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Abstract

Single-cell RNA sequencing (scRNA-seq) methods are typically unable to quantify the expression
levels of all genes in a cell, creating a need for the computational prediction of missing values
(‘dropout imputation’). Most existing dropout imputation methods are limited in the sense that they
exclusively use the scRNA-seq dataset at hand and do not exploit external gene-gene relationship
information.

Here, we show that a transcriptional regulatory network learned from external, independent gene
expression data improves dropout imputation. Using a variety of human scRNA-seq datasets we
demonstrate that our network-based approach outperforms published state-of-the-art methods. The
network-based approach performs particularly well for lowly expressed genes, including cell-type-
specific transcriptional regulators. Additionally, we tested a baseline approach, where we imputed
missing values using the sample-wide average expression of a gene. Unexpectedly, up to 48% of the
genes were better predicted using this baseline approach, suggesting negligible cell-to-cell variation
of expression levels for many genes. Our work shows that there is no single best imputation method;
rather, the best method depends on gene-specific features, such as expression level and expression
variation across cells. We thus implemented an R-package called ADImpute (available from
https://github.com/anacarolinaleote/ADImpute) that automatically determines the best imputation

method for each gene in a dataset.
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Introduction

Single-cell RNA sequencing (scRNA-seq) has become a routine method, revolutionizing our
understanding of biological processes as diverse as tumor evolution, embryonic development, and
ageing. However, current technologies still suffer from the problem that large numbers of genes
remain undetected in single cells, although they actually are expressed (dropout events). Although
dropouts are enriched among lowly expressed genes, relatively highly expressed genes can be
affected as well. Of course, the dropout rate is also dependent on the sampling depth, i.e. the number
of reads or transcript molecules (UMIs) quantified in a given cell. Imputing dropouts is necessary for
fully resolving the molecular state of the given cell at the time of the measurement. In particular,
genes with regulatory functions - e.g. transcription factors, kinases, regulatory ncRNAs - are typically
lowly expressed and hence particularly prone to be missed in scRNA-seq experiments. This poses
problems for the interpretation of the experiments if one aims at understanding the regulatory

processes responsible for the transcriptional makeup of the given cell.

A range of computational methods have been developed to impute dropouts using the expression
levels of detected genes. The underlying (explicit or implicit) assumption is often that detected and
undetected genes are subject to the same regulatory processes, and hence detected genes can serve
as a kind of 'fingerprint' of the state at which the cell was at the time of lysis. Several popular methods
are based on some type of grouping (clustering) of cells based on the similarity of their expression
patterns. Missing values are then imputed as a (weighted) average across those similar cells where
the respective gene was detected!-4 For example, the MAGIC algorithm! creates a network of cells by
linking cells with similar gene expression signatures. Missing values are subsequently imputed by
computing an average over linked cells, where cells get weighted based on how similar or dissimilar
their expression signatures are compared to the target cell. Drimpute3 and sciImpute? have further
developed this notion and have been shown to outperform MAGIC in recent comparisons®. These
methods rest on two important assumptions: (1) the global expression pattern of a cell (i.e. across
the subset of detected genes) is predictive for all genes; (2) the (weighted) average of co-clustering
(i.e. similar) cells is a good estimator of the missing value. The first assumption is violated if the
expression of adropout gene is driven by only a small subset of genes and hence the global expression
pattern does not accurately reflect the state of the relevant sub-network. Any global similarity
measure of the whole transcriptome will be dominated by the majority of geness. The second
assumption is violated if the data is scarce, i.e. when either only few similar cells were measured or
if the particular gene was detected in only a small subset of cells. In that case the average is computed

across a relatively small number of observations and hence unstable.
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The recently published SAVER® method employs a different strategy that can overcome some of these
limitations. SAVER attempts to predict the posterior probability distribution for the ‘true’ expression
of each gene in each cell. This distribution is derived from the data by learning gene-gene
relationships from the dataset, which are subsequently used to predict the gene- and cell-specific
probability distribution of the expected expression value. In other words, SAVER does not use the
whole transcriptome of a cell to predict the expression level of a given gene; instead, it uses a specific

subset of genes that are expected to be predictive for the particular gene at hand.

SCRABBLE is different compared to all of the other methods mentioned above, because it can use
bulk sequencing data to assist in the imputation. SCRABBLE combines a de-noising step with a
moderated imputation moving the sample means towards the observed (bulk-derived) mean

expression values.

Here, we compare published approaches that are representative for current state-of-the-art methods
to two fundamentally different approaches. The first is a very simple baseline method that we use as
areference approach: we estimate missing values as the average of the expression level of the given
gene across all cells in the dataset where the respective gene was detected. Initially intended to serve
just as a reference for minimal expected performance, this sample-wide averaging approach turned
out to perform surprisingly well and in many instances even better than state-of-the-art methods.
The simple explanation is that estimating the average using all cells is a much more robust estimator
of the true mean than using only a small set of similar cells, especially when the gene was detected in

only few cells and/or if the gene’s expression does not vary much across cells.

The second new approach avoids using a global similarity measure comparing entire transcriptomes.
Instead, similar to SAVER it rests on the notion that genes are part of regulatory networks and only
a small set of correlated or functionally associated genes should be used to predict the state of
undetected genes. However, unlike SAVER, we propose to use transcriptional regulatory networks
trained on independent (bulk seq) data to rigorously quantify the transcriptional relationships
between genes. Missing values are then imputed using the expression states of linked genes in the
transcriptional regulatory network and exploiting the known quantitative relationships between
genes. This approach allows imputing missing states of genes even in cases where the respective gene
was not detected in any cell or in only extremely few cells. This second new approach rests on the
assumption that the network describes the true regulatory relationships in the cells at hand with
sufficient accuracy. Here, we show that this is indeed the case and that combining the two new
approaches with published state-of-the-art methods drastically improves the imputation of scRNA-
seq dropouts. Importantly, the performance of an imputation method is dependent on the ‘character’

of a gene (e.g. its expression level or the variability of expression between cells). Hence, we
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implemented an R-package (Adaptive Dropout Imputer, or ADImpute) that determines the best

imputation method for each gene through a cross-validation approach.

