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Abstract 
Septic shock is a severe health condition caused by uncontrolled sepsis. Advancements in the 

high-throughput sequencing techniques have risen the number of potential genetic biomarkers 

under review. Multiple genetic markers and functional pathways play a part in the development 

and progression of pediatric septic shock. Fifty-four differentially expressed pediatric septic 

shock gene biomarkers were identified using gene expression data from 181 pediatric intensive 

care unit (PICU) within the first 24 hours of admission. The gene expression signatures 

discovered showed discriminatory power between pediatric septic shock survivors and 

nonsurvivors types. Using functional enrichment analysis of differentially expressed genes 

(DEGs), the known genes and pathways in septic shock were validated, and unexplored septic 

shock-related genes and functional groups were identified. Septic shock survivors were 

distinguished from septic shock non-survivors by differential expression of genes involved in the 

immune response, chemokine-mediated signaling, neutrophil chemotaxis, and chemokine 

activity. The identification of the septic shock gene biomarkers may facilitate in septic shock 

diagnosis, treatment, and prognosis. 

 
Introduction 
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Septic shock is a life-threatening organ dysfunction caused by imbalanced host response to 

infection 1. Multi-omics sequencing technologies have increased the number of genetic 

biomarkers 2. Single or combination biomarkers are increasingly being analyzed and tested in the 

context of genes, RNA, or proteins 3–6. Many strategies for uncovering biomarkers exist, such as 

mass-spectrometry-based, protein arrays and gene-expression profiling. Furthermore, it has been 

demonstrated that multiple genes and immune system-related pathways participate in the 

development of pediatric septic shock 7. 

High-throughput technologies have enabled analysis of the expression of a number of genes and 

determine the activity of these genes in different conditions 8. Statistical testing and machine 

learning methods have been developed to successfully utilize the omics data for biomarker 

discovery  2,9–18.  

The purpose of this study is to identify differentially expressed pediatric septic shock biomarkers 

using gene expression data. To this end, gene expression data from 181 samples from PICU 

within the first 24 hours were analyzed using multiple statistical testing methods to identify gene 

biomarkers. The gene expression profiles discovered by this statistical approach may lead to new 

insights into genetic biomarkers for successful septic shock diagnosis 19. Using functional gene-

set enrichment analysis, we validated the known septic shock-related genes, pathways and 

functional groups, and identified the unexplored septic shock-related genes, and functional 

groups. The discovery of the potential gene biomarkers may provide effective septic shock 

diagnosis, treatment, and prognosis. 

 
Results 
Identification of Differentially Expressed Upregulated and Down-regulated Genes 
Based on the preset criteria of an adjusted p-value < 0.05, a total of 54 genes from 21,731 were 

shown to be differentially expressed between the Septic Shock Survivor and Non-survivor 
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samples, including 47 genes that were up-regulated and 7 genes that were down-regulated. 

Sixteen DEGs with a fold change of at least 1.5 is shown in Table 1 (For the complete list, refer 

to Supplementary File 1). 

 
Table 1: List of most significant up-regulated and down-regulated genes in septic shock 

Gene Fold Change Average Expression t-statistics p-value adj p-value Reference 

DDIT4 2.12 8.441545 5.490723 1.33E-07 0.000592 20,21 

CCL3 2.12 6.208106 4.627029 7.02E-06 0.012717 22 

PRG2 2.11 5.48492 5.611777 7.35E-08 0.000533 - 

MT1M 1.78 3.72997 5.641576 6.35E-08 0.000533 - 

CDC20 1.68 6.18643 4.059008 7.31E-05 0.040893 23 

KIF20A 1.66 4.940242 4.673723 5.74E-06 0.012717 - 

MAFF 1.64 6.815799 4.437113 1.58E-05 0.015559 24 

EBI3 1.64 5.41593 4.517058 1.12E-05 0.013575 25 

MELK 1.63 6.413027 4.141523 5.27E-05 0.034718 - 

TOP2A 1.58 4.997892 4.045113 7.72E-05 0.040893 26 

NUSAP1 1.54 6.627514 3.928091 0.000121 0.049772 27 

RGL1 1.52 7.288761 4.447937 1.51E-05 0.015559 28 

ARHGEF40 -1.66 6.880613 -3.994983 9.38E-05 0.043368 - 

LOC254896 -1.65 8.498379 -4.452352 1.48E-05 0.015558 - 

SLC46A2 -1.61 5.880150 -4.084894 6.60E-05 0.039833 - 

TNFRSF10C -1.54 8.678817 -4.643272 6.55E-06 0.012717 29 

 
Functional Enrichment Analysis of Differentially Expressed Genes 
54 DEGs were analyzed by KEGG pathway and Gene Ontology (GO) term enrichment. A total 

of 52 genes were recognized in the DAVID database. KEGG pathway analysis revealed 

rheumatoid arthritis (RA) (hsa: 05323) and cell cycle (has: 04110) pathways as the most 

significant pathways (Table 2). GO analyses of the DEGs demonstrated that mitotic sister 

chromatid segregation (GO: 0000070), immune response (GO: 0006955), cell division (GO: 

