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Abstract 

Iron is an essential trace mineral for the growth, systemic metabolism, and immune response. 

Imbalance of tissue iron absorption and storage leads to various diseases. The excessive iron 

accumulation is associated with inflammation and cancer while iron deficiency leads to 

growth retardation.  Studies investigated in Kenyan infants and school children suggests that 

both low and high iron intake result in dysbiosis of gut microbiota. This would lead to the 

disruption of microbial diversity, an increase of pathogen abundance and the induction of 

intestinal inflammation. Despite this progress, in-depth studies investigating the relationship 

between iron availability and gut microbiota is not completely explored. In the current study, 

we established a murine model to study the connection between iron and microbiota by 

feeding mice with either iron-deprived or -fortified diet. To identify key microbiota related to 

iron levels, we combined the 16S rRNA amplicon sequencing with the innovated 

bioinformatic algorithms, such as RDA, co-occurrence, and machine learning to identify key 

microbiota. Manipulation of iron levels in the diet leads to systemic iron dysregulation and 

dysbiosis of gut microbiota. The bioinformatic algorithms used here detect five key bacteria 

that correlate with systemic iron levels. Leveraging on these key microbiotas, we also 

established a prediction model which could precisely distinguish the individual under either 

iron-deprived or iron-fortified physiological condition to further prove the link between 

microbiota and systemic iron homeostasis. This innovated and non-invasive approach could 

be potentially used for the early diagnosis and therapy of iron-dysregulation related diseases, 

e.g. anemia, inflammatory disease, fibrosis, and cancers.   

 

Background 

Gut microbes are associated with host health (1). The dysbiosis disturbs the host systemic 

immune and metabolism balance, leading to the disease development and progression(2, 3). 

Although gut microbiota composition between twins is associated with heritage components, 

environmental factors significantly perturb the microbial homeostasis upon exposed to the 

different growth environments (4). Among these factors, dietary pattern shapes the gut 

bacterial microenvironment and further influences the microbial diversity. Most importantly, 

the diet composition contributes significantly to the gut flora homeostasis. For example, the 

plant- or animal-based diet leads to dramatic difference on the composition and diversity of 

gut microbiota in each population. Screening the gut bacteria diversity among 60 

mammalians according to their dietary patterns indicated that the highest gut flora diversity in 

herbivores is followed by omnivores, and then carnivores (5). Studies have suggested that 
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vegetarian-based population has a lower risk to develop chronic diseases including obesity, 

and diabetes than the western-diet-based populations (6–9). A recent investigation regarding 

the Mediterranean diet (MD) on gut microbiota suggested that MD is preferential to decrease 

the ratio of Firmicutes/Bacteroides, to increase the butyrate-producing bacteria in the gut,  

and to prevent the development of the low-grade inflammation (10).  

 The major composition of diet is protein, carbohydrate, and fat. Both rats and mice on 

high sucralose diets for 6 to 12 months leads to a lower proportion of Bacteroides, Clostridia, 

Bifidobacterial, Lactobacilli and total aerobic bacteria, followed with the induction of pro-

inflammatory gene expression in intestinal epithelium (11, 12). Besides the major 

components, vitamin and mineral also play a pivotal role in shaping host health (13). As one 

of the essential trace elements, iron supports growth, oxygen transport, and metabolism. Both 

inadequate and excessive amount of iron intake are harmful to host. Except a small portion 

being absorbed by small intestine, the rest of unabsorbed iron passes into colon for bacteria, 

since iron is essential for most bacterial growth and survival (14–16). Thus, iron availability 

may impact the ecosystem of gut microbiota, further modulating the host health and 

metabolism. Several studies pointed out iron fortification may cause adverse effect on gut 

bacteria, especially leading to low grade inflammation to host. One study investigating the 

fortification of iron on infants in developing countries resulted in an adverse effect on gut 

microbiota and induction of gut pathogens and inflammation (17). In an iron fortification 

study among schoolchildren in Cote d’Ivoire, iron led to an induction of Enterobacteria, 

resulting in the low grade inflammation and a decrease of Lactobacilli (15).  

  Aforementioned, among these studies of the iron availability for gut microbiota, the 

phenotypical observation was made on the impact of iron towards the gut microbiota 

regarding the gut epithelial cell junction, host immune function and systemic inflammation. 

