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Abstract 

A significant limitation in biodiversity conservation has been the effective implementation of 

laws and regulations that protect species habitats from degradation. Flexible, efficient, and 

effective monitoring and enforcement methods are needed to help conservation policies realize 

their full benefit. As remote sensing data become more numerous and accessible, they can 

increasingly be used to identify and quantify land use changes and habitat loss. However, these 

data remain underused for systematic conservation monitoring in part because of a lack of simple 

tools. We adapted and developed two generalized methods that automatically detect landscape 

changes in a variety of habitat types using free and publicly available data and tools. We 

evaluated the performance of these algorithms in two ways.  First, we tested the algorithms over 

50 sites of known change in the United States, finding these approaches were effective (AUC > 

0.90) at distinguishing between areas of habitat loss and areas of no change.  Second, we 

evaluated algorithm effectiveness by comparing results to manually identified areas of change in 

four case studies of imperiled species habitat: oil and gas development in the range of the Greater 

Sage Grouse; sand mining operations in the range of the dunes sagebrush lizard; loss of Piping 

Plover coastal habitat in the wake of hurricane Michael (2018); and residential development in 

beach mouse habitat. These case studies indicate different performance of each algorithm in 

different habitats, but that both provide effective means to detect and delineate loss of habitat.  

The results show how these algorithms can be used to help close the implementation gap of 

monitoring and enforcement in biodiversity conservation and point to next steps in advancing 

remote sensing for conservation.  
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1. Introduction 

Biodiversity around the world is threatened with both annihilation (Ceballos, Ehrlich, & Dirzo, 

2017), and direct habitat loss is the leading cause of the loss of individuals and species 

extinctions (Newbold, et al., 2015; Betts, et al., 2017).  To address this threat, biodiversity 

conservation is often focused on protecting habitat through a variety of legal and policy 

mechanisms (UN Environment World Conservation Monitoring Centre & International Union 

for Conservation of Nature, 2017).  However, it is unclear how effectively these laws protect 

habitat on the ground, and there is reason to believe entities with regulatory authority may lack 

the means to monitor and enforce protections.  Without regular monitoring and enforcement, 

conservation laws may be nothing more than paper tigers (Salomon et al., 2014).  Options for 

monitoring and enforcing laws that protect imperiled species habitat have historically required 

time intensive efforts on the ground, and thus have been limited by funding and personnel 

availability.  However, technological advances are expanding the options for cost effective 

monitoring efforts (e.g., aquatic telemetry; Hussey et al., 2015, remote cameras detecting 

poachers; Hossain et al., 2016).  Given the central role that habitat conservation plays in 

conserving imperiled species, methods to automatically detect habitat loss in near real-time could 

significantly enhance compliance monitoring and enforcement capabilities, and substantially 

increase the effectiveness of conservation laws. 

Many conservation laws include provisions to protect habitat.  For example, the U.S. 

Endangered Species Act (hereafter ‘the Act’) is the primary tool for conserving many imperiled 

species in the United States. Among its strengths are the requirement for identification of  

‘critical habitat’ that is necessary for the conservation of listed species, and prohibitions against 

destroying or adversely modifying these habitats (United States Congress, 1978).  Similarly, 

Japan’s Nature Conservation Law designates ‘Wilderness’ and ‘Nature Conservation’ areas (Diet 
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of Japan, 1972); the New Zealand Conservation Act created several specially protected areas 

(New Zealand Parliament, 1987); and various international agreements include provisions to 

reduce habitat loss (e.g. Convention on Biological Diversity; UN Sustainable Development 

Goals).  As written, these laws, policies, and treaties should be stopping or significantly slowing 

habitat loss and degradation.  But this conclusion depends heavily on a critical assumption: that 

these laws are implemented as written, including monitoring of conservation agreements and 

enforcement of prohibitions.  That assumption is often not independently tested, and the 

continued loss of habitats and species indicates there is a substantial implementation gap (López-

Bao, et al., 2015; Chapron, et al., 2017).   

Enforcing compliance is a critical component of any law.  Without enforcement—

including monitoring for compliance and punishment of infractions—there is little reason to 

think legal protections will be effective at changing outcomes (Keane, et al., 2008; Trouwborst, 

et al., 2017).  For example, if drivers believe there is little risk of punishment for exceeding a 

speed limit because there is no monitoring, there is every reason to believe they will.  While 

millions of acres of critical habitat have been designated under the Act, there is little information 

on what percentage of that habitat remains intact (Hoekstra, Fagan, & Bradley, 2002).  Currently, 

there is little research available on the extent of enforcement and compliance of habitat 

protection laws and policies (Malcom, Kim, & Li, 2017), but there are many reasons to believe it 

is lacking.  Staff at U.S. federal agencies have acknowledged that they lack the resources to carry 

out even basic compliance monitoring and are unable to read monitoring reports submitted by 

permittees, much less carry out independent monitoring (Government Accountability Office, 

2009).  Furthermore, the two federal agencies responsible for implementing the Act, the U.S. 