Results

Imputing dropouts using a transcriptional regulatory network

In order to understand whether the inclusion of external gene regulatory information allows for
more accurate scRNA-seq dropout imputation, we derived a regulatory network from bulk gene
expression data in 1,376 cancer cell lines with known karyotypes. For this purpose, we modelled the
change (compared to average across all samples) of each gene as a function of its own copy number

state and changes in predictive genes:

Vi= i+ Xje iy te (1)

where y; is the expression deviation (log fold change) of gene i from the global average, c; is the
known (measured) copy number state of gene i, a the vector of regression coefficients, y;the
observed change in expression of gene j and ¢; the i.i.d. error of the model. To estimate a set of
predictive genes j, we made use of LASSO regression’, which penalizes the L1 norm of the regression
coefficients to determine a sparse solution. LASSO was combined with stability selections to further
restrict the set of predictive genes to stable variables and to control the false discovery rate
(Methods). Using the training data, models were fit for 24,641 genes, including 3,696 non-coding
genes. The copy number state was only used during the training of the model, since copy number
alterations are frequent in cancer and can influence the expression of affected genes. If copy number
states are known, they can of course also be used during the dropout imputation phase. Using cell
line data for the model training has the advantage that the within-sample heterogeneity is much
smaller than in tissue-based samples®. However, in order to evaluate the general applicability of the
model across a wide range of conditions, we validated its predictive power on a diverse set of tissue-
based bulk-seq expression datasets from the The Cancer Genome Atlas (4,548 samples from 13
different cohorts; see Methods and Supplementary Figs. 1-2) and the Genotype-Tissue Expression

(17,382 samples from 30 different healthy tissues; see Methods and Supplementary Figs. 3-4).

Such amodel allows us to estimate the expression of a gene thatis not quantified in a given cell based
on the expression of its predictors in the same cell. Here, the difficulty lies in the fact that imputed
dropout genes might themselves be predictors for other dropout genes, i.e. the imputed expression

of one gene might depend on the imputed expression of another gene. In order to derive the
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imputation scheme based on the model from equation (1), we revert to an algebraic expression of

the problem,
Y = A, (2)

where A is the adjacency matrix of the transcriptional network, with its entries @;;being fitted using
the regression approach described above, and Yis the vector of gene expression deviations from the
mean across all cells in a given cell. In the current implementation we assume no copy number
changes and hence, we exclude the c;term from equation (1). Like in equation (1), we omit the
intercept since we are predicting the deviation from the mean. Subsequently, imputed values are re-
centered using those means to shift imputed values back to the original scale (see Methods). Further
note that we drop the error term € from equation (1), because this is now a prediction task (and not
aregression). Here, we exclusively aim to predict dropout values, and (unlike SAVER) our goal is not
to improve measured gene expression values. Hence, measured values remain unchanged. It is
therefore convenient to further split Yinto two sub-vectors Y™and Y™", representing the measured
and non-measured expression levels, respectively. Likewise, 4 is reduced to the rows corresponding
to non-measured expression levels and split into A™ (dimensionality |n| X |m|) and A"
(dimensionality [n| X |n|), accounting for the contributions of measured and non-measured genes,

respectively. The imputation problem is then reduced to:
Yn =A"Y" 4 Amy™m 3

As Y™ is known (measured) and will not be updated by our imputation procedure, the last term can

be condensed in a fixed contribution, F = A™Y™, accounting for measured predictors:
Y*=A"Y"+F 4

The solution Y™ for this problem is given by:
Y*=(I-A""1F (5)

The matrix (I — A™) may notbe invertible, or if it is invertible, the inverse may be unstable. Therefore,
we computed the pseudoinverse (I — A™)* using the Moore-Penrose inversion. Computing this
pseudoinverse for every cell is a computationally expensive operation. Thus, we implemented an
additional algorithm finding a solution in an iterative manner (Methods). Although this iterative
second approach is not guaranteed to converge, it did work well in practice (see Supplementary Fig.
5, Methods). While our R-package implements both approaches, subsequent results are based on the

iterative procedure.
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Transcriptional regulatory network information improves scRNA-seq dropout

imputation

To assess the performance of our network-based imputation method and compare it to that of
previously published methods, we considered three different single-cell RNA sequencing datasets
(Supplementary Table 1). The first dataset focuses on human embryonic stem cell (hESC)
differentiation and comprises 1,018 cells — hESCs, lineage progenitors derived from hESCs and
human foreskin fibroblasts?0. Cell type labels are known for this dataset. A second dataset comprises
4,347 cells from 6 human oligodendrogliomas!!. Finally, data from healthy pancreata of 2 human
donors!2 were also used for test purposes. It was important to include a range of different healthy
cell types in the evaluation, because the transcriptional regulatory network was trained on cancer
cell line data. Thus, by including data from non-cancerous tissues, we could evaluate possible

restrictions induced by the model training data.

