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Abstract  

It is well known that the cardiac system is controlled by the complex nonlinear self-regulation and the 
heartbeat variability (HRV) is an independent indicator of the autonomic regulation. With the assumption 
that intrinsic differences of atrial fibrillation (A) and ventricular ectopic arrhythmias (V) can be unveiled 
by a proper approach based on of signal complexity, we examine the feasibility of detecting these 
arrhythmias of different pathological origins using metrics of complexity for heartbeat intervals (HRI). 
Specifically, the normal sinus rhythm (N), the A type and the V type are used as the targeted types of 
heartbeat. By extracting the entropy-based features from HRI of different lengths, i.e., from 300 heartbeats 
to 1000 heartbeats, we examined the distinguishability of these 3 types of heartbeat. By applying the 
features to the random forest model, the HRI signal of 600-heartbeat-length can be used to detect the A and 
V completely, i.e., with 100% of type-wise recall and precision. What is more, this approach is sensitive to 
the existence of the corresponding arrhythmias. The results substantiate our assumption about the intrinsic 
difference of the A and V type. A further investigation applying this approach to a wider spectrum and a 
finer stratification of arrhythmias/ cardiac diseases and may lead to the systematic understanding in the 
context of complexity and better insight for its practical use for wearable/unconstrained monitors. 
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1. Introduction 

It is well known that the cardiac system is controlled by the complex self-regulation (Narayanan et al 
1998), involving various physiological indices such as blood pressure, body temperature etc. Moreover, the 
nonlinearity of the regulation may be attributed to the complexity of the fractal-like structure of the His-
Purkinje fiber network of the heart (West et al, 1999). It is plausible that defects of the afferent system or 
electrical transduction system may give birth to the difference in terms of complexity. On the other hand, 
the cellular/molecular defect of the cardiomyocyte may also be manifested as the cardiac arrhythmias (Hong 
et al, 2014) and expressed by the change of the complexity.  

Measures that were defined based on entropy are appropriate to measure the complexity of signal and a 
series of modifications and validations for entropy-based metrics have been made. Among these measures, 
sample entropy (SampEn), which exclude the self-match, is a modification over the approximate entropy 
and have been used to analyze the heart rate variability (Richman and Moorman, 2000). The SampEn 
requires 10m~30m (m: the length of a compared run of data) and lacks consistencies in some cases. To amend 
the issues of SampEn, Costa et al (2002) proposed the multiscale entropy (MsEn), in which the original 
signal is coarse-grained by moving average over different scales without overlapping and the entropy values 
are calculated for each scale. It enables a deeper investigation of the signal of interest with multi-resolution 
and gives more stable results (Costa et al 2005). However, it requires a relatively long signal. More recently, 
the refined composite multiscale entropy (RCMsEn) has been proposed to address the issue of signal length 
by Wu et al. (2014). 

It has become more clear that many cardiac arrhythmias can be characterized on the basis of the physical 
principles of nonlinear dynamics (Christini et al 2000). Researchers have been trying to characterize 
arrhythmias of different origins so as to distinguish them. Owis et al (2002) succeeded in distinguishing the 
normal sinus heart rhythm from the abnormal rhythm using the correlation dimension and the Lyapunov 
exponents. Zhou et al (2014) have tried to use the Shannon entropy in detecting the atrial fibrillation from 
normal sinus heart rhythm and have shown promising results in a real-time application. 

The measurement of the heartbeat interval (HRI), which is canonically defined by the R-R interval of 
electrocardiograph (ECG), is appropriate to reflect the cardiac self-regulation. Moreover, HRI can also be 
obtained by other techniques, e.g., Plethysmograph or even the Ballistocardiogram. The diversification of 
the signal source endows it a much broader field for applications, from the clinical setting to personal 
healthcare setting (Krivoshei et al 2017). The progress in wearable devices and IoT in recent years give this 
approach that analyzes the complexity of cardiac system self-regulation based on HRI (abbreviated as 
ACCaHRI hereafter) a much more clear prospect.  