Fish and Wildlife Service and National Marine Fisheries Service (hereafter ‘the Services’), have 
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finalized over a thousand conservation agreements, many of which authorize limited habitat 

destruction in exchange for mitigation to offset some of those impacts (Malcom, & Li, 2015). 

Perennial funding shortages, however, have left the Services unable to monitor for compliance 

with many of those agreements, which is a shortcoming that threatens to undermine the potential 

benefits of the Act. These basic examples of a lack of monitoring and enforcement highlight a 

critical weakness in the implementation of conservation law and consequently the protection of 

biodiversity. 

Insufficient monitoring undermines imperiled species conservation in two ways. First, 

habitat protections may go unenforced.  For example, satellite images revealed that under a 

habitat conservation plan for the eastern indigo snake (Drymarchon couperi) in Georgia, USA,  

over half of a forest parcel had been cleared despite the requirement that the permittee manage 

the parcel for the species until at least 2027 (Malcom, 2017). Situations like this are a double-

blow for species: not only has authorized habitat loss occurred, but the conservation measures to 

minimize or offset those losses were never fully realized.  Second, inadequate monitoring leaves 

conservationists in the dark about the status of species’ habitat. If 60 percent of a species’ habitat 

has been degraded, that knowledge should factor into decision making. Left unresolved, a lack of 

monitoring could negate the expensive and difficult work of securing legal protections for 

species and their habitats and negotiating conservation agreements. 

Although the challenge of inadequate enforcement is not new, solutions to date have 

relied heavily on increased financial support for field work (Chandra, & Idrisova, 2011).  This 

strategy may be untenable at broad scales given inconsistent and decreasing political will and 

concomitant funding declines (McCarthy, et al., 2012; Waldron, et al., 2013).  Even when 

government agencies monitor for compliance with certain projects, they may lack the ability to 
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do so regularly.  Monitoring that occurs intermittently leaves ample opportunities for 

noncompliance in the interim. By the time violations are identified, the environmental damage 

may be irreversible.  Large-scale monitoring programs to efficiently and automatically detect 

disturbances to wildlife habitat are needed.  

The growing availability of free satellite images and other remote-sensing data provide an 

efficient and effective solution for many biodiversity monitoring challenges (Turner, et al., 

2003). When combined with information on species range and areas permitted for habitat 

disturbance or destruction, these data open a wealth of opportunities for compliance monitoring 

and enforcement. As remote sensing data has become more ubiquitous and accessible, so too 

have the number of approaches for change detection (Willis, 2015).  Often these analyses focus 

on one land cover type, with most of the research focused on forest loss (Potapov, et al., 2008; 

Hansen, Stehman, & Potapov, 2010; Song, et al., 2018).  A significant challenge now is to 

expand the generality of algorithms to automate change detection across habitats, which would 

enable and simplify monitoring at regional and continental scales.  

Here we report on two automated habitat change-detection algorithms developed to aid 

conservation compliance monitoring across different habitat types and at broad scale. We 

evaluate the utility of these methods using systematically collected validation data and four case 

studies.  Both algorithms use data that is readily available online, meaning anyone, including 

government agencies, conservation organizations, and the public, can use them to improve 

conservation.  We demonstrate that these approaches are sufficiently effective, efficient, and 

flexible for use in large- and small-scale systematic conservation monitoring efforts.  Adoption 

of automated change detection can help close one of the biggest gaps in biodiversity 
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conservation, and we discuss the potential for future technological and regulatory development 

to further leverage their potential. 

2. Methods 

We used the Google Earth Engine platform, which provides real-time access to terabytes of 

remote sensing data and the cloud computing capabilities to analyze them (Gorelick, et al., 

2017), to create processes to automatically detect changes in land use and land cover within 

satellite images collected over two time periods.  We analyzed images from the Sentinel-

2 mission.  Sentinel-2 is a satellite system deployed and maintained by the European Space 

Agency, providing global coverage of 10-meter resolution imagery every 12 days. Sentinel-2 

images contain 13 bands that record reflectance values in the visible, near infrared, short-wave 

infrared, and near ultraviolet spectra (Drusch, et al., 2012).  