0051301), and chemokine-mediated signaling pathway (GO: 0070098) were the most enriched 

biological process (BP) terms (Table 2). ‘Chemokine activity (GO: 0008009) was the most 

enriched term under molecular function (Table 2). Chemokine interleukin-8-like domain 

(IPR001811), CC chemokine, conserved site (IPR000827) InterPro protein functional groups 
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were among the significantly enriched functional classes associated with septic shock 

development (Table 2). 

 
Table 2: Functional enrichment of differentially expressed genes 

Functional 
Category 

ID Functional Term Gene  
Count 

adjusted p-
value 

Fold Change  Benjamini
Score 

BP GO:0000070 Mitotic sister chromatid 
segregation 

4 4.82E-05 54.83 0.0246 

BP GO:0006955 Immune response 8 1.80E-04 6.51 0.0453 

BP GO:0051301 Cell division 7 4.61E-04 6.85 0.0763 

BP GO:0070098 Chemokine-mediated 
signaling 

4 0.001093 19.30 0.0776 

BP GO:0007059 Chromosome segregation 4 9.64E-04 20.15 0.0797 

BP GO:0007067 Mitotic nuclear division 6 6.88E-04 8.29 0.0851 

BP GO:0030593 Neutrophil chemotaxis 4 8.84E-04 20.76 0.0873 

MF GO:0008009 Chemokine activity 4 3.63E-04 28.12 0.0467 

KEGG pathway hsa05323 Rheumatoid arthritis 5 2.58E-04 15.03 0.0226 

KEGG pathway hsa04110 Cell cycle 5 9.49E-04 10.66 0.0413 

InterPro IPR001811 Chemokine interleukin-8-like 
domain 

4 2.01E-04 34.33 0.0247 

InterPro IPR000827 CC chemokine, conserved site 3 0.001602 49.35 0.0953 
BP: Biological Process; MF: Molecular Function; CC: Cellular Component 

 
Discussion 
This study of peripheral blood mRNA sequences revealed key genes and functional 

characterization associated with septic shock survivor and septic shock non-survival30. From the 

differential gene expression analysis, we identified the potential septic shock biomarkers that 

may help in an unbiased sepsis diagnosis, effective treatment, and ultimately improving 

prognoses. DEGs analysis using septic shock samples provides insights into the functional 

characterization of the genes between groups of septic shock survivor and non-survivor samples. 

However, like any other microarray data analysis is incomplete without performing adjustment 

for multiple testing. Due to approximately 20,000 (the approximate number of genes on a 

standard microarray chip) independent tests, it is expected to get at least 20 test scores by 

random chance when we allow a stricter p-value threshold of say 0.001. To avoid this situation, 

adjustment for multiple testing was utilized, and we have used the Benjamini Hochberg method. 
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For a false-discovery rate (FDR) controlling procedure, the adjusted p-value of an individual 

hypothesis is the minimum value of FDR for which the hypothesis is first included in the set of 

rejected hypotheses, and we used an adjusted p-value cut-off of 0.0531. 

We identified CDC20 as one of the top up-regulated genes, along with LCN2, and CD24, similar 

to the findings of Dong et al., 2018 23, which studied the development of trauma-induced sepsis 

in patients. However, our study population was much more diverse (Table 1). The most 

significantly up-regulated gene identified was DDIT4 (DNA damage-inducible transcript 4-like). 

PERSEVERE-XP study had also identified DDIT4 gene directly related to TP53 7. DDIT4 

(REDD1) is increased in the septic shock and can negatively regulate mTORC1 activity and 

plays an important role in energy homeostasis 21. We found CCL3 as the second-most 

significantly up-regulated chemokine, a fundamental component of the acute-phase response to 

endotoxin in humans and regulates the leukocyte activation and trafficking 32. Elevated levels of 

CCL3 has been detected within the first 24 hours of sepsis, suggesting its unique role in innate 

immune function 22,33. Further studies are needed to understand the mechanisms of these 

identified genes in the septic shock development. On the other hand, TNFRSF10C, a down-

regulated gene has been shown to play an essential role in the sepsis immune response 34.  

