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ABSTRACT 

Long-read RNA sequencing (RNA-Seq) is promising to transcriptomics studies, however, the 

alignment of the reads is still a fundamental but non-trivial task due to the sequencing errors and 

complicated gene structures. We propose deSALT, a tailored two-pass long RNA-seq read alignment 

approach, which constructs graph-based alignment skeletons to sensitively infer exons, and use them 

to generate spliced reference sequence to produce refined alignments. deSALT addresses several 

difficult issues, such as small exons, serious sequencing errors and consensus spliced alignment. 

Benchmarks demonstrate that this approach has a better ability to produce high-quality full-length 

alignments, which has enormous potentials to transcriptomics studies. 
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INTRODUCTION 

RNA sequencing (RNA-seq) has become a fundamental approach to characterize transcriptomes. 

It enables to reveal precise gene structures and quantify gene/transcript expressions[1-5], as well as 

many other kinds of applications such as variant calling [6], RNA editing analysis [7, 8], gene fusion 

detection [9, 10]. However, due to the drawbacks of short read sequencing technologies, such as the 

limited read length and the systematic bias from library preparation, it is still non-trivial to accurately 

align reads [11], reconstruct gene isoforms [12], and quantify transcript-level expressions [5]. This has 

become a bottleneck to transcriptomic studies.  

Two kinds of long read sequencing technologies, i.e., single molecule real time (SMRT) sequencing 

produced by Pacific Biosciences (PacBio) [13] and nanopore sequencing produced by Oxford 

Nanopore Technologies (ONT) [14], are emerging and promising to breakthrough the bottleneck of short 

reads in transcriptome analysis. Both of them enable to produce much longer reads, i.e., the mean and 

maximum lengths of the reads have been over tens and a few hundreds of thousands of basepairs (bps) 

[15, 16], respectively. Taking this advantage, full length transcripts can be sequenced by single reads, 

which is promising to substantially improve the accuracy of gene isoform reconstruction. Moreover, 

there is also less systematic bias in the sequencing procedure [17], which is also beneficial to 

gene/transcript expression quantification.  

Besides the advantages, PacBio and ONT reads have much higher sequencing error rates than 

that of short reads. For PacBio SMRT sequencing, the sequencing error rate of raw reads (“subreads”) 

is about 10%-20% [16]; and for ONT nanopore sequencing, the sequencing error rates of 1D and 2D 

(also known as 1D2) reads are about 25% and 12% [18, 19], respectively. PacBio SMRT platforms can 

also produce reads of interest (ROIs) by sequencing circular fragments multiple times to largely reduce 

sequencing errors, however, this technology also has much lower sequencing yields and reduced read 

lengths. The serious sequencing errors raise new technical challenges to RNA-seq data analysis. Read 

alignment could be the most affected one, and the affection could be not limited to read alignment itself 

since it is fundamental to many downstream analyses. 

Previous studies [20-22] have demonstrated that noisy DNA-seq long read alignment is a non-

trivial task, that many technical issues need to be well handled, such as the serious sequencing errors, 

potential genome variants and large read length. For RNA-seq long read alignment, the task is even 

more difficult, since the aligner has to deal with numerous splicing events besides the issues mentioned 

above. This requires the aligner has a strong ability to implement highly complicated split alignment 

(also called “spliced alignment”) to correctly recognize many splicing junctions and map the bases to 

corresponding exons. Although most of proposed DNA-seq long read alignment approaches have the 

ability to implement split alignment to handle genome structure variations (SVs)[21-23], splicing 
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junctions occur much more frequently and the lengths of exons are much shorter and divergent, so that 

tailored algorithms are still on demand.  

There have been a couple of approaches supporting RNA-seq long read alignment, such as 

BBMap [24], GMAP [25], STAR [26], BLAT [27] and Minimap2 [28]. All of these approaches are based 

on the commonly used seed-and-extend strategy, and various seeding and extension methods are 

implemented to address the issues in RNA-seq long read alignment. All of these approaches have the 

ability to handle splicing junctions. However, most of these algorithms have relatively slow speed [28], 

mainly due to numerous short matches in the seeding step and time-consuming local alignment in the 

extension step. Moreover, some of the algorithms also have lower sensitivity [29], i.e., many reads are 

unaligned or only partially aligned, which is due to their relatively poor ability to handle sequencing 

errors. An outstanding algorithm is Minimap2, which simultaneously achieve tens of times faster speed 

and similar or higher sensitivity than other state-of-the-art aligners. This mainly benefits from its well-

designed minimizer-based indexing [30] and SSE-based local alignment methods [31], which greatly 

improve the efficiency of seeding and extension steps, moreover, its specifically designed local 

extension method is suited to handle splicing junctions. 

In absolute terms, the ultimate goal of the task should be to correctly map all the bases for all the 

reads, however, this could be still non-trivial to state-of-the-art aligners in several aspects. One is the 

alignment of the bases from relatively short exons, e.g., exons in only a few tens of bps. It is extremely 

hard to find seeds in the read parts from such short exons under the circumstance of serious sequencing 

errors and potential variants, so that the read parts are usually unaligned or mistakenly aligned. Another 

issue is that it is difficult to correctly align the bases nearby the splicing junctions. This problem also 

exists in short RNA-seq read alignment; however, it is more serious in the alignment of noisy long RNA-

seq reads. Moreover, with the affection of sequencing errors, the alignments of the reads from the same 

gene isoform are usually divergent to each other, which is also misleading to downstream analysis.  

Herein, we propose de Bruijn graph-based Spliced Aligner for Long Transcriptome read (deSALT). 

deSALT is a fast and accurate RNA-seq long read alignment approach which takes the advantages of 

a novel two pass read alignment strategy based on de Bruijn graph-based index. It has the ability to 

well-handle the complicated gene structures as well as serious sequencing errors, to produce more 

sensitive, accurate and consensus alignments. For most of the reads, deSALT can produce full-length 

alignments to thoroughly recover the exons and splicing junctions along the entire reads. Moreover, the 

speed of deSALT is also faster or comparable to state-of-the-art approaches as well. We believe that it 

has the potential to play important roles in many forthcoming transcriptomic studies.  
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RESULTS 

Motivation and overview of deSALT approach  

Seed-and-extension approach is suited to spliced alignment since it can match the short tokens of 

the read to its spanning exons at first (i.e., seeding), and then implement base-level