The wearable/unconstrained modalities provide more flexibility and more dynamic information at the 
expense of lower signal quality due to the improper measurement setting or body movement etc (Huang et 
al 2017, Tang et al 2017). Sometimes, the signal is so severely contaminated by the noise that only the 
heart rate information (e.g., from the R-R interval) can be extracted from the ECG signal. Hence, a reliable 
approach using the metrics derived from HRI alone to reflect the physiological/pathological status of the 
heart is a practical necessity (Chen et al 2011, Jarchi et al 2017).  

Recent studies (Zhou et al 2014, Krivoshei et al 2017) have shown a looming picture of distinguishing 
the cardiac problems/arrhythmias based on ACCaHRI. However, from a holistic point of view, a general 
picture about the projection of the cardiac problems/arrhythmias of different origins onto the entropy 
features space is indispensable to evaluate this approach and make necessary amendment.  

Specifically, a binary classification, e.g., detection of abnormal from normal, would be grateful if one 
wants to simply know one’s physiological condition. However, for a more detailed pathological diagnosis, 
a multi-classes classification in the feature space is necessary.  

After the summarization of the achievements and issues of the ACCaHRI, we propose our assumption 
and aim of this study as follow:  

Assumption: For the arrhythmias originate from different chambers of the heart, the autonomic 
regularization takes different measure to compensate for their influence. A proper measure of signal 
complexity is adequate in projecting the HRIs of normal sinus rhythm (N) and arrhythmias of different 
origins, i.e., the atrial fibrillation (A) and ectopic ventricular heartbeat (V) onto a new feature space so that 
they become differentiable in that space. We choose the A and V because that these 2 arrhythmias originate 
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from different physiological tissue, i.e., the atria and the ventricles, and that they are relatively common, 
which ensure the necessary amount of the HRI samples for analysis and the training of machine learning 
model.  

Aim: By using a proper measure of complexity in combination with machine learning algorithms, we can 
distinguish the N, A, V with accurately and precisely with a relative short HRI signal (80 bpm, about 6 ~ 
12 mins). The reason to emphasize the signal length lies in that a short signal would be easier to obtain by 
a wearable device. 

This study contributes to the initiative holistic exploration of the possibility of using the ACCaHRI to 
provide detailed physiological/pathological information targeting especially at the wearable devices. 
Attempts applying a wider spectrum and finer stratification of arrhythmias could be anticipated. 
 
2. Materials and Methods 

The approach in this study was based on the statistical measure of the HRI, therefore, it tried to detect 
the targeted arrhythmias in a short time interval. The A and V were used as the targeted arrhythmias in this 
study because there are relatively common and physiologically significant on the one hand. On the other 
hand, they are distinguishable in a feature space based on our assumption. 

In this study, the recently developed RCMsEn which is an improved measure based on multiscale entropy 
was integrated with a nonlinear ensemble machine learning method, the random forest, to project the HRI 
time series onto a nonlinear feature space and to divide the space for heartbeat classification. This integrated 
method aimed at facilitating the use of wearable measurement of HRI as a diagnostic assistant. 

2.1. Data and preprocessing 

We chose the MIT-BIH arrhythmia database (MITDB) (Goldberger et al 2000) with manual annotations 
of the heartbeats from the well-established Physionet, which is a data hub for physiological signals. In the 
database, there are 48 records of 360Hz-sampled ECG signals including a variety of arrhythmic ECG 
signals. Since each record in this database has been annotated by two physiologists for each heartbeat in 
view of the ECG morphology of the waveform, we use the annotations as the reference of the signal. 
Moreover, the annotations have been adjusted to the R-wave peaks, and they are accurate enough as the 
reference in HRV studies (Moody and Mark, 2001). Hence, the HRI were extracted based on the R-peak 
annotations in this study.  

The correspondences between the 3 targeted heartbeat types used in this study and the rhythms defined 
in the MITDB are:  

N: N; A: AFIB; V: B and T.  
The annotations after each colon are the counterparts defined in MITDB, whose full names are sinus 

rhythm, atrial fibrillation, ventricular bigeminy, and ventricular trigeminy. Single ventricular premature 
beat was not included due to its relatively low density in a short signal segment. With regard to the labeling 
of a segment, heartbeat density (σ) criteria as follow were used:  

 N: σN ³ 0.95; A: σA ³ 0.7; V: σV ³ 0.15. 
The justification of this setting will be discussed in the Discussion section. We labeled the segment as A 

or V if and only if the corresponding heart rhythm satisfies the criteria above; The HRI was extracted as 
the time intervals between the R-peak of 2 consecutive heartbeats.  