However, systemic understanding the role of iron on gut microbiota, especially utilizing the 

high-throughput sequencing and innovated bioinformatic analysis remains unexplored, 

especially the utilization of machine learning model to identify the key microbiota as the 

biomarker in predictive models. In the current investigation, we showed that gut taxa 

composition, and metabolic functions are perturbed by alteration of iron content in diet. This 

study is the first-time to combine high-throughput amplicon sequencing and bioinformatic 

analysis especially the machine learning to systemically explore the biological effect of iron 

on gut microbiota, in turn to perturb the host health and systemic metabolism. 

 
Methods 
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Animals and diets 

C57BL/6J mice were raised at SPF animal facility of Guangdong Institute of 

Microbiology (GDIM) in a 12/12 dark-light cycle with ad lithium free access to food and 

water. The animal protocol was proved by the Institute Animal Care Use Committees of 

GDIM (Permission #: GT-IACUC201704071). 

C57BL/6J mice at 6-week old of age were fed with Ain93G-based diet supplemented 

with different amount of iron, Control (~33 ppm), low-iron (<3 ppm) or high-iron (~200 ppm) 

for 12-week. Each group had 9 mice, housed in the same cage. The formula was listed in 

Supplementary Table 1. Each mouse was weighted every week to monitor the body-weight. 

Specialized AIN93G-based diets were purchased from Changzhou SYSE Bio-Tech Co. LTD.  

Blood parameter measurement 

The tail was sterilized with 75% ethanol pad before blood was collected from tail-vein 

to measure the hemoglobin and hematocrit.  

Feces collection 

Fresh feces were collected with a sterilized tube and frozen right away in -80°C 

freezer for further analysis. 

Iron assay 

Fecal iron content was measured following the standard ferrozine iron assay protocol 

as described before (18).  

RNA isolation and reverse transcription and Quantitative Real-time PCR (qRT-PCR) 

Total RNA was isolated and reverse transcribed to cDNA, followed with the qRT-

PCR as described before (19).  

16S rRNA amplicon sequencing  

Total fecal bacterial DNA was isolated with the Mobio PowerSoil® DNA Extraction 

kit. DNA concentration was determined by BioSpec-nano (Shimadzu Corporation, Japan). 50 

ng DNA was used for PCR-amplification with Q5 High-Fidelity DNA Polymerase (NEB) 

targeting to the V3-V4 region of bacterial 16S rRNA gene, followed with purification with 

AMPure XP (Beckman). The PCR product was indexed with Illumina sequencing primer-set 

by utilizing the Phusion HF Taq Polymerase (NEB), followed with gel purification. DNA 

concentration was quantified with Qubit-3 (Thermo Fisher). The PCR product was sequenced 

on an Illumina HiSeq2500 platform. Primers for library construction were listed in 

Supplementary Table 1. 

Bioinformatic and statistical analysis  
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After sequencing, paired-end raw reads were collected from BioMarker (BMK). For 

each pair-end sequencing file, the low-quality reads, adaptor, and barcode were trimmed 

using the FASTX-Tool kit and the pair-end sequencing files were merged. All fastq files 

were quality-controlled with QIIME 1.9.1 workflow (20). A default similarity threshold at 97% 

was defined. The BIOM file was used for downstream analysis with QIIME1.9.1 pipeline and 

R. 

α- and β-diversity For α-diversity, Observed_OTUs, Shannon and Simpson were 

rarified at the same sequencing depth were used to present the observed species and diversity 

of the gut microbiota. β-diversity was assessed using the Binary_jaccard, Bray_curtis, 

Weighted_unifrac and Unweighted_unifrac to calculate the distance between groups. 

Principal Coordinates Analysis (PCoA) were plotted by ‘ggplot2’ (21) and ‘vegan’ (22) of  R. 

The relative abundance of microbial structure was plotted by ‘pheatmap’ package of R. 

BugBase was performed by utilizing BugBase algorithm with integration of KEGG (23). 

Analysis of Similarity (ANOSIM) was performed with “vegan” package of R, based on 

Bray Curtis distance. Linear discriminate analysis effect size (LEfSe) was performed to 

identify the difference of microbial structure between groups with the default parameter (24). 

PICRUSt was used to explore the difference of metabolic pathway between each group 

against the KEGG (25). Redundancy analysis (RDA) was performed by using ‘vegan’ and  

‘ggplot2’ package of R (21, 22). The length of arrow represented the constraint effect of 

different environmental variables exerted on the sample distribution in two-dimension. Co-

occurrence analysis was performed by ‘igraph’ package of R. All nodes were annotated by 

different color on phylum level. Communities of three network were determined by the fast 

greedy modularity optimization algorithm (26). Circle bar was plot according to eigenvector 

centrality scores to estimate the importance and betweenness of each node (27). The index of 

radar plot estimated by the graph theory algorithm was plotted by ‘fmsb’ package of R. 