 

The set of genes identified is then examined for over-representation of specific functions or 

pathways. Septic shock survivors were distinguished from septic shock non-survivor by 

differential expression of genes involved in the immune response, chemokine-mediated 

signaling, neutrophil chemotaxis, and chemokine activity. Sepsis impacts the immune responses 

by directly altering the life span, production, and function of effector cells responsible for 

homeostasis 35. We identified the immune response (BP GO:0006955) term from DAVID 
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analysis, and there has also been evidence that understanding the immune response to sepsis 

provides opportunities to develop effective treatment strategies 36. 

Chemokines play a critical role in the sepsis and septic shock development, and molecules that 

block chemokine and chemokine receptor activity may prove to be useful in the identification of 

sepsis. 37. Our differentially expressed genes mapped to chemokine-mediated signaling 

(GO:0070098), chemokine activity (GO:0008009) molecular function, chemokine interleukin-8 

like domain (IPR001811) and chemokine conserved site (IPR000827).  

Sepsis and Rheumatoid Arthritis (RA) have been known to be associated for over 50 years 38. 

RA is shown to be a risk factor in sepsis patients, and sepsis infection could trigger the RA 39. 

We identified RA KEGG pathway (hsa:05323) using our differentially expressed gene set to be 

statistically significant (Table 2). 

The gene expression changes shown in our results are based on the peripheral blood cells and 

may not be extrapolated as occurring at the organ or tissue level 30,40. Therefore, extra care must 

be taken while generalizing host immune responses or chemokine activities in septic shock 

patients. Besides, variations in the gene expression profiles of survivors and non-survivors of 

septic shock patients could be due to other unexplored confounding factors (such as patients 

demographics) rather than sepsis-related biology 41. On the other hand, the blood-based 

biomarkers have the advantage to be minimally-invasive. Large cohorts replication studies and 

network analysis studies are needed to gain insights into the relationships between these 

biomarkers and the survival/non-survival of cohorts 42. To avoid the possibility of selection bias 

the analysis must be expanded to the other independent data sets. 
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This work can be expanded by experimentally validating the identified blood-based biomarkers, 

developing robust machine learning methods to build septic shock prediction model using 

different omics data from diversified patient cohorts. 

 
Materials and Methods 
Data collection 
Expression microarray data was collected from the NCBI Gene Expression Omnibus repository 

43. The dataset contains the gene expression profiles of the peripheral blood samples from 181 

septic shock patients including 154 survivors and 27 non-survivors, who were admitted to the 

pediatric intensive care unit within the first 24 hours 44. The GEO accession number for the data 

used in the study is GSE66099. The data was collected from the Affymetrix Human Genome 

HG-U133_Plus_2 (GPL570 platform). 

 
Normalization and Background Correction 
The R Affy module 45 was used to remove the technical variations and background noise. The 

Quantile Normalization Method 46 was used to normalize the data, and the background correction 

was performed using the Robust Multi-Average 47 parameter method48. 

 
Probe to Gene Mapping 
Affymetrix probes were mapped to the genes using the information provided in the Affymetrix 

database (hgu133plus2.db). We used average expression values when multiple probes mapped to 

the same gene 19. 

 
Identification of Differentially Expressed Genes 
Differentially Expressed Genes (up-regulated and down-regulated genes) were identified using R 

limma package with a Benjamini-Hochberg (BH) correction method and the adjusted p-value of 

< 0.05 was used. 
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Functional Analysis 
We used DAVID 49 for functional enrichment analysis of the DEGs from samples of septic shock 

survivor or non-survivor. The biological process (BP), cellular component (CC), and molecular 

function (MF) were identified from the Gene Ontology database. For the GO functional groups, 

KEGG pathways, and InterPro functional terms returned from DAVID functional analysis; we 

considered an adjusted p-value threshold of ≤ 0.05 and gene count of 3 or more from this study. 

 
Statistical analysis 
R programming language 50 is used for downloading the Affymetrix data and gene mapping 

using R Affy, and Bioconductor package. A Fisher-exact test was performed for determining 

statistical significance among the gene ontology terms and functional classes. Benjamini 

Hochberg multiple test correction method was used for calculating the differentially expressed 

genes. 

Data availability 
The R scripts other related files used for data preprocessing, normalization and differential gene 

expression analysis are available from https://github.com/akram-mohammed/septic_shock_degs. 

The datasets generated and analyzed during the study are available upon request. 
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