2.2. SampEn, MsEn and RCMsEn 

The RCMsEn is considered as an appropriate measure to reflect the complexity of an HRI signal because 
it provides multi-resolution information and works well for a relatively short signal. The relevant SampEn 
and MsEn will be introduced briefly to facilitate a quick grasp of RCMsEn.  

Suppose there is a short signal  , the SampEn is defined by 
 

,                    (1) 

 

X = (x1, x2, …, xn)

SampEn(X , m , r) = − log Am+ 1(r)
Bm(r)
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where m is the embedding dimension, which is set to 2 in most of the cases; the r is the tolerance and it is 
usually set as 0.1~0.2 of the standard deviation of the signal. According to the setting of m, the signal is 
divided into fragments of a length of m and m+1. The  is the number of pairs  
( , : the fragment of m+1 length), whose distance is shorter than r.  

The MsEn was proposed to provide multi-resolution information based on the entropy theory, in which 
the original signal is averaged over different scales defined by τ (scale k ). Therefore, for each scale 
k, a new time series is generated as 
 

.                  (2) 

For each scale, the generated time series   is used to calculate the SampEn. Hence,   
 

.             (3)   
The entropy values of each scale together give us the chance to inspect the self-similarity of the signal 

from different time scales. However, the coarse-graining of the MsEn would decrease the length of the 
signal generated by a ratio of the scale.  
 

 
 
 
 
 
 
 
 
 
 
 

 
             
        
Figure 1. Illustration of the MsEn (a) and RCMsEn (b). MsEn provides multi-resolutions information 
by averaging the raw signal over different scale k, k . (c) is the flow of the approach.   

 
RCMsEn is a modification based on the MsEn to solve the issue of data-length for the short signal, which 

generates k new time series { } for the corresponding scale k by sifting the coarse-graining 
procedure to the right as shown in Figure 1 (b).  
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,         (4)  
 

where the SampEn values are calculated individually and averaged over k for each scale. It has been 
validated that the RCMsEn would provide more stable and consistent values, for especially short time series 
(Wu et al 2014).  

2.3. Comparison of different data-length 

As it is introduced above, the length of the HRI signal (termed as data-length hereafter) is of interest in 
this study, we generated the RCMsEn values for HRI signal of different data-lengths, whose range were 
[300,1000] with 100 intervals. The corresponding time lengths were about 4~12 minutes (80 bpm).  

The scale parameter τ was set as 20, which means that for each segment of different data-length, the 
maximum dimension of the output from the RCMsEn is 20. Noteworthily, the dimension for the short signal 
may decrease due to the undefined entropy, for this, the dimension of the output for all the 3 types of 
heartbeats, i.e., N, A, and V were aligned to the minimum dimensions of these 3 types. 

Noteworthily, even for the same type of heartbeat, the dimension may vary over samples, the maximal 
scale was chosen in a way that if more than 1% of the samples showed undefined entropy, the scale was 
excluded.  

2.4. The classifier: Random forest 

The random forest (RF) is an ensemble learning algorithm, which by growing a number of tree-based 
weak classifiers to prevent the overfitting problem that can often be seen in a single complicated model. At 
the same time, the RF reduces the predictive variance by decorrelating the individual weak classifier by the 
random selection of partial independent variables to grow a tree, and by growing it with different 
bootstrapped samples.  

The RF was chosen based on the analysis of the RCMsEn values. We applied the principle component 
analysis to the RCMsEn values (results not shown in this paper), whose result showed that the 3 types of 
heartbeats cannot be separated linearly. The difficulty in applying linear methods may be due to the high 
variances in some features. RF was chosen because it is adequate in decreasing the variance in the prediction 
by averaging over the individual trees. The RF was implemented as follow: 
Construction of the RF ensemble 
For i = 1 to B: (B is the number of individual tree) 

Draw a bootstrap sample Z of size N from the training data; 
Grow a tree Ti to the bootstrap sample data, repeat the follow step until the minimum node size nmin 
is reached. 