Random forest was performed with ‘randomForest’ package of R (28).Least absolute 

shrinkage and selection operator (LASSO) was performed by ‘glmnet’ package of R (29). 

Data availability 

The raw sequencing file for all samples have been deposited in NCBI under the 

Bioproject: PRJNA506862.  

 
Results 

Dietary manipulation of iron levels perturbs systemic iron homeostasis.  
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In an attempt to manipulate the systemic iron dysregulation to further understand the 

precise iron-mediated regulatory mechanisms on gut microbiota, 6-week old C57BL/6J mice 

were fed with an AIN93G-based diet for 12-week to induce the iron-deficiency or iron-

overload (Fig. 1A). The results showed that iron-deprived diet led to the growth retardation, 

lower hemoglobin and hematocrit (Fig. 1 B, C, D). We also observed that iron levels were 

significantly reduced in epithelial cells of duodenum (SI), liver, BAT and iWAT, while FeE 

diet led to iron-overload only in SI and liver but not in BAT and iWAT, compared with the 

mice with AIN9G diet (Fig.1E). The unabsorbed iron in the diet was passed into colon and 

packed into the feces as shown in fecal iron content (Fig. 1E). The expression of iron 

transport-related genes was differentially expressed, such as Slc11a2, Slc40a1, Slc39a14 and 

TfRc in duodenum and TfRc and Slc39a14 in liver (Fig. 1F).  

Iron-dysregulation significantly perturbs the gut microbiota diversity and metagenomic 

function.  

After 12-week feeding, 27 fecal samples were collected and sequenced, generating 

935282 high quality ~420-bp paired-end reads with average 34640 reads for each sample. 

These high-quality reads were used to calculate the relative abundance against the 

Greengenes database. To determine whether sequencing depth for each sample was enough to 

capture the diversity of gut microbiota, random sampling was performed to plot the species 

accumulation curves (SAC). The SAC showed that with the increased sampling, OTUs 

reached the asymptote (Fig. S1A). The Good’s coverage curves demonstrated that all samples 

reached saturation within 5000 paired-end reads. The sequencing coverages were near 100%, 

suggesting that the sequencing depth was sufficient to capture the diversity of gut microbiota 

for all groups (Fig. S1B, S1C). Rarefaction analysis based on α-diversity clustering showed 

that different iron level in diet significantly perturbed the number of species and diversity 

between low-iron (FeD) and high-iron (FeE) diet feeding, represented by Observed_OTUs 

(p=0.006), Shannon (p=0.014) and Chao1 (p=0.0022) index, respectively (Fig. 2A). To 

display the microbial variability between groups, β-diversity analysis was calculated with the 

Bray_curtis, Binary_jaccard, Unweight_unifrac and Weighted_unifrac algorithms. The space 

distance among groups presented a symmetrically different distribution (Fig. S2A-D). It was 

showed that on PCoA1 axis, space index was significantly different between any two groups 

(Fig. 2B). By comparing the relative abundance on species level among three groups, Kruskal 

non-parameter test (p<0.05) showed that different iron content in diet significantly altered the 

gut microbiota composition (Fig. 2C). Moreover, LEfSe analysis identified 34 (AIN93G), 18 
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(FeD), and 11 (FeE) bacterial taxa that were differentially altered with LDA score >2, 

showing that there was significant structural difference among three groups (Fig. 2D). All 

these results demonstrated that iron may be a key modulator towards the gut microbiota 

diversity.  

In order to understand whether the alteration of gut microbial diversity can cause 

functional changes, BugBase was performed. However, the relative abundance of gut 

microbiota under different phenotypes were not significantly different (Fig. S3). To predict 

the metagenomic function, PICRUSt was used to assess the functional difference between 

microbiota among three groups. It was shown that fatty acid metabolism, tyrosine 

metabolism and gluconeogenesis were slightly more abundant in gut taxa of mice under diet 

with high iron content. The linoleic acid metabolism, β-analine metabolism and limogene and 

pinene degradation were enriched in bacterial taxa under low iron condition (Fig. 2E). These 

results confirmed that the functional and phenotypical pathways were altered, following the 

gut microbiota diversity change.  