The basic process (Figure 1) involves the following steps: 

1. Define an area of interest and collect satellite images. 

2. Process images (mask clouds, correct for terrain, etc.) 

3. Divide images into before and after collections 

4. Composite before and after collections into single images. 

5. Calculate pixel-wise change metrics between images. 

6. Identify minimum changes that correspond to the habitat loss to be detected. 

7. Select pixels exceeding these minimum change thresholds. 

2.1. Image Processing 

After defining an area of interest and collecting all the spatially overlapping Sentinel-2 images, 

we first removed cloud and cloud shadow pixels from each image in the collection. Built-in 
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cloud masking is limited for Sentinel-2 imagery, because this system does not contain a thermal 

sensor measuring temperature, which is critical to common cloud masking procedures (Zhu et 

al., 2015).  We use the quality assurance bands included with all S2 images, and additionally 

calculate cloud and shadow probability metrics as follows. 

To identify cloudy pixels, we implemented an adaptation of the simpleCloudScore 

algorithm developed for LandSat provided in Google Earth Engine, which uses a combination of 

indices to assign a per pixel cloud likelihood score from 0 to 1 (SI 1). We identify any pixels 

receiving a score of 0.15 or greater as cloud. We then calculated a set of likely cloud shadow 

locations by translating the location of cloud pixels in the x and y directions according to 

x=tan(zen)*h*cos(az) 

  y=tan(zen)*h*sin(az) 

 

where h is the cloud height, zen and az are the sun zenith and azimuth at the time and 

location of the image, as recorded by Sentinel-2. This translation is applied using a set of 

possible cloud heights (h) to create a set of polygons encompassing possible cloud shadow 

locations (Zhu, & Woodcock, 2012). We then calculate the RGB ratio shadow indices 

(Sarabandi, et al., 2004) for each pixel, and classifying those with a score over 0.25 as shadow 

(SI 1).  Any of these shadow pixels that fell within the translated cloud locations are then 

identified as cloud shadow. Finally, we identify water pixels using a set of water indices 

including a normalized difference water index (Xu, 2006), and darkness indices to obtain a 0 -1 

water likelihood score (SI 1).  We mask any pixels over 0.25.  The set of cloud, shadow, and 

water pixels were the removed (i.e ‘masked’) from each image. 

After all images in the spatially filtered collection were masked for clouds, shadows, and 

water, we applied per-pixel terrain correction using the c-correction equation (Teillet, Guindon, 

& Goodenough, 1982).  This method standardizes the reflectance of sloped surfaces using the 
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illuminance of each pixel as determined by a digital elevation model and the solar zenith and 

azimuth at the time and location of the image.  We used the 30m resolution digital elevation 

model from the U.S. Geological Survey (Farr, et al., 2007) to determine slope and aspect.   

Change detection is ultimately run between single before and after images.  However, 

clouds, shadows and other artefacts can make detection difficult between any two images.  

Therefore, we used composites of all the masked and corrected images in a before and after time 

periods.  By default, we use a year of images preceding the date after which we wanted to check 

for changes as the before period, and a three-month period following this date as the after period.  

Following cloud/shadow/water masking and terrain correction, we created a single-image 

composite for each time period by selecting the median value of each pixel stack. These single 

before and after images were then clipped to the exact geometry of the study area and used as 

inputs to automated change detection algorithms.  Six bands corresponding to blue, green, red, 

near infrared, short-wave infrared 1, and short-wave infrared 2 are used in all calculations of 

change. 
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Figure 1. Conceptual model showing steps for processing and automatically 

detecting changes between two sets of satellite images used in this paper. Numbers 

correspond to the steps for selecting and preprocessing image collections and performing change 

detection between two time periods described in the text. 

2.2. Change Detection Algorithms 

While a variety of algorithms have been developed to detect changes between satellite images 

(Willis, 2015) we started from two fundamentally different approaches.  The first builds on the 

method used by the U.S Geological Survey to produce the National Land Cover Dataset land 

cover change (LCC) data (Jin, et al., 2013), and uses features that relate to real phenomena.  We 

refer to this as the LCC algorithm. First, six spectral change metrics are calculated between 

before and after imagery on a per-pixel basis: 
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1. The Change Vector (CV) measures the total change in reflectance values between two 

images across the visible and infrared spectrum. 

2. Relative CV Maximum (RCVMAX) measures the total change in each band scaled to their 

global maxima. 