1. Select m features at random from the f variables;  
2. Decide the best feature to split the data from the m features; 
3. Spit the node using the feature selected and grow the tree to the maximum depth d. 

Output the ensemble of tree {Tb}. 
Classification for new sample:  

majority vote by the tree ensemble {Tb} 
The RF reduces the variance of the of the ensemble according to the following equation 

               Var = 	𝜌𝜎( + *+,
-
𝜎(                (6), 

where the 𝝆 is the correlation of trees and 𝝈𝟐 is the variance of the features (assumed as a constant for all 
features). By increasing the tree numbers the second term on the righthand side becomes minor; while the 
first term can be decreased by reducing the correlation of trees by a random selection of the m features.  

The RF also shows its advantage in the model interpretation. Unlike the popular deep learning approach, 
where the importance of each independent variable is difficult to keep track of, the importance of a variable 
can be reflected by averaging its importance over each tree grown. The variable importance is evaluated by 
averaging the decrease in accuracy over all the individual trees when we permute the variable of interest.  

RCMsEn(X , τ, m , r) = {k , l |
∑SampEn(yk

l , m , r)
k

, k ∈[1,τ], l ∈[1,k]}
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The hyperparameters for the RF are the number of trees, the max features and the max depth of a tree. If 
the computation time is not the parameter of concern, the larger is the tree number (100 in this study) the 
smaller is the variance. As is mentioned above, only a portion of the independent variables (features) are 
used to grow a tree, and the number is defined by the max features (m = 1𝒇). Finally, a tree with a deep 
depth may cause the overfitting problem, therefore, it is necessary to define the max depth of a tree (d = 10 
in this study).  

2.5. The flow of the approach and Evaluation of the Results 

The flow of this study from the HRI extraction to RF model construction and model validation is shown 
by Figure 1(c). The global hyperparameters are the length of the HRI and the thresholds of density for the 
three heartbeat types in one segment.  

The workflow introduced above will conceptually split the feature space consisting of the RCMsEn 
values for the 3 targeted types of heartbeat, which can be instantiated by a machine learning model. To train 
and test the model, training samples and test samples are split at a ratio of 4:1 for each type of heartbeat. 
To evaluate the combined performance of the RCMsEn-based features and the RF-based classifier, class-
specific precision and recall are used. 
 
          Precision: =

;<
;<=><

  (5),   Recall: =
;<

;<=>A
,      (6) 

where subscript c denotes the class-wise calculation. 
A deeper understanding of the features of different scales on the classification can be revealed by the 

analysis of the importance of the RF model. For each data-length, the importance of each scale can be 
obtained from the RF model. For the first 9 important scales in terms of median, the Mann-Whitney U test 
is used to test the significant difference between 2 scales in view of the small number of samples.  
 
3. Results 

3.1. Features based on RCMsEn 

The situation that a sample of relatively short data-length may cause the undefined entropy still exist. 
The scales available for HRI of different lengths are tabulated in Table 1.  
 

Table 1 Available scales of RCMsEn for HRI of different lengths 
Length of HRI Available scales 

300 1~6 
400 1~14 
500 1~17 

600 ~ 1000 1~20 
 

The overall trends of the 3 kinds of heartbeats are displayed by the boxplots in figure 2, in which samples 
of 600 data-length are used. From the figure, it can be seen that the decreasing trends along the scales are 
similar; whereas indistinct differences of the numerical distributions are profiled.  

The A type has the largest median values for the first 7 scales and V type has the smallest median values 
over all scales. It can also be seen that the variance turns bigger along with the increase in scales, the 
situation is especially phenomenal when the scale is larger than 10. 
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Figure 2. Box plots of the RCMsEn values of segments with 600 data-length over the 20 scales. Blue 
boxes represent the N type; Red boxes the A type and Black boxes the V type.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Recall and precision of the RF model using the RCMsEn values as the features. Both the recall 
and the precision values increase sharply when the length of the HRI increases from 300 to 400.  
 