Gut microbiota alteration strongly associated with dietary iron content 

The specialized diets have significantly perturbed mice physiological parameters. 

Whether these changes were related with gut microbiota remains unknown.  Thus, we 

performed RDA analysis to further reveal the relationship between the iron-based 

physiological parameter and gut microbiota. This analysis indicated that 26.72% of the 

variance could be interpreted by six environmental factors (Supplementary Table 2), which 

confirmed that systemic iron levels could significantly alter the population of the gut 

microbiota at phylum level and samples from three groups were obviously separated (Fig. 3). 

According to the Monte Carlo permutation test, physiological parameters, such as 

Hemoglobin (p=0.004), Hematocrit (p=0.004), SI iron content (p=0.006) and fecal iron 

content (p= 0.023) played an essential role in clustering the distribution of bacterial taxa in 

three groups (Fig. 3). To further confirm the RDA analysis, ANOSIM based on the Bray 

Curtis distance also indicated a statistical difference between three treatments with a statistic 

test (R=0.537 for p<0.0001) (Fig. S2E). Both RDA and ANOISM analysis proved that 

dietary iron level plays an essential role in separation and clustering of the gut microbiota in 

each group. 

Iron supplementation perturbs the gut microbial community network 

To determine whether iron is able to influence the gut microbiota community network, 

the graph theory algorithm and co-occurrence analysis were performed. In order to 
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systemically understand the interaction between bacterial taxa, the graph theory including the 

transitivity, graph density, degree centralization, number of vertices and number of edges on 

a radar plot indicated that the iron content in diet did not significantly change the systemic 

complexity of gut bacteria (Fig. S4 and Supplementary Table 2). Thus, to further explore the 

bacterial interaction in response to the systemic iron level change, we performed the co-

occurrence analysis through the collection of the prevalence of bacterial species from each 

group in terms of relative abundance at species level as detailed in Supplementary Table 2. 

The plotted taxa were the relative abundance present in at least 70% of the samples in each 

group and were used for co-occurrence analysis (Supplementary Table 2). The statistical 

analysis through spearman correlation, species plotted for co-occurrence network separately 

suggested that the microbial community among three groups were significantly different 

(r>0.6, p<0.05, Supplementary Table 3). By applying the greedy clustering method, FeD 

group was sub-divided into 6 sub-communities, while AIN93G and FeE groups had 5 sub-

communities (Fig. 4 and Fig. S5). Within this network, iron indeed reorganized the network, 

providing a clue that a threshold for iron levels in diet may present. This threshold may be a 

determinant factor affecting the cluster of the sub-community as shown in diversity analysis.   

Identification of the key bacteria associated with the systemic iron dysregulation by 

random forest  

 We have shown that iron regulates host physiology and metabolic balance and also 

significantly influences the structure of microbial community. This resulted in 120 bacterial 

abundance significantly changed by the iron level in diets (kruskal non-parameter test with 

p<0.05) made it difficult to distinguish their importance. Here, we introduced the random 

forest algorithm to identify the valuable microbiota among three groups in response to the 

systemic iron dysregulation. By applying the five-fold cross-validation on a random forest 

model among total 27 samples in the discovery phase on species level, ~70 million decision 

trees from ten trials were generated, resulting in 4 optimal species markers selected with 

consideration of the lowest mean error rate and standard deviation (Fig. 5A). Moreover, 

through ten trials of analysis, the top five taxa were consistent (Fig. S6A). Thus, we selected 

the top five candidates as the key microbiota in response to the iron-mediated systemic 

dysregulation (Fig. 5B). This included g_Parabacteroides (V19), f_Pepostreptococcaceae 

(V83), s_Akk_muciniphila (V143), s_perfingens (V70) and o_clostridiales (V63) (Fig. S7A-

B). Furthermore, the partial dependence plot showed that the iron is involved in the 

classification of these five key microbiotas, based on their relative abundance (Fig. S7C). 

These five key taxa were highly correlated with the physiological parameters (Fig.5C and Fig. 
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S7D).  Given the key position of five microbiotas among the community in response to the 

systemic iron dysregulation, based on their relative abundance, we built a prediction model, 

which was able to recognize the target samples. ROC curves suggested that samples could be 

well distinguished with AUC value of 99.4%, 88.9% and 100%, respectively (Fig. 5D-F, 

S6B).  

Relative abundance of gut microbiota-based prediction on the systemic iron status. 