3. Differences in Normalized Difference Vegetation Index (dNDVI) uses ratios between 

near infrared and red reflectance to indicate changes in the concentration of vegetation. 

4. Ratio Normalized Difference Soil Index (dRNDSI) uses ratios between short-wave 

infrared and green reflectance to indicate changes in the concentration of bare ground. 

5. Normalized Burn Ratio (dNBR) is the normalized difference between the green and short-

wave infrared bands, indicating the severity of burned areas of vegetation. 

6. Normalized Difference Water Index (dNDWI) is the normalized difference between the 

near- and short-wave-infrared bands, indicating moisture. 

Calculating all six metrics at each pixel produces an unscaled change image with six 

bands (one band per metric). We then convert pixel values for each band to z-scores using the 

mean or minimum value and standard deviation of values across the image. We use global means 

for normalized indices (dNDVI, dRNDSI, dNBR, dNDWI), and global minimums for scaled 

indices (CV and RCVMAX) as in Jin et al. (2013). The output is a six-band image consisting of the 

standardized z-scores for each change metric.  This transformation on the change image centers 

and scales per pixel changes relative to baseline changes in reflectance, brightness, etc. between 

the before and after images.   

The output image is then iteratively re-weighted using the probability that a pixel 

represents no-change.  We approximate this probability with p-values from the relevant 
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distributions for each band.  For normalized indices (dNBR, dNDSI, dNDVI, dNDWI) we use the 

cumulative distribution function of a standard normal distribution ~N(0, 1). The CV statistic is 

calculated as the sum of squared deviations for each image band, and therefore is approximately 

chi-square distributed (Lancaster & Seneta, 2005).  We calculated p-values using the cumulative 

distribution function of a chi-square distribution with degrees of freedom equal to the number of 

image bands minus one. 

The second algorithm is the multivariate alteration detection (MAD) algorithm (Nielsen 

A. , 2007).  This approach uses canonical correspondence analysis to identify linear 

transformations that maximize correlation between two sets of variables, in this case, the bands 

of two images.  Extreme deviations are identified by calculating the sum of squared deviations 

from the mean of each canonical variate, relative to its variance.  We implement the MAD 

algorithm by performing singular value decomposition on a correlation matrix of the bands of 

two images. Singular value decomposition produces two orthogonal vectors, U and V which 

equate to the coefficients for the CCA linear transformation.  Singular value decomposition also 

produces a diagonal vector S, equivalent to the correlation coefficients (ρi) of canonical 

correlation.  Canonical variates are then obtained as the difference between the bands of the first 

image transformed by U and the bands of the second image transformed by V.  

The output of a single iteration of the MAD algorithm is an image with min(m, n) bands 

corresponding to the canonical variates V, a band containing the chi-square summary statistic at 

each pixel (χ2), and a band containing the corresponding p-value from a chi-square distribution 

with min(m, n) degrees of freedom.  As with the LCC algorithm, we then recalculate the MAD 

variates using these p-values to weight the calculation of means and variances as in Nielsen 

(2007).  This procedure is performed iteratively until the output image has stabilized, or a 
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maximum of k = 30 iterations has been reached (Nielsen A. , 2007).  We use changes in the 

correlation coefficients between iterations, ck = abs|max(Sk) – max(Sk-1)| to evaluate convergence 

of the reweighting algorithm by inferring stability when ck < 0.001. All image processing, 

calculations and transformations are performed in Google Earth Engine (code available at 

https://github.com/mjevans26/ACD_methods). 

To facilitate automatic detection of changes, we used a combination of linear 

discriminant analysis and receiver operating characteristics to create sets of thresholds 

delineating changed and unchanged pixels based on algorithm outputs.  First, we estimate the 

coefficients for a linear transformation of algorithm outputs (CV, dNDVI, etc. for LCC; V1, V2, 

…, X2 for MAD) into a single discriminant score that maximized the differentiation between 

algorithm outputs in changed and unchanged pixels. Coefficients were estimated from training 

data for changes occurring in all habitats, and specific to major habitat types.  We then used 

receiver operating characteristic curves to identify the discriminant score providing greatest 

separation between true and false positives among validation data and assess the performance of 

each algorithm in terms of the area under the curve. We identified the discriminant score that 

maximized the ratio between true and false positive rates as a threshold for automatically 

identifying changes. Linear discriminant and receiver operating characteristic analyses were 

conducted in R (R Core Team, 2018) using the pscl (Jackman, 2017) and pROC (Robin, et al., 

2011) packages (code available at https://github.com/mjevans26/ACD_methods). 