In order to quantify the performance of both proposed and previously published imputation
methods, we randomly set a fraction of the quantified values in the test data to zero according to two
different schemes (Methods) and stored the original values for later comparison with the imputed
values. Imputation was then performed on the masked dataset using our network-based approach,
Drimpute3, SAVERS, scImpute2 and SCRABBLE!3. Those methods were chosen since they were shown
to be among the top-performing state-of-the-art dropout imputation methods!4. As a baseline
method, the masked and actual dropout values were assigned the average log,-transformed
normalized expression across all cells where the corresponding gene was quantified. For masked
entries imputed by all tested methods, the original and imputed values were compared to determine

an imputation error per gene (Methods).

As expected, imputation error increased with increasing missing information (NAs) per gene in the
data (Fig. 1, Supplementary Fig. 6). While this is true for practically all methods, scimpute (Fig. 1,
turquoise line) was particularly sensitive to missing information about genes across cells, a
behaviour also described elsewhere!4. A similar trend was observed for Drimpute (Fig. 1, green line),
which also borrows information from similar cells for dropout imputation. SCRABBLE, which takes
into account bulk gene expression levels, outperformed sciImpute and DrImpute with increasing
missing genes. Of note, the performance of SCRABBLE was better when using a pseudo-bulk
reference derived from averaging all cells in the dataset together (Fig. 1, purple lines, dashed), as
compared to using external bulk RNA-seq expression data (Fig. 1, hESC differentiation, purple line,
full). Only within the ranges of very rarely detected genes was the use of bulk RNA-seq data beneficial.
Our network-based approach outperformed all previously published methods (Fig. 1). As the

network-based approach uses information regarding other genes contained in the same cell, we
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hypothesized its accuracy might be more affected by increasingly sparse information per cell when
compared to other methods. However, although the average imputation error slightly increased with
the number of missing genes per cell, this was true for all methods and the relative performance
differences were largely invariant to the number of missing genes per cell (Supplementary Fig. 7).
Further, the network-based method performed well over a range of different cell types and showed
decreased performance upon randomization of the transcriptional network (Methods,
Supplementary Fig. 8). Thus, the diversity of cell lines used in the training data seemed to capture a

large fraction of all possible regulatory relationships in the human transcriptome.

The performance of the Baseline method (Fig. 1, grey line), which does not account for any expression
variation between cells, was surprising to us. While SAVER showed a poor performance in
comparison to all other methods (also described in 14), it should be noted that this method aims to
estimate the true value for all genes, not only for the dropout genes. Hence, its goal is slightly different

from that of the other methods in this comparison.

Baseline and Network can impute missing values for many more genes than all other methods tested
here (Supplementary Table 3). In order to also evaluate the quality of those method-specific
imputations, we repeated the performance evaluation considering all masked values (Supplementary
Fig. 9). Under this scheme, we observed that the relative performance of the different methods was
largely maintained, apart from a decrease in the performance of SCRABBLE without bulk RNA-seq

information.

Further, as an alternative way of assessing the performance of the imputation methods, we quantified
the correlation between the original values before masking and the results of each imputation
procedure (Supplementary Table 2, Supplementary Fig. 12). As opposed to computing the residuals
between imputed and measured values, the regression is independent of mean shifts in the
predictions. We observed the same relative performance of the methods as with the imputation error
analysis. Taken together, these results indicate that both the Baseline and the network-based
approach often lead to more accurate and numerous (Fig. 1, Supplementary Table 3) imputations

than state-of-the-art imputation methods.
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Figure 1: Imputation error of Baseline (slate grey), Drimpute (green), SAVER (yellow), scimpute (turquoise),
SCRABBLE (purple) - with available bulk data as reference (full line) or the average of the single cell data as
reference (dashed line) - and Network (blue). Loess trendline of weighted Mean Squared Error (MSE) of imputation
with percentage of missing values per gene, for all 4 test datasets, restricted to values that could be imputed by all seven
methods. The trend line for Baseline is below that of Network. Note that even though in this analysis Network and Baseline

show the same average behavior, the performance on individual genes can differ considerably.

Table 1: Percentage of genes best imputed by each method (lowest weighted MSE) in the four test datasets

restricted to values that could be imputed by all six methods.

. hESF . Oligodendroglioma Healt.hy pancreas Healt'hy pancreas
differentiation (indiv. 1) (indiv. 4)
Baseline 33.6% 48.1% 10.6% 13.7%
Drimpute 0.4% 0.2% 0.1% 0.1%
SAVER 0.1% 0% 0% 0%
scImpute 21.1% 4.1% 0.2% 0.2%
SCRABBLE, bulk 4.8% - - -
SCRABBLE, sc ref 5.5% 1.7% 0.3% 0.2%
Network 34.5% 45.8% 88.9% 85.7%
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Gene features determine the best performing imputation method

To characterize the genes best imputed by each of the methods, we determined, for each gene in each
test dataset, the method resulting in the lowest weighted Mean Squared Error of imputation (Table
1). The genes best imputed by each method were then compared against a background including all
genes imputed by all four methods (Fig. 2 and Supplementary Fig. 13). As expected, rarely detected
genes were best imputed by the Network and Baseline methods. In particular, genes with low
expression and low variance were best imputed by the Baseline, while Network was able to perform
the best imputations for genes across a wide range of expression levels and variance. Methods relying
on the similarity of cellular transcriptomes (scImpute, Drimpute and SCRABBLE) performed best for
moderately expressed, more frequently detected genes. Notably, as data sparsity increased, so did
the advantage in performance of Network and Baseline over the remaining methods (Fig. 1, Table 1,

Supplementary Fig. 13).
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Figure 2: Characterization of the genes best predicted by the methods Baseline (slate grey), Drimpute (green)
sclmpute (turquoise), SCRABBLE (average of single cell data as reference; purple) and Network (blue) in the hESC
differentiation dataset. Distribution of missing values per gene, average expression levels and variance of the genes best
predicted by Baseline, scimpute and Network methods, compared against all tested genes (background). Due to the very
low numbers of genes best imputed by SAVER, the corresponding distributions are not shown. Average gene expression is

shown as logz-transformed normalized expression.
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Network-based imputation uncovers cluster markers and regulators

