imaging of 
Coherent Sources (DICS) (Gross et al., 2001). 

We multiplied the resulting filters with the single-trial time-resolved channel-level 
Fourier spectra, converting the result to power values, to obtain source level estimates of 
time-resolved power. The source-level estimates were normalized analogously to the 
sensor level data, i.e. a slow linear trend across the experiment was fitted and removed 
and single-trial z-scoring was applied (Grandchamp and Delorme, 2011). We averaged 
the resulting values in the time window of interest, as identified in the sensor-level 
statistical contrast (0–500 ms post-stimulus), as well as per condition, and computed t-
contrasts between Old and New trials across the participants. These were interpolated 
onto and visualized on the average MNI brain template, with scores below 65 % of the 
peak masked as fully transparent, everything above 80 % fully opaque, and values in 
between ramping up sigmoidally (Figure 4B). Note that the t-scores were computed for 
localization purposes only; we did not repeat the statistical test here, to avoid “double-
dipping” concerns (since the effect was already deemed significant at the sensor level). 

For the analysis of the evolution of the power effect over the time course of the experiment 
(Figure 4C), we averaged the normalized source-level data in the same 0–500 ms time 
window per condition, per block. For the observed hippocampus effect, the power was 
averaged for this single grid point of interest; while for the frontal effect, the power was 
averaged across the three identified peak grid points of interest (see Results for details). 
Analogous to the reaction time data, we increased the signal-to-noise ratio of the resulting 
power time courses by smoothing with ± 1 block. 
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Statistical inference 

For all pairwise comparisons, we report t statistics, as well as Bayes factors quantifying 
how much more likely the data are under the alternative hypothesis than under the null 
hypothesis (BF10). Bayes factors were estimated analytically using noninformative priors: 
a Cauchy prior on effect size and a Jeffreys prior on variance, using the default Cauchy 
scale parameter of r = 0.707, resulting in a quantity known in the literature as the “JZS 
Bayes factor” (Zellner and Siow, 1980; Jeffreys, 1998; Rouder et al., 2009). 

The sensor-level mass univariate contrast (Figure 4A) was assessed using a cluster-based 
permutation test, which leverages the inherent correlation between the data at 
neighbouring time points, frequencies, and channels, to correct for multiple comparisons 
(Maris and Oostenveld, 2007). We used 1,000 permutations, the default maximum-sum 
cluster statistic, a cluster-forming threshold of 0.05 (also the default), and a minimum 
channel neighbour count of 2. 

Error shading in figures (Figures 1C, 4C, 5A) reflects the unbiased within-participant 
corrected standard error of the mean (Cousineau, 2005; Morey, 2008). For visualization 
purposes, we furthermore highlight uncorrected p < 0.05 using thick over- or underlying 
bars in the same plots. 
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