2.3. Algorithm Validation 

We collected algorithm output at 50 study sites across the continental United States that had been 

manually identified as undergoing habitat loss due to anthropogenic landscape modification (SI 

2). In each area we used a composite of the previous year’s images as a before image, and a 
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composite of the following three months as the after image.  The predominant habitat undergoing 

change at each site was broaly categorized according to National Land Cover Dataset classes  

(Fry, et al., 2011) as either desert, forest, grassland, shrub/scrub, or wetland.  At each study site, 

we manually delineated polygons in all areas of real change, and categorized observed changes 

as either bare ground, building (residential and commercial development), paved (roads, parking 

lots, etc.), or solar development.  We then sampled the algorithm output values at all pixels 

within change area(s), and the maximum of either an equal number of random pixels or 1,000 

random pixels within the study area not falling within areas of change and split these data into 

training and validation sets. 

2.4. Case Studies 

To demonstrate how these methods might be applied in situ, we evaluated the outputs from each 

change detection algorithm in each of four case studies (Table 1).  These case studies were 

chosen as a sample of ongoing threats to imperiled species in a diversity of non-forested habitats.  

We focused outside of forested areas due to the extensive work and tools available for detecting 

deforestation (e.g., Global Forest Watch).  Additionally, each case study represents a different 

potential use case for automated change detection; large-scale retrospective detection (dune 

sagebrush lizard); small-scale retrospective detection (beach mouse); rapid inventory after a 

natural disaster (Piping Plover); and active small-scale monitoring (Greater Sage Grouse). 
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Table 1. Study areas used in algorithm case studies covered a range of non-forested 

habitats and disturbances affecting imperiled species in the United States. 

Species Location Habitat Disturbance Dates* 

Greater Sage Grouse 

(Centrocercus urophasianus) 

Wright, WY Grassland Oil & gas Jun., 2017 - 

Sept., 2017 

Dune sagebrush lizard 

(Sceloporus arenicolus) 

Permian Basin, 

NM & TX 

Shrub/Scru

b 

Sand mining Jan., 2017 - 

Jan., 2018 

Beach mouse ssp. 

(Peromyscus polionotus) 

Gulf County, 

FL 

Wetland/ 

Grassland 

Residential 

construction 

Jan., 2017 - 

Jan., 2018 

Piping Plover 

(Charadrius melodius) 

Panama City, 

FL 

Grassland Hurricane 

Michael 

Aug., 2018 - 

Oct., 2018 

*Dates indicate the ‘after’ period during which changes were detected.  A one year interval preceding the earlier 

date was used as the ‘before’ period. 

 

To evaluate algorithm effectiveness in these case studies, we compared algorithm outputs 

to changes identified by visual inspection of before and after images.  Within each study area, an 

independent reviewer manually delineated all anthropogenic changes in the habitat type of 

interest.  We refer to these polygons as ‘ground truth’ polygons.  We then ran both the LCC and 

MAD algorithms within each study area, and delineated pixels representing change using the 

thresholds identified during LDA analysis.  These areas representing change were then converted 

to polygons.   

We use two complementary metrics to assess the algorithms’ performance.  First, the 

Jaccard index, measures the area of overlap between two geometries as the intersection divided 

by the union; 𝐽(𝐴, 𝐵)  =  𝐴 ∩ 𝐵/𝐴 ∪ 𝐵.  Second, we calculate the omission (changes missed by 

the algorithm) and commission (changes missed in manual validation) rates as the proportion of 

ground truth polygons that did not overlap algorithm output and the proportion of algorithm 

output that did not overlap any ground truth polygons, respectively.  
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In practice, we would apply a majority filter to these binary results to eliminate single, 

isolated pixels and create more contiguous areas of change or no change before conversion to 

polygons.  However, to identify potential scale dependencies in algorithm performance, we 

converted to polygons all pixels identified as change.  We then considered only sets of polygons 

greater than a sequence of minimum size {0 ac, 0.1 ac, 0.5 ac, 1 ac}, and calculate performance 

metrics within each of these subsets.  

3. Results 

3.1. Validation 

We collected algorithm output data from areas of real and no change at 50 locations (SI 2).  Bare 

ground was the most common form of disturbance (40/50).  Because bare ground preceded 

residential development and pavement, we did not detect these disturbance forms at any location.  

In 10 instances, solar fields were built directly over existing desert and grassland areas within the 

three-months comprising the ‘after’ image, and therefore appeared as a direct change from 

habitat to solar development.   