A popular application of scRNA-seq is the identification of discrete sub-populations of cells in a
sample in order to, for example, identify new cell types. The clustering of cells and the visual 2D
representation of single-cell data is affected by the choice of the dropout imputation method13.
Therefore, we assessed the impact of dropout imputation on data visualization using Uniform
Manifold Approximation and Projection (UMAP)15 on the hESC data before and after imputation by
all methods. The hESC dataset was particularly suitable in this case, because it was of high quality
and it consisted of six well-annotated cell types. This analysis confirmed that the choice of the

imputation method impacts on the grouping/clustering of cells (Supplementary Fig. 14).

We next asked to what extent the detection of cluster markers would be affected by the choice of the
imputation method. Thus, we applied Seurat!¢ to the hESC differentiation dataset, which was
composed of a well-defined set of distinct cell types, before and after imputation. We then defined
genes that were significantly differentially expressed between one cluster and all the others as cluster
markers (Methods). We observed a strong overlap between markers detected before and after
applying the tested imputation methods (Fig. 3A, rightmost bar, Supplementary Fig. 15), suggesting
a common core of detected cluster markers across methods. Additionally, the numbers of significant
markers detected after Network and Baseline imputations were lower than for other imputation
methods (Fig. 3B). Imputation with scImpute and, to a smaller extent, with DrImpute, led to the
highest number of significant markers (Fig. 3B). We hypothesized that many of these marker genes
may result from artefactual clustering of cells. In order to test that notion we first determined all GO
biological process terms that were enriched in the respective cell clusters without any dropout
imputation. We termed them ‘high confidence GO terms’ since they are independent of the choice of
the imputation method. It turned out that scImpute and DrImpute had the weakest enrichments in
high confidence GO biological process terms (Fig. 3C-D; Methods; Supplementary Table 4),
suggesting that the extra markers found upon applying scimpute and DrImpute contained many false
positives, which diluted biological signals. Conversely, Network and SCRABBLE led to the strongest

enrichments in high confidence GO biological process terms (Fig. 3C-D).
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Figure 3: Detection of cell type-specific markers before and after imputation. A) Overlap between significant (FDR <
0.05, |logzFC| > 0.25) definitive endoderm cell markers detected with no dropout imputation (Original) and using the tested
imputation methods. B) Number of significant cell type markers detected with no dropout imputation and using the tested
imputation methods. C) and D) fraction of captured high confidence terms, defined as significantly enriched (p.value <0.001
and logzEnrichment > 0.5, Methods) GO biological process terms among the cluster markers detected without imputation.
C) Fraction of high confidence terms detected as significantly enriched (p.value < 0.001 and logzEnrichment > 0.5) among
the cluster markers detected with each imputation method. D) logz-enrichment of all high confidence terms among the
cluster markers detected with each imputation method. DEC: definitive endoderm cells; EC: endothelial cells; H9:
undifferentiated human embryonic stem cells; HFF: human foreskin fibroblasts; NPC: neural progenitor cells; TB:

trophoblast-like cells.

Genes with regulatory functions are particularly important for understanding and explaining the

transcriptional state of a cell. However, since genes with regulatory functions are often lowly
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expressed?!?, they are frequently subject to dropouts. Since our analysis had shown that the network-
based approach is especially helpful for lowly expressed genes (Fig. 2), we hypothesized that the
imputation of transcript levels of regulatory genes would be particularly improved. In order to test
this hypothesis, we further characterized those cluster markers that were exclusively detected using
the network-based method. Indeed, we observed regulatory genes to be enriched among those
markers (Fig. 4A). Among these markers exclusively detected upon network-based imputation, the
transcription factor EHF was the second most significant trophoblast-specific. EHF is a known
epithelium-specific transcription factor that has been described to control epithelial differentiation?8
and to be expressed in trophoblasts!9, even though at very low levels (EHF expression found among
the first quintile of bulk TB RNA-seq data from the same authors). While EHF transcripts were not
well captured in TB single-cell RNA-seq data (only quantified in 39 out of 775 TB cells), a trophoblast-
specific expression pattern was recovered after network-based imputation (Fig. 4B, upper panel),
but not with any of the other tested imputation methods (Supplementary Fig. 16). Similarly, OSR1
has been described as a relevant fibroblast-specific transcription factor20 which failed to be detected
without imputation. Imputing with Network lead to the strongest fibroblast-specific expression
pattern of OSR1 (Fig. 4B, lower panel), (Supplementary Fig. 16). Interestingly, TWIST2 and PRRX1,
described by Tomaru et al?° to interact with OSR1, also showed fibroblast-specific expression
(Supplementary Fig. 17). Taken together, these results suggest that imputation based on
transcriptional regulatory networks can recover the expression levels of relevant, lowly expressed

regulators affected by dropouts.