3.2. Recall and precision of the RF model 

The dimension of the RCMsEn features increases with the data-length as shown in Table 1. The effect of 
the increase in the dimension of features can be reflected by the performance of the RF model. In Figure 3, 
the recalls and the precisions for all 3 types of heartbeat increase significantly from 300 to 400 data-length, 
among these improvements, the situation is more so for the A type. The RF model reaches the status of 
perfect detection when the data length comes to 600. It has a better performance when compared to the 
study of Jovic and Jovic (2017). By combining some HRV additional features with the alphabet entropy, 
their results show 83.7% recall and 96.7% specificity for A type; 65.2% averaged recall and 99.3% averaged 
specificity for V type. 

For the situation when the data length is 300, 37.4% heartbeats of A type and 11% heartbeats of V type 
are mistakenly classified as N, whereas 3% of N type heartbeats are classified as A type. Moreover, the 
misclassification between the A and V are not as significant, 3% of V type heartbeats are classified as A 
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type; whereas 3% of A type heartbeats are classified as V type. These results suggest that the N type cover 
a larger portion of the feature space than A and V when the dimension of the features is insufficient; whereas 
the intrinsic difference of A and V can be reflected in a feature space of lower dimension.  

3.3. Importance of the features 

The medians of normalized importance of the features are plotted In figure 4, from which it can be seen 
that the importance of a lower scales (τ < 8) are generally higher and the scale 4, 1 and 3 are the 3 most 
important scales for the classification.  

Mann-Whitney test was used to test the differences between the importance of 2 scales for the first 9 
important scales, whose accumulated importance is 0.63. The results of tests show that:  
• the most important scale 4 is significantly different (p < 0.05) from all other scales;  
• second important scale 1 is significantly different (p < 0.05) from the other scales except for the sale 

3, which is significantly different (p < 0.05) from the scales that are less important than itself.  
 
 
 
 

 
 

 
 
 
 
 
 

 
 

Figure 4. The medians of the importance of features over 20 scales. The x-axis is the scale τ; whereas 
the y-axis is the medians of the normalized importance. 

 

4. Discussion 

The HRI-based heartbeat classification stands out in the applications for wearable and unconstrained 
measurements of the cardiac electrical signal, whose quality is inferior and prone to be noisy. However, a 
signal entropy value in the original scale is not adequate in separating different heartbeats. As a follow-up 
experiment based on the algorithm of Zhou et al (2014), we have used the algorithm in this multi-
classification problem. From the experiment we got a similar result for the binary classification of N and A 
by setting the threshold of entropy value 0.63; however, the single entropy value becomes insufficient when 
the V type was added in. Figure 5 shows the distribution of the Shannon entropy value of each type of 
heartbeat, from which it can be seen that the V type sprawls along the x-axis and it makes the classification 
improbable.  

There are some hyperparameters to set in our study. A parameter that should be mentioned is the threshold 
for heartbeat density. The determination of σA and σV are based on the preprocessing of the A and V types 
trying to preserve the samples as much as possible. Therefore, by decreasing the of σA and σV, the sample 
number will increase, and the concern now becomes will the decreases density cause a lower recall and 
precision? We try the grid comparison by setting σV in [0.10:0.70] with 0.10 interval; σA in [0.05:0.20] with 
0.05 interval, which will generate 28 combinations of density thresholds. Noteworthily, greater portions of 
A and V samples have a higher density than the ranges we set above. For example, for the 500 data-length, 
there are 15% of A samples in the range of [0.10:0.70], while other A samples have a higher density than 
0.70. Similarly; there are 40% of V samples in the range of [0.05:0.20], while other V samples have a higher 
density than 0.20. The 300 and 500 data-length are used for the comparison, since their results may be more 
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sensitive to the density according to the classification results. The recalls and precisions of 300 data-length 
plotted by surface plots are shown in Figure 6, based on which neither recall nor precision shows propensity 
with the threshold values. Furthermore, the situation for 500 data-length is similar to that of the 300 data-
length, but with higher recall and precision values (above 0.95). Since the results for A and V types are 
close to each other which will cause unclear images, they are omitted here. These comparisons suggest that 
this approach is sensitive to the existence of corresponding arrhythmias. 