Overall, both algorithms effectively discriminated change from no-change among 

validation data, as indicated by AUC scores > 0.90 for all habitat types (Figure 2).  Generally, 

the MAD algorithm performed slightly better than the LCC algorithm, as indicated by higher 

AUC scores. This was especially true in detecting ‘generic’ change, when thresholds were not 

optimized to a specific habitat type (Figure 2).  The LCC algorithm was least successful at 

identifying changes in grassland habitats (AUC = 0.95), and most successful in forested areas 

(AUC = 0.99).  The MAD algorithm was most successful in wetland habitats (AUC = 1), and the 

least successful in forests (AUC = 0.98). 
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Figure 2. Receiver operating characteristic curves are used to identify thresholds for 

change detection. Curves plot the true and false positive rates for change detection among 

validation data as the linear discriminant analysis scores used as a delineating threshold 

increases.  Curves constructed from the MAD algorithm outputs are shown in blue, and LCC 

algorithm outputs in orange.  The values at which the rate of increase in detection rate relative to 

false positive rate decreases most rapidly are selected as threshold values. Curves are displayed 

for algorithm output data collected in different habitat types, and for all habitat types combined. 

 

3.2. Case Studies 

We found these change detection methods were effective for detecting habitat loss in important 

conservation areas in all four case studies. We detected 2,100 acres of dune sagebrush lizard 

habitat removed by either sand mining or oil and gas well construction within the Permian Basin, 

TX case study area (197,150 ac) between January 2017 and January 2018.  The rapid appearance 

and expansion of large sand mines, in conjunction with ongoing oil and gas development 

identified by both algorithms (Figure 3) indicated current protections for the imperiled lizard 

were insufficient to conserve the species. 
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We detected 210 ac of Piping Plover habitat within 6,477 ac of designated critical habitat 

lost in the wake of Hurricane Michael (between August and October 2018), illustrating the threat 

posed by natural disasters to already imperiled species.  In the Gulf County, FL case study area 

(1,155 ac), 7.2 ac of potential beach mouse habitat were lost to residential development between 

January 2017 and January 2018.  These areas of loss identified by automated change detection 

must be considered by the U.S. Fish and Wildlife Service when permitting future development in 

the species range. In the Wright, WY case study area (53,310 ac) we detected 43 and 42 ac of 

grassland habitat loss, respectively, between June and September 2017.  This loss was due to oil 

and gas drilling pad and road construction. 
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Figure 3. Habitat changes around a large dune complex in West Texas used by the dunes 

sagebrush lizard (Sceloporus arenicolus) are not immediately apparent in before and after 

images (A), but the LCC and MAD algorithms quickly detected habitat loss that was also 

found by time-consuming manual delineation (B). Both algorithms were run using pre-

processed median composites from January 2018 as the before image, and January 2019 as the 

after image.  Ground truth polygons (blue) created by a manual reviewer were compared against 

output from the LCC (red) and MAD (black) algorithms.  
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The MAD algorithm was more sensitive to landscape changes, but less specific than the 

LCC algorithm, as indicated by higher commission rates and lower omission rates (Table 2).  

Both algorithms had relatively high commission rates, indicating detection of changes not 

identified by manual inspection of before and after images. A post-hoc analysis of commission 

indicated ~60% of these polygons represented real changes missed by manual inspection.  

Jaccard indices indicated low to moderate agreement in the area of overlap between change 

polygons delineated manually and those produced by both automated change detection 

algorithms (Table 2). Commission rates decreased substantially when the minimum polygon size 

considered as change was increased from zero. 

Finally, algorithms detected changes between before and after images faster than human 

review.  Both the LCC and MAD algorithms took < 40 min to produce change polygons in each 

study area.  The time required for manual delineation of changes ranged from 6 hours in the 

Wright, WY case study area to several days in the Permian Basin, TX study area. 
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Table 2. Metrics of agreement between areas of change delineated by human review and 

automated change detection algorithms, using different minimum size thresholds for 

change polygons. 

  MAD algorithm  LCC algorithm 

Study Area Min. Size (ac.) Jaccarda Commissionb Omissionb  Jaccard Commission Omission 