Page 13


https://doi.org/10.1101/611517
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/611517; this version posted June 10, 2020. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

A)

Enrichment in "molecular function regulator" GO term

Original

Baseline

Drimpute

SAVER

scimpute
SCRABBLE, bulk
SCRABBLE, sc ref
Network

*

ok

*%

-0.8

-0.4

0.0

04

log2(Enrichment)

B : :
) No imputation
EC & R DEC
« . EHF
nEry log2 Expr.
o R 3
g LR 2
O wrr -& ' HS 1
TB Y. .2 0
Bt A Npci‘
Dim. 1
No imputation
EC'-&, DEC
X% A OSR1
b log2 Expr.
o . . 6
= LN 4
O | HFF -t toHo 2
LR 0
&y, NPC®T
Dim. 1

Dim. 2

Dim. 2

Network imputation

EC DEC
W
Ly
¥ s
D
HFF %: ' He
TB ¥,s% o2
;}. NPC v '

Dim. 1

el

Network imputation

Figure 4: Detection of cell type-specific transcription factors is improved upon network-based imputation. A)

Enrichment score in GO term “molecular function regulator” among the genes uniquely detected after each imputation

approach. **: p-val < 0.01; *: p-val < 0.05. B) Projection of cells onto a low dimension representation of the data before

imputation, using ZINB-WaVe2L, Color represents normalized expression levels of EHF (top) and OSR1 (bottom) before and

after Network-based imputation. DEC: definitive endoderm cells; EC: endothelial cells; H9: undifferentiated human

embryonic stem cells; HFF: human foreskin fibroblasts; NPC: neural progenitor cells; TB: trophoblast-like cells.
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Discussion

A first important and surprising finding of our analysis is the fact that the sample-wide average
expression performs well for the imputation of many genes (Table 1). As expected, genes whose
expression levels were best imputed by this method were characterized by lower variance across
cells and by remaining undetected in relatively many cells (Fig. 2). A potential problem of methods
based on co-clustering cells is that the number of observations per cluster can get very small, which
makes the estimation of the true mean more unstable. Thus, the average using all cells is preferred
when the gene was detected in only few cells and/or if the gene’s expression does not vary much
across cells. Further, our findings imply that cell-to-cell variation of gene expression is negligible for
many genes.

Second, the consideration of external gene co-expression information for the dropout imputation
substantially improved the performance in many cases, especially for lowly expressed genes. Since
genes with regulatory functions are often lowly expressed!?, imputation of those genes might be
critical for explaining expression variation between cells. Network can be seen as an extension of
Baseline, because it predicts the cell-specific deviation from the population mean. This explains the
often similar performance of the two methods.

The seemingly poor performance of SAVER can atleast in part be attributed to our evaluation scheme,
which is based on masking observed values. SAVER performs a re-scaling of predicted mean values
(i.e. the means of the posterior distributions) that leads to larger deviations from the masked values.
Another potential problem is the fact that SAVER learns gene-gene relationships from the scRNA-seq
data itself, which may be imprecise or even impossible for genes with many dropouts. SAVER may
very well maintain relative differences between genes and it clearly has the advantage of predicting
the most likely true expression values also for observed genes (a feature not shared with any of the
other methods evaluated in this work). Thus, one needs to choose the imputation method based on
the specific goals. A potential limitation of our approach is that a transcriptional network derived
from bulk-seq data may not fully capture gene-gene relationships that are detectable from single cell
data. For example, gene regulatory relationships that are specific to a small sub-population of cells in
a bulk tissue may not be correctly captured, because the signal would be too weak. A second example
would be genes regulated during the cell cycle. Bulk tissue is usually not synchronized, i.e. it consists
of a mix of cells at different cell cycle stages, which may prevent the detection of those relationships.
To some extent these limitations were alleviated by using cell line data rather than actual tissue data
for training the network. Of course, the network that we used here is still imperfect. However, despite
that imperfection it demonstrated the power of our approach. Using it was clearly advantageous over

not using it in most cases.
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The third -- and maybe most important -- conclusion is that the best performing imputation method
is gene- and dataset-dependent. That is, there is no single best performing method. If the number of
observations is high (many cells with detected expression) and if the expression quantification is
sufficiently good, scImpute and DrImpute outperformed other methods. Importantly, the technical
quality of the quantification depends on the read counts, which in turn depends on gene expression,
transcript length and mappability - i.e. multiple factors beyond expression. If however, gene
expression is low and/or too imprecise, scimpute and Drimpute were outcompeted by other
methods. This finding led us to conclude that a combination of imputation methods would be optimal.
Hence, we developed an R-package that determines ‘on the fly’ for each gene the best performing
imputation method by masking observed values (i.e. via cross validation). This approach has the
benefit that it self-adapts to the specificities of the dataset at hand. For example, the network-based
approach might perform well in cell types where the assumptions of the co-expression model are
fulfilled, whereas it might fail (for the same gene) in other cell types, where these assumptions are
not met. Hence, the optimal imputation approach is gene- and dataset-dependent. An adaptive
method selection better handles such situations. Another benefit of this approach is that the cross
validation error can be used as a quantitative guide on how ‘imputable’ a given gene is in a specific
scRNA-seq dataset. We have therefore implemented and tested this approach (see Supplementary
Fig. 18). The resulting R-package (called ADImpute) is open to the inclusion of future methods,
includes sclmpute’s estimation of dropout probability and it can be downloaded from
http://cellnet.cecad.uni-koeln.de/adimpute.

We believe that this work presents a paradigm shift in the sense that we should no longer search for
the single best imputation approach. Rather, the task for the future will be to find the best method

for a particular combination of gene and experimental condition.

Methods

Pre-processing of cancer cell line data for transcriptional regulatory network

inference

Entrez IDs and corresponding gene symbols were retrieved from the NCBI

(https://www.ncbi.nlm.nih.gov/gene/?term=human%5Borgn%5D). Genome annotation was

obtained from Ensembl (Biomart). Finally, genes of biotype in protein coding, ncRNA, snoRNA,
scRNA, snRNA were used for network inference. For CCLE22, 768 cell lines that were used in Seifert
et al.9 were used. Raw CEL files were downloaded from https://portals.broadinstitute.org/ccle/ and
processed using the R package RMA in combination with a BrainArray design file

(HGU133Plus2_Hs_ENTREZG_21.0.0). Final expression values were in log; scale. Expression levels
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and CNV data set from RNA-seq were downloaded from Klijn et al.23. Before combining, each dataset
is log, transformed and scaled to (0,1) for all genes in each sample using R function scale. Then
datasets were merged and the function ComBat from the sva R package?4 was used to remove batch
effect of the data source. The final combined data set contains 24641 genes in 1443 cell lines. Finally,
expression levels of genes were subtracted by the average expression level across all cell lines of the

corresponding gene.