 
 

 
 

Figure 5. The entropy value of N A and V using the single entropy value. The x-axis is the Shannon 
entropy value and the y-axis is the proportion of the count number of each bar over the total number of 
each kind of heartbeat. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. The recalls (a) and precisions (b) of different combinations of density thresholds for A and 
V type classification for the sample of 300 data-length. Blue surfaces show the results for A type; 
whereas yellow surfaces show the results for V type.  

 
The results of the RCMsEn computation and the multi-classification based on RF model substantiate the 

underlying assumption about the intrinsic difference of A and V. Similarly, the assumption can be extended 
to other types of arrhythmias with different pathological origins. In this study we only analyze the samples 
from the MITDB in considering the amount of annotated data, the following study with a wider spectrum 
of arrhythmias/cardiac problems would be very interesting. 

As we have mentioned in the [Materials and Method] section that the A and V are relatively common. 
Therefore, we have enough data to train the machine learning model. It is plausible that this method can be 
extended to a broader range with more arrhythmias with sufficient sample data. 

The RCMsEn is an improved version of the multiscale entropy that can generate the entropy values for a 
relatively short signal. As we can see from the overall profiles of the 3 heartbeat types in Figure 2, some 
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RCMsEn values are of high variances although the clear trend for each type can be seen. In view of this 
characteristic, by integrating with the nonlinear supervised learning machine RF, the RCMsEn can be used 
in the multi-class classification. More importantly, this integrated method proposes the idea to project and 
use the HRI in a nonlinear feature space of high dimensions, which additional heartbeat types can be 
projected to and a systematic study can be performed on. However, as a statistical method, the RCMsEn 
needs the HRI of a certain length (600 heartbeats in this study), which makes it inappropriate to the detection 
of some malignant symptoms that need prompt treatment, such as Torsade de pointes.  

Based on the results in this study, it is probable that the proposed method is adequate in providing a 
coarse identification (on the chamber level) for the origin of the arrhythmia. Although AF and ventricular 
ectopic beats pose no immediate threat to health, long-term evidence is useful in tracking the heart condition, 
since the AF causes intracardiac blood stasis which may trigger a stroke (Page et al, 2003). Ventricular 
ectopic beats are thought to be relatively benign in the absence of structural heart disease, however, its 
frequency is associated with mortality in ischemic heart disease. It is also suggested that with a high PVC 
prevalence, one should pay attention to the progression of the left ventricular dysfunction (Niwano et al, 
2009). 

A hierarchical stratification using this method could be carried out with more reliable data. Medical 
record digitalization and opening are advocated here for a better study on a systematic level. By taking 
more arrhythmias into account, the nonlinear nature of the cardiac system which can be manifested by 
entropy-based measures would become more clear. A number of HRV measures have been proven to be 
useful in describing the cardiac autonomic regularization (Behar et al, 2018), with the support of sufficient 
ECG records, a systematic study about the manifestation of cardiac automatic regularization based on HRV 
measures is significant and indispensable as future work. 

As we have mentioned, this method is targeted at the HRI extracted from wearable/unconstrained sensors, 
whose signal may be contaminated by noise. Therefore, the analysis of higher order spectra which is a high 
signal-to-noise ratio domain may be useful in profiling the difference between heartbeat rhythm nonlinearly.  

 
5. Conclusions 

In this study, with the assumption that intrinsic differences of atrial fibrillation and ventricular ectopic 
arrhythmia can be unveiled by a proper method based on signal complexity and nonlinear machine learning 
model, we propose the approach combining an improved multiscale entropy with the nonlinear random 
forest model to distinguish the arrhythmias from the normal sinus rhythm using a relatively short data. Our 
approach shows that with data of 600 consecutive heartbeats, the arrhythmias and the normal rhythm can 
be distinguished completely. Furthermore, this approach is very sensitive to the existence of arrhythmias. 
By using this approach, a further study with a wider spectrum of arrhythmias of different pathological 
origins may be of great values for a systematic understanding of the arrhythmias based on complexity and 
facilitate the use of heart rate interval time series in heart health tracking. 
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