Wright, WY 0.0 0.17 0.40 0.00  0.22 0.15 0.00 

 0.1 0.16 0.30 0.10  0.21 0.12 0.00 

 0.5 0.13 0.23 0.27  0.17 0.00 0.36 

Gulf County, 

FL 

0.0 0.41 0.67 0.04  0.46 0.40 0.14 

0.1 0.44 0.32 0.28  0.47 0.10 0.23 

0.5 0.31 0.00 0.80  0.33 0.00 0.80 

Panama 

City, FL 

0.0 0.23 0.41 0.11  0.26 0.33 0.15 

0.1 0.25 0.27 0.19  0.26 0.17 0.22 

0.5 0.22 0.13 0.28  0.24 0.05 0.31 

Permian 

Basin, TX 

0.0 0.36 0.89 0.04  0.37 0.79 0.08 

0.1 0.37 0.72 0.11  037 0.58 0.15 

0.5 0.39 0.39 0.34  0.37 0.29 0.43 

1 0.39 0.17 0.42  0.36 0.13 0.60 

aJaccard index measures the degree of overlap between two sets of polygons on a zero (no overlap) to one (perfect 

overlap) scale 
bCommission and omission rates were measured in terms of the number of polygons exclusive to either the ground 

truth (omission) or algorithm output (commission) sets. 

4. Discussion 

The conservation of biodiversity has been limited, in part, by an inability to monitor and enforce 

conservation laws, regulations, and agreements.  While remote sensing data have long held the 

promise of transforming environmental monitoring efforts, publicly accessible tools leveraging 
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this data to achieve actionable insights have been lacking (Willis, 2015).  In addition to cost, ease 

of use is critical if these tools are to be widely adopted for conservation monitoring and 

enforcement, as many land managers and regulators will not have expertise in ecology, policy, 

and remote sensing (Wiens et al., 2009).  In this paper we adapt and present two algorithms for 

automated habitat change detection using satellite imagery, and demonstrate their efficacy, 

efficiency, and flexibility in a variety of test areas and case studies.  Built on publicly available 

data and technology, these tools can be used by anyone - from local land trusts and property 

managers wishing to monitor their parcels, to government agencies charged with national 

monitoring programs - to automatically detect habitat loss and destruction.   

Both the MAD (Nielsen, 2007) and LCC (Jin, et al., 2013) algorithms exhibited excellent 

performance discriminating habitat loss from background changes between images in test cases 

(Figure 1).  Beyond performing well in forested habitats, where many change detection 

approaches have been refined (Hansen, Stehman, & Potapov, 2010), both algorithms were 

effective in a variety of non-forest habitats (Figure 1).  This flexibility is in part attributable to 

the use of habitat-specific thresholds obtained from simple linear discriminant analysis using 

subsets of algorithm output data.  We observed slightly lower AUC scores when receiver 

operating characteristic curves were produced using thresholds estimated from all data across 

habitat types.  Specific thresholds were also important in detecting changes other than land 

clearing (e.g., solar energy development).  The availability of a flexible tool that can be applied 

in a variety of contexts, rather than requiring a different tool for different ecosystems, should 

make automated change detection more readily adopted by entities with regulatory authority. 

The ability of each algorithm to detect meaningful change was confirmed in case studies, 

where both automated methods identified nearly all instances of anthropogenic habitat loss that 
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were manually delineated (indicated by low omission rates relative to ground truth; (Table 2).  

The MAD algorithm appeared more sensitive and less specific than LCC as illustrated by outputs 

from case studies.  Generally higher commission rates among MAD outputs reflect the tendency 

of this algorithm to detect all types of change - even those occurring naturally due to phenology 

and seasonality.  The change metrics included in the LCC algorithm that related to real-world 

phenomena (e.g., dNDVI, dNBR, etc.) likely enable better discrimination between generic and 

habitat-specific change.  Commission occurred from one of two outcomes: instances of habitat 

loss missed by manual review, or natural changes to the landscape that were not of interest.  

Object oriented, or computer vision-based approaches may be helpful for distinguishing among 

these (Malof et al., 2016; Ghorbanzadeh et al., 2019).  Here, we present algorithms that are ready 

to be applied to a variety of habitats using only a Google Earth Engine account.  Future work that 

integrates dynamically updated machine learning classification approaches, rather than a 

predefined set of thresholds, may also improve discrimination.  

However, most instances of commission were not errors, illustrating a key advantage of 

automated change detection methods for conservation monitoring and enforcement: Both 

algorithms may be more effective than human review, particularly over large areas.  The finding 

that ~60% of instances of commission by both algorithms were in fact true cases of habitat loss 

demonstrates the potential for an automated change detection system to produce more complete 

result, especially over large areas, than manual inspection of before and after images. 

Furthermore, both algorithms were more efficient than manual inspection of satellite imagery.  

Human delineation of changes required several orders of magnitude more time to complete than 

automated algorithms and scaled with the size of the area of interest.  Thus, automated change 

detection methods are vastly more time efficient, making them applicable and preferable in 
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situations that require repeated or continuous monitoring.  For entities wanting to use satellite 

imagery to implement a comprehensive conservation monitoring and enforcement program, this 

kind of efficiency is critical. 