Network inference based on stability selection

The network inference problem can be solved by inferring independent gene-specific sub-networks.
We used the linear regression model from equation (1) to model the change in a target gene as
dependent on the combination of the gene-specific CNA and changes in all other genes. Here the
intercept is not included because the data is assumed to be centered. We used LASSO with stability

selection® to find optimal model parameters «a;;.

The R package stabs was employed to implement stability selection and the gimnet package was used
to fit the generalized linear model. Two parameters regarding error bounds were set with the cutoff
value being 0.6 and the per-family error rate being 0.05. A set of stable variables were defined by
LASSO in combination with stability selection. Then coefficients of the selected variables were

estimated by fitting generalized linear models using the R function gim.

Network validation using TCGA and GTEx data

Gene expression and gene copy number data of 14 different tumor cohorts (4548 tumor patients in
total) from TCGA collected in a previous study® were used for validation. We examined the predictive
power of our inferred networks on each TCGA cohort by predicting the expression level of each gene

for each tumor using the corresponding copy number and gene expression data.

Additionally, in order to validate the applicability of the learnt network to healthy tissues, we further
leveraged gene expression data from the Genotype-Tissue Expression (GTEx) Project. Read counts
were downloaded from the portal website (version 8), normalized using the R package DESeqZ and

centered gene-wise across tissues.

For each TCGA cohort or GTEX tissue, the expression levels of each gene were predicted using the
network and expression quantification of the interacting genes in the same sample. The predicted
value was then compared to the observed value, present in the original dataset. The quality of
prediction for each TCGA cohort or GTEx tissue was quantified as either the correlation between

predicted and observed expression of a gene across all samples or the MSE of prediction of a gene
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across all samples. A strong positive correlation or high MSE for a gene suggests high predictive

power by the network on the respective gene.

Single-cell test data processing

Human embryonic stem cell differentiation datal® were downloaded from the Gene Expression
Omnibus (GEO, accession number GSE75748) in the format of expected counts. Only snapshot single-
cell data were used in this work (file GSE75748_sc_cell_type_ec.csv.gz). The downloaded data were
converted to RPM (reads per million). Oligodendroglioma data!! were downloaded from GEO
(accession number GSE70630) as logz(TPM/10+1) and converted back to TPM. Healthy human
pancreas datal2 were downloaded from GEO (accession number GSE84133) as UMI counts and

converted to RPM.

Dropout imputation

Version 0.0.9 of sclmputez was used for dropout imputation, in “TPM” mode for the
oligodendroglioma dataset and “count” mode for all other datasets, without specifying cell type
labels. The parameters were left as default, except for drop_thre = 0.3, as the default of 0.5 resulted
in no imputations performed. Cell cluster number (Kcluster) was left at the default value of 2 for
imputation of the oligodendroglioma and healthy pancreata datasets and set to 6 for the hESC
differentiation dataset, in order to match the number of cell clusters identified by the authors10.
SAVER 1.1.1 was used with size.factors = 1. SCRABBLE 0.0.1 was run with the parameters suggested
by the authors and using by default the average gene expression across cells as the bulk reference. In
the case of the hESC differentiation dataset, bulk data from the same study was available, and thus
was used as reference. For all other imputation methods, the data was log2-transformed with a
pseudocount of 1. DrImpute 1.0 was run using the default parameters. For dropout imputation by
average expression (‘Baseline’), gene expression levels were log2-transformed with a pseudocount
of 1 and the average expression of each gene across all cells, excluding zeros, was used for imputation.
For network-based imputation, expression values were log2-transformed with a pseudocount of 1
and centered gene-wise across all cells. The original centers were stored for posterior re-conversion.
Subsequently, cell-specific deviations of expression levels from those centers were predicted using
either equation (5) or the following iterative procedure. During the iteration genes were first
predicted using all measured predictors. Subsequently, genes with dropout predictors were re-
predicted using the imputed values from the previous iteration. This was repeated for at most 50
iterations. The obtained values were added to the gene-wise centers. We note that, while the values

after imputation cannot be interpreted as TPMs/RPMs, as the sum of the expression levels per sample
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is no longer guaranteed to be the same across samples. However, one could still perform a new

normalization by total signal (sum over all genes) to overcome this issue.

Masking procedures

In order to compare the imputation error of the tested methods, we randomly masked (set to zero)
some of the values for each gene, using two different approaches.

The first approach consisted of setting a fraction of the quantified, uniformly sampled values to zero
for each gene (Fig. 1) - 35% for the hESC differentiation dataset, 10% for the oligodendroglioma
dataset and 8% for both healthy pancreas datasets. In case of Supplementary Fig. 7 30% of the cells
(not genes) were sampled. This unbiased masking scheme is in agreement with previous work25. The
differing percentages of masked values per gene in each dataset result in a comparable sparsity of
the data (around 84% missing values) after masking.