Random forest classifier identified 5 key microbiotas in response to systemic iron 

homeostasis with tight correlation between five key microbiota and iron-related physiological 

parameters. Thus, we speculated whether the relative abundance of gut microbiota could be 

used as a biomarker to predict tissue iron content. Here, we constructed LASSO regression 

models, which could help us select the best independent parameter. With the λ selected from 

the LASSO regression models, we identified the essential microbial taxa to build the 

prediction model for each environmental factor (Fig. S9, Fig. 6A, and 6D, Fig. S8, Fig. S10A, 

and 10C). Utilizing these models to predict SI, liver, fecal iron content and hemoglobin 

resulted in R2 of 99.7%, 96%, 65% and 67%, respectively (Fig. 6B and 6E, Fig. S10B and 

10D), especially the SI and liver iron contents associated with high prediction confidential. 

Leveraging on two machine learning models, including random forest and LASSO regression 

model, key microbiota from two models were merge to be used as key microbiota (4 and 2 

taxa biomarkers for SI and liver) to predict the SI and liver iron content (Fig. 6C and 6F).  

 
Discussion 

Iron plays a fundamental role in various aspect of life, such as oxygen transport, 

metabolism, and immune defense. Small intestinal absorption accounts for 2 to 3 mg/day for 

human and the rest of iron passes into the colon for gut microbiota (14). However, whether 

fecal and systemic iron level influence the homeostasis of gut microbiota remains unknown. 

To precisely understand the impact of iron on gut microbiota, fecal samples from C57BL/6J 

mice were collected and its microbial diversity and metagenomic function were assessed. 

From the current investigation, we have shown that the iron levels in diet is a key factor 

contributing significantly to the gut microbiota sub-community formation. Most importantly, 

based on the machine learning algorithm, we built the prediction models, which help us 

identify the key microbiota in response to the systemic iron challenge, and establish the 

connection between key microbiotas and tissue iron content. By utilizing these newly 

identified biomarkers, we could accurately predict SI and liver iron content with R2 of 99.7% 

and 99.6%, respectively.  
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Iron is also a critical mineral for gut microbiota. Studies from multiple approaches 

demonstrated the iron availability directly impacts the bacterial ecology under both in vivo 

and in vitro conditions. In human studies, the availability of iron may present different effect 

on the diversity of gut flora. Infants at their first three months had different response to the 

milk with different iron fortification when compared with the breast milk. For the new born 

infants, iron-fortification is required for gut flora colonization from the standardized prepared 

cow’s milk (30). However, the follow-up study from the same group showed that in the later 

period of milk feeding, low iron-fortification in the cow’s milk manipulated similar 

observation of flora type as that in breast milk fed infants in the first three months (31). In 

animal studies, swiss-Webster mice fed on iron-deprived diet resulted in elevation of the 

anaerobes in the colon (32). Individual on iron deficiency followed with iron supplementation 

also significantly modified the bacterial diversity and metabolites levels, especially the 

butyrate and propionate levels (33). These human and animal studies have established the 

connection between iron concentration and overall gut microbiota composition and 

complexity, but these all based on the microbial sampling, phenotypic observation and the 

relative abundance, which still lacks of the precise evaluation and prediction approach to 

dissect the link between gut microbiota and host physiology.  

Currently, the widely used approaches include α-diversity, β-diversity, and LEfSe to 

calculate the difference between groups. These approaches are straightforward to identify the 

significant difference, while it may result in false-positive conclusion and also lack of the 

cross-validation. Recently, in a randomized controlled study conducted in Swedish healthy 

infants at 6 months old of age with different ferrous iron administration in milk, LEfSe 

algorithm is used to identify bacterial taxa associated with different iron content in formula. It 

was shown that high-iron formula is associated with lower relative abundance of 

Bifidobacterium and Lactobacilum (34). In our attempt, the relative abundance of 

Lactobacilum decreases gradually when additional iron is supplemented in diet. However, the 

relative abundance of Bifidobacterium was not changed among groups. In our study, other 

than comparing the relative abundance among groups, we incorporated multiple approaches 

to understand the link between systemic iron homeostasis and the dysbiosis of gut microbiota, 

such as RDA, co-occurrence, and machine learning model to determine the overall impact of 

dietary iron on microbial composition, sub-community, interaction, and clustering. Among 

them, RDA leverages on the environmental factors and relative abundance of gut microbiota 

to determine how environmental factors contribute to the clustering of bacterial taxa and sub-
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community formation. Here, iron is a major factor to influence the iron-related parameters 

and associated with the tissue iron levels, which contributes to the clustering of gut 

microbiota in each group. This was represented by both RDA plot and co-occurrence via the 

bacterial interaction. The machine learning approach is introduced in microbial studies to 

identify the signature microbiota, which were utilized as diagnosis markers to predict the 

disease progression, such as irritable bowel syndrome (IBS) (35), breast cancer (36), 

hepatocarcinoma (37). In a gut microbial study of IBS patients, relying on the machine 

learning and 5-fold cross-validation to reduce the complexity of sequencing data. The gut 

microbial signature could be used to discriminate the healthy individuals and patients with 

different degree of symptom with LASSO regression model (35). Furthermore, gut microbial 

signature is also used in combination with the cross-validation and random forest to identify 

potential diagnosis microbial biomarkers for early diagnosis of hepatocarcinoma and breast 

cancer (36, 37). Obviously, the robust statistical approaches could overcome weakness of just 

the difference on relative abundance to identify the key microbiota. In our study, 5-fold 

cross-validation with random forest identified five key microbiotas, which highly correlated 

with the environmental factors. LASSO regression model further confirmed the essential 

connection between the identified microbiota and the tissue iron with a high confidential rate.  

Furthermore, cancer development is associated with the microorganism in some 

organs, for example, helicobacter_pylori and gastric cancer, or papillomavirus and cervical 

cancer. Recent studies have shown that gut microbiota contribute to the pathogenesis and 

progression of colorectal cancer. Some bacterial species such as 

Clostridium_septicum, Enterococcus_faecalis, Streptococcus_bovis, Bacteroides_fragilis, He

licobacter_pylori, Escherichia_coli and Fusobacterium spp may participate in the 

development and progression of CRC (38, 39). Clostridium_septicum as a virulent pathogen 

has been shown to involve in disease development, e.g. colorectal malignancy, and hepatic 

carcinoma, but this may happen with involvement of other clostridial species such as 

Clostridium_Chauvoei, Clostridium_Novyi, and Clostridium_Perfringens (40). 

Clostridium_septicum infection and severity may be associated with the dysfunction of 

neutrophil. Neutrophils-mediated immune system plays a fundamental role in restrict 

colorectal tumor development. A recent study indicated that neutrophils deletion leads to the 

sporadic colon tumorigenesis with increased bacterial growth in tumor, proliferation of tumor 

cell, and inflammatory response mediated by interleukin 17 (41). 16S rRNA-sequencing data 

suggested that dysbiosis of gut microbiota, especially the Clostridiales, and Akk makes 

significant contribution to the development and progression of tumor in neutrophils-deficient 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 18, 2019. ; https://doi.org/10.1101/612168doi: bioRxiv preprint 

https://doi.org/10.1101/612168


mice (41). Clostridium_perfringens is another member of Clostridiaceae family in human and 

animal intestine and is associated with various systemic and enteric diseases such as diarrhea, 

colitis, and colon cancer (42). Here, we identified iron deficiency environment may be 

suitable for Clostridiacae family growth, while Peptostreptococcaceae family is enriched in 

intestine of mice fed with iron-fortified diet. Peptostreptococcaceae appears to be over-

represented in the gut of both colorectal cancer patients and animal models (42). This family 

of bacteria secretes more than 20 identified toxins or enzymes that could potentially impact 

the homeostasis of gut microbiota and induce the pathogenesis in the host gut, leading to 

colitis and tumor development (42). 

Cancer development and progression is a complicated cascade with multiple factors 

involved, such as nutrients, genetics, and bacteria. Iron dysregulation is associated with the 

development of various types of inflammatory diseases and cancers (43). Furthermore, the 

meta-analysis of the epidemiological evidence supported the positive association between 

dietary iron intake and higher cancer risk (44). In various cancers, such as liver, breast, and 

colorectal cancer (45, 46), it has been shown that the development is primarily followed with 

abnormal iron absorption and progressed with the accumulation of excessive amount of free 

iron. Thus, development of a prediction model for the early diagnosis is necessary. Here, in 

our study, we present a mathematic model that establish a link between gut microbiota and 

tissue iron level. The application of the current study is to utilize the relative abundance of 

gut microbiota to predict tissue iron level as a biomarker to monitor the iron accumulation 

related diseases development and progression. In present stage, our findings provide evidence 

support the link between systemic iron and gut microbiota and the prediction model could be 

potentially used to predict the SI and liver iron levels for the iron-related disease early 

diagnosis (Fig. S10).  
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Figure Legends 

Figure 1 Different dietary iron level in diets perturbs systemic iron homeostasis and 

alters the iron-related parameter levels. C57BL/6J mice were fed with AIN93G-based 

diets including iron-deficiency (FeD), iron-fortified (FeE) and AIN93G (Control) for 12 

weeks to disrupt systemic iron homeostasis. (A) Experimental scheme to access the role of 

iron on fecal microbiota. (B) Body weight curve of C57BL/6J mice under three different diets. 

(C-D) Hemoglobin and hematocrit for C57BL/6J mice under three different diets. (E) Tissues 

(small intestine/SI, liver, brown adipocyte/BAT, inguinal white adipocyte/iWAT) and fecal 

iron levels for C57BL/6J mice under three different diets. (F-G) Iron transport-related gene

是 expression (Slc11a2, Slc40a1, TfRc, Slc39a14) in epithelial cells of duodenum and liver. 

Each bar or point represents the average data from 9 mice. * p<0.05, **p<0.01, ***p<0.001, 

N.S.: not significant.  

 

Figure 2 Iron-dysregulation significantly perturbs the gut microbiota diversity and 

metagenomic function. Feces were collected from C57BL/6J mice under three different 

diets and its bacterial DNA were isolated. V3-V4 region of 16S amplicon was sequenced for 

bioinformatic analysis to assess the microbial composition. (A) Box plots of α-diversity 

index (Observed_otus, Shannon, and Chao1). (B) Box plots of β-diversity index of PCoA1 

represented by the space distance among groups (Bray_curtise, Binary_jaccard, 

Unweighted_unifrac). (C) Heatmap for relative abundances of significant difference at 

species level among three groups (Kruskal non-parameter test (p<0.05)). (D) Linear 

Discriminant Analysis (LDA) Effect Size (LEfSe) plot revealed the taxonomic biomarkers 

associated with the dietary iron levels. The threshold for LDA score was 2 (p<0.05). (E) To 

predict the metagenome function, heatmap of PICRUSt analysis showed significant KEGG 

pathway among three groups.  

 

Figure 3 Redundancy analysis (RDA) bi-plot of bacterial diversity and iron-related 

physiological parameter. RDA was performed on the relative abundance obtained from the 

16S rRNA amplicon sequencing and environmental factors (body weight, hemoglobin, 

hematocrit, SI iron content, liver iron content and fecal iron content). 

 

Figure 4 Co-occurrence network analysis and prevalence of bacterial species among 

different dietary treatment. Network plot describes co-occurrence of bacterial species 
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among all samples. (A) FeD, (B) AIN93G, (C) FeE. The blue and red line indicates the 

negative and positive interaction between bacterial taxa, respectively. The number of 

segments of each circle (gray color) revealed the number of sub-communities of each group. 

The height of the bar in each segment represented the significance of the corresponding 

bacteria. The bacterial species in co-occurrence analysis were only those relative abundance 

present in at least 70% of the samples in each group. 

 

Figure 5 Identification of the signature gut microbiota associated with the systemic iron 

dysregulation by random forest. To detect signature bacterial marker in response to the 

systemic iron dysregulation, we performed five-fold cross-validation on a random forest 

model among 27 samples (9 for each groups) in the discovery set. (A) 4 bacterial markers at 

species level were selected as the key biomarker by random forest. Red line illustrates the 

number of key bacteria in the discovery set. (B) The relative abundance of each bacteria in 

the predictive model was assessed using the Mean Decrease Accuracy (MDA) in 27 datasets. 

The red line illustrates five key bacteria filtered by random forest via the fivefold cross-

validation. (C) The corplot analysis plots the correlation between five signature bacteria and 

environmental factors (Body weight, Hemoglobin, Hematocrit, Fecal Iron Content, SI Iron 

Content, and Liver Iron Content). (D-F) The mathematic model based on the 5 key bacteria 

was used to predict the sampling group. The probability plot indicates the prediction 

probability. The dark red color indicates the predicted group and the blue color is the non-

predicted samples. Black dashed line represents the lowest probability to predict the samples 

belonging to the correct group.  

 

Figure 6 LASSO regression model to utilize the relative abundance of bacterial taxa to 

predict systemic iron levels. SI (A) and Liver (D) iron content-associated taxa were selected 

from LASSO regression model (L1-regularization) with optimized λ with repeated 6-trial. 