In the context of environmental laws that protect habitat, these automated change 

detection approaches could be used by regulatory agencies to enforce prohibitions on habitat 

destruction.  In the United States, federal agencies responsible for implementing the Endangered 

species Act might use tools like this to monitor and enforce compliance with the terms and 

conditions of federal consultations under section 7 of the Act, or habitat management plans 

associated with conservation agreements under section 10.  These potential applications are 

illustrated by our case studies.  For example, Gulf County, Florida has been developing a Habitat 

Conservation Plan to offset harm to endangered St. Andrew beach mouse due to residential 

construction.  These algorithms can be used to measure past and ongoing development and 

inform the plan as it is developed, as well as to monitor for compliance in the future.  

Additionally, the extent of historic habitat loss must be considered in future permitting decisions.  

Similarly, the ability to identify and track the expansion of sand mines within the range of the 

dune sagebrush lizard provided evidence that a state-run voluntary conservation agreement was 

insufficient to minimize threats faced by the species, and informed a petition to list the species 

under the Act (https://ecos.fws.gov/docs/petitions/92210//1040.pdf). Finally, conservation 

agreements may often involve specifications of where development can and cannot occur within 

a particular area.  The Wright, Wyoming case study provides a hypothetical example of how a 

small area could be monitored with relatively short (~3 month) frequency to detect habitat 

destruction.  Here, the changes detected here were legal, but in other instances might alert an 

enforcement agency to unauthorized activities. 
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Our results demonstrate the capability of both the MAD and LCC algorithms to 

automatically detect habitat loss, but those hoping to use these approaches should be aware of 

several caveats.  First, both algorithms were more effective at identifying that changes had 

occurred than accurately delineating the extent of those changes.  This was reflected by relatively 

low (< 0.5) Jaccard index scores.  Change thresholds designed for specificity rather than 

sensitivity will invariably exclude some real changes, meaning the area of detected change will 

underestimate area changed.  Second, because we use image statistics to determine z-scores, 

these thresholds may become unstable below some minimum study area size.  The smallest test 

case used here was 20 ac., but a variety of factors may influence whether a larger (or smaller) 

area is needed.  Those wishing to monitor smaller areas should simply delineate a larger area for 

context.  Finally, the commission rates of both algorithms decreased as the minimum size of 

changes considered increased.  This pattern suggests a minimum size of disturbance that can be 

regularly detected by these algorithms using Sentinel-2 data.  If disturbances < 0.1 ac. need to be 

detected, users may experience a higher number of false positives.   

While the algorithms presented here were run using Sentinel-2 multispectral reflectance 

data, they were written generically and can be applied to other passive remote sensing systems 

with the requisite bands and rigorous orthorectification and co-registration. For instance, Landsat 

8, which provides global coverage of 30-meter resolution imagery every 16 days, contains 

analogous bands to Sentinel-2 as well as a thermal band measuring surface temperature allowing 

for more robust detection of clouds (Zhu et al., 2015).  Our cloud detection and masking 

approaches are imperfect with Sentinel-2 imagery and may not perform as well in very cloudy 

areas.  While habitat specific parameters help, clouds may still occasionally be flagged as 

change. Using these algorithms with Landsat data may be useful in cases where some resolution 
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can be sacrificed for more robust cloud removal.  Generic change detection algorithms using 

SAR data, which is invariant to cloud cover, may also prove useful in future development 

(Nielsen, Canty, Skriver, & Conradsen; Rüetschi, et al., 2019). 

By adapting two change detection algorithms and validating their efficacy across a 

variety of habitats, we have shown how to provide tools to help enforce conservation laws and 

agreements with remote sensing data.  The approaches developed here do not require remote 

sensing expertise and can be used by local land managers, as well as federal agencies responsible 

for administering national and international laws.  In addition, they are flexible, run much more 

quickly than manual delineation, and can be run repeatedly in many different contexts and at 

large spatial scales, making them suitable for the monitoring and enforcement of environmental 

laws.  Most importantly, they are built using publicly available data and computing platforms.  

Previous tools have been limited in their use in regulatory capacities because they are only 

available for a fee under pay-for-service structures.  In order for remote sensing data to be used 

to improve conservation, it is critical that platforms like Google Earth Engine continue to 

provide open access.  The continued improvement of automated change detection methods and 

adoption by regulatory authorities holds the potential to close a significant gap in the protection 

of biodiversity. 
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