As an alternative masking procedure that represents more closely a downsampling process, we
modelled for each gene its probability to be an observed zero in the following way: the fraction of
cells where each gene was not captured (zero in the original data) was modelled as a function of its
average expression across cells (Supplementary Fig. 10). For this, a cubic spline was used, with knots
at each 10% quantile of the average expression levels, excluding the 0% and 100% quantiles. A cubic
spline was chosen so that it could properly fit to both UMI-based and non UMI-based datasets. With
this model, a ‘dropout probability’ p was computed for each gene from its mean expression. The
masking procedure then consisted of, for each entry, sampling a Bernoulli distribution with
probability of success 1-p, where 0 corresponds to a mask (the entry is set to 0) and 1 to leaving the
data as it is. Thus, each entry in the data matrix may be masked with a probability p, which is gene-
specific and based on the observed dropout rates in the dataset at hand.

We observed the same relative performance of the imputation methods under this alternative
masking scheme (Supplementary Fig. 11), and for this reason present the results obtained with the

first masking approach.

Imputation error analysis

Imputation was performed with each of the four tested methods separately and the imputed masked
entries were then compared to the original ones. As dropout-specific performance measure, we used
the squared imputation error corrected for average gene expression (log-transformed normalized

expression):

(original—imputed)?

(6)

avg expression + 0.1
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The weighting prevents that the average error is dominated by highly expressed genes, i.e. some
weighting is necessary. Another alternative would have been to just divide by the average expression
(without adding 0.1). In that case however, the error estimates would have been heavily dominated
by very lowly expressed genes since their average is very close to zero. Thus, the weighting proposed

here is a fair compromise considering both, highly and lowly expressed genes.

Dimensionality reduction and marker detection

Dimensionality reduction on the original hESC differentiation data (Fig. 4B) was performed using
ZINB-WaVe, implemented in the R package zinbwave?1. H1 and TB cells in Batch 3 were removed to
avoid confounding batch effects and, for the remaining cells, 2 latent variables were extracted from
the information contained in the top 1000 genes with highest variance across cells. Batch information
and the default intercepts were included in the ZINB-WaVe model, using epsilon = 1000. K-means
clustering (k = 6) on the 2 latent variables strongly matched the annotated cell type labels (0.977
accuracy), confirming the reliability of this approach. UMAP was performed on the first 5 principal
components obtained from the top 1000 most variable genes in the hESC differentiation data
(normalized, log,-transformed) before and after imputation (Supplementary Fig. 14) using the Seurat
R packagel¢. Cluster-specific markers were detected from the log.-transformed normalized data
using Seurat. Detection rate was regressed out using the ScaleData function with vars.to.regress =
nGene. Markers were detected with the FindAllMarkers function, using MAST?26 test and setting

logfc.threshold and min.pct to 0, and min.cells.gene to 1.

GO term enrichment and transcription factor analyses

All GO term enrichment analyses were performed with the topGO R package?’. Enrichment in GO
biological process terms among cluster-specific markers (Fig. 3C-D) was performed for each cell
cluster and (no) imputation method separately, using as foreground the set of significant cluster
markers detected by Seurat, with FDR < 0.05 and [logFC| > 0.25, and as background all genes in the
Seurat result (both significant and non-significant). The classic algorithm was used, in combination
with Fisher test, and log, enrichment was quantified as the log; of the ratio between the number of
significant and expected genes in each term. Significantly enriched (p-value < 0.001 and log:
enrichment > 0.5) GO biological process terms within each set of cluster markers, as detected in the

original data (no masking, no imputation), were defined as “high confidence” terms.

For regulatory GO molecular function term enrichment analyses (Fig. 4A), significant (FDR < 0.05 and
|[logFC| > 0.25) markers uniquely detected without / with each imputation method were combined

across all clusters and tested for enrichment in the term “molecular function regulator” against the
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background of all genes obtained as the result of Seurat (both significant and non-significant). The
classic algorithm was used, in combination with Fisher test, and log, enrichment was quantified as

the log; of the ratio between the number of significant and expected genes in each term.

To identify transcription factors (TFs) among cluster markers exclusively detected using the
network-based method, a curated TF list was downloaded from

http://www.tfcheckpoint.org/index.php /browse.

Determination of the optimal imputation method per gene

In order to determine the best performing imputation method for each gene, 70% of the cells in each
dataset were used as training data, where a percentage of the expression values were masked, as
previously described. The remaining 30% were used for testing. After masking, each of the tested
imputation methods was applied to the training data and the imputed values of masked entries were
then compared to the measured values. The weighted Mean Squared Error (MSE) was computed for

each gene with masked entries:

avg((original—imputed)?)

(7)

avg expression + 0.1

For each gene, the method leading to the smallest MSE was chosen as optimal.

The ADImpute R package

The ADImpute R package is composed of two main functions, EvaluateMethods and Impute.
EvaluateMethods determines, for each gene, the method resulting in the lowest imputation error.
Impute performs dropout imputation according to the choice of method provided by the user.
Currently supported methods are scIlmpute, Drimpute, SCRABBLE, the Baseline and Network
methods described in this manuscript and an Ensemble method, which takes the results from
EvaluateMethods to select the imputation results from the gene-specific best method. Additionally,
the user can choose to estimate the probability that each dropout value is a true zero, according to
the approach used by scImpute, and leave the values unimputed if their probability of being a true

zero falls above a user-defined threshold.

Data and code availability

The data used in this study are publicly available, as described in the Methods section. Human

embryonic stem cell differentiation data are available in GEO under the accession number GSE75748.

Page 21


https://doi.org/10.1101/611517
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/611517; this version posted June 10, 2020. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Oligodendroglioma data are available in GEO under accession number GSE70630. Healthy human
pancreas data are available in GEO under accession number GSE84133. The transcriptional
regulatory network used in this study and the ADImpute R package are available from
https://github.com/anacarolinaleote /ADImpute.