Taxa from LASSO regression model to establish mathematic model could utilize the relative 

abundance of gut microbiota to predict SI (B) and Liver (E) iron content with R2 of 0.997 and 

0.96, respectively. The overlapping taxa between two machine learning model to generate the 

key bacterial taxa that were used to predict SI (C) and liver (F) iron content.  
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Supplementary Figure Legends 

Fig. S1 Sequencing depth was assessed via the random sampling. Random sampling and 

goods_coverage were used to estimate whether the sequencing depth is enough to capture the 

diversity of gut microbiota. (A) species accumulation curves (SAC). (B-C) Goods_coverage 

plot.  

  

Fig. S2 β-diversity and ANOSIM analysis demonstrate dietary iron manipulation 

perturbs the gut microbiota diversity. (A-D) β-diversity index: Binary_jaccard, 

Bray_curtis, Unweighted_unifrac, and Weighted_unifrac. (E) Analysis of similarity 

(ANOSIM) indicates a statistically significant difference between three treatments with a 

statistic test (R=0.537 for p<0.0001). Red dashed line illustrates the R value at 0.537.  

 

Fig. S3 Metagenomic prediction of microbial phenotypes using Bugbase. Utilizing the 

16S amplicon sequencing information, Bugbase algorithm was used to predict the organism-

level coverage of functional pathways and phenotypes, such as gram positive or negative, 

aerobic or anaerobic, potential_pathogenic, and stree_tolerant.  

 

Fig. S4 Dietary iron content does not change the complexity of gut microbiota. Radar 

plot with parameter of transitivity, number of edges, number of vertices, degree of 

centralization, and graph density demonstrates that microbial complexity in diet is not 

significantly changed by dietary iron level.  

 

Fig. S5 Co-occurrence network analysis and prevalence of bacterial species among 

different dietary treatment. Network plot revealed the systemic interaction between each 

bacterium among diet with different dietary iron levels, (A) FeD, (B) AIN93G, (C) FeE.  

 

Fig. S6 Identification of the signature taxa by random forest. To detect key bacterial 

marker, we conducted 5-fold cross-validation for 10 trials with seed number 1000 to generate 

70 million decision trees. (A) The relative abundance of each bacteria taxa in the predictive 

model was assessed using the Mean Decrease Accuracy (MDA) in 27 datasets. Each graph 

represents one trial. (B) ROC curve for the training set. The AUC was 0.994, 0.889, and 1 for 

FeD, AIN93G and FeE.  
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Fig. S7 Identification of the signature taxa by random forest. (A) The detailed 

information of five key microbiota identified by random forest. (B) Bar plots show the 

relative abundance of each taxa classified by random forest. (C) The partial dependent 

probability plot illustrates the relationship between the relative abundance of each taxa 

identified by random forest and the probability to be classified under certain dietary iron level. 

(D) The corplot revealed in correlation between five core microbiota and environmental 

factors.  

 

Fig. S8 Selection of hyperparameter (λ) for LASSO regression model.  

With the increasement of hyperparameter (λ), which exerts regression coefficient of all 

independent values in LASSO regression model approaching zero gradually, the number of 

independent values shrank. In each plot, the left line represents as a minimum λ that is the 

least MSE for the most accurate LASSO model, and the other one is chosen for the biggest 

λwithin one standard error of the minimum λ to construct the simplest LASSO model. 

 

Fig. S9 LASSO regression model to utilize the relative abundance of bacterial taxa to 

predict systemic iron levels. Fecal iron content (A) and Hemoglobin (C) associated taxa 

were selected from LASSO regression model (L1-regularization) with optimized λ with 

repeated 6-trial. Taxa from LASSO regression model to establish the mathematic model 

could utilize the relative abundance of gut microbiota to predict Fecal iron content (B) and 

Hemoglobin (D) iron content with R2 of 0.65 and 0.67, respectively. 

 

Fig. S10 Schematic representation of the link between gut microbiota and systemic iron 

homeostasis. Systemic dysregulation of iron metabolism is associated with various kinds of 

diseases development and progression, such as anemia, inflammatory diseases, and cancer. In 

our murine model, we combined the high-throughput sequencing and bioinformatic analysis, 

especially the machine learning approach dissect the link between gut bacteria and systemic 

iron homeostasis, providing a novel and alternative approach for early diagnosis of iron 

dysregulation-related diseases.  
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