References

1. van Dijk, D. ef al. Recovering Gene Interactions from Single-Cell Data Using Data Diffusion. Cell
174, 716-729.e27 (2018).

2. Li, W. V. & Li, J. J. An accurate and robust imputation method scImpute for single-cell RNA-seq
data. Nat Commun 9,997 (2018).

3. Gong, W., Kwak, 1.-Y., Pota, P., Koyano-Nakagawa, N. & Garry, D. J. Drlmpute: imputing dropout
events in single cell RNA sequencing data. BMC Bioinformatics 19, 220 (2018).

4. Moussa, M. & Mandoiu, 1. I. Locality Sensitive Imputation for Single Cell RNA-Seq Data. J.
Comput. Biol. 26, 822-835 (2019).

5. Andrews, T. & Hemberg, M. False signals induced by single-cell imputation [version 2; peer
review: 4 approved]. F1000Research 7, (2019).

6. Huang, M. et al. SAVER: gene expression recovery for single-cell RNA sequencing. Nat Methods
15, 539-542 (2018).

7. Meinshausen, N. & Yu, B. Lasso-type recovery of sparse representations for high-dimensional
data. http://dx.doi.org/10.21236/ada472998 (2006) doi:10.21236/ada472998.

8. Meinshausen, N. & Biihlmann, P. Stability selection. J R Stat Soc Ser. B Stat Methodol 72, 417—
473 (2010).

9. Seifert, M., Friedrich, B. & Beyer, A. Importance of rare gene copy number alterations for
personalized tumor characterization and survival analysis. Genome Biol. 17, 204 (2016).

10. Chu, L.-F. et al. Single-cell RNA-seq reveals novel regulators of human embryonic stem cell

differentiation to definitive endoderm. Genome Biol 17, 173 (2016).

11. Tirosh, 1. et al Single-cell RNA-seq supports a developmental hierarchy in human
oligodendroglioma. Nature 539, 309-313 (2016).

12. Baron, M. et al. A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals
Inter- and Intra-cell Population Structure. Cell Syst 3, 346-360.e4 (2016).

13. Peng, T., Zhu, Q., Yin, P. & Tan, K. SCRABBLE: single-cell RNA-seq imputation constrained by
bulk RNA-seq data. Genome Biol. 20, 88 (2019).

14. Zhang, L. & Zhang, S. Comparison of computational methods for imputing single-cell RNA-
sequencing data. (2017) doi:10.1101/241190.

15. Mclnnes, L., Healy, J., Saul, N. & Grossberger, L. UMAP: Uniform Manifold Approximation and
Projection. J. Open Source Softw. 3, 861 (2018).

16. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic
data across different conditions, technologies, and species. Nat Biotechnol 36, 411-420 (2018).

17. Vagquerizas, J. M., Kummerfeld, S. K., Teichmann, S. A. & Luscombe, N. M. A census of human
transcription factors: function, expression and evolution. Nat Rev Genet 10, 252-263 (2009).

18. Tugores, A. et al. The epithelium-specific ETS protein EHF/ESE-3 is a context-dependent
transcriptional repressor downstream of MAPK signaling cascades. J Biol Chem 276,20397-20406 (2001).
19. Boyd, C. A. R. Review: Epithelial aspects of human placental trophoblast. Placenta 34 Suppl, S24-
6 (2013).

Page 22


https://doi.org/10.1101/611517
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/611517; this version posted June 10, 2020. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

20. Tomaru, Y. et al. A transient disruption of fibroblastic transcriptional regulatory network facilitates
trans-differentiation. Nucleic Acids Res. 42, 8905-8913 (2014).

21. Risso, D., Perraudeau, F., Gribkova, S., Dudoit, S. & Vert, J.-P. A general and flexible method for
signal extraction from single-cell RNA-seq data. Nat. Commun. 9, 284 (2018).

22, Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer
drug sensitivity. Nature 483, 603—607 (2012).
23. Klijn, C. et al. A comprehensive transcriptional portrait of human cancer cell lines. Nat. Biotechnol.

33,306-312 (2015).

24, Leek, J. T. & Storey, J. D. Capturing Heterogeneity in Gene Expression Studies by Surrogate
Variable Analysis. PLOS Genet. 3, e161 (2007).

25. Talwar, D., Mongia, A., Sengupta, D. & Majumdar, A. Autolmpute: Autoencoder based imputation
of single-cell RNA-seq data. Sci. Rep. 8, 16329 (2018).

26. Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and
characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278-278 (2015).

27. Alexa, A., Rahnenfiihrer, J. & Lengauer, T. Improved scoring of functional groups from gene
expression data by decorrelating GO graph structure. Bioinformatics 22, 1600—1607 (2006).

Acknowledgements

The results here shown are in part based upon data generated by the TCGA Research Network:

http://cancergenome.nih.gov/. The Genotype-Tissue Expression (GTEx) Project was supported by

the Common Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI,
NHLBI, NIDA, NIMH, and NINDS. The data used for the analyses described in this manuscript were
obtained from the GTEx Portal on 12/2019. A.C.L. received support by the Cologne Graduate School
of Ageing Research. X.W. received financial support from the National Natural Science Foundation of

China (61871463) and Natural Science Foundation of Fujian Province of China (2017]J01068).

We gratefully acknowledge help from Dr. Michael Seifert (TU Dresden, Germany) on the construction

of the transcriptional regulatory network.

Author Contribution

AB envisioned the study. XW implemented and performed the network training and testing. ACL
implemented and tested the dropout imputation method. All authors contributed to the writing of

the manuscript.

Competing Interests

The authors declare no competing interests.

Page 23


https://doi.org/10.1101/611517
http://creativecommons.org/licenses/by-nc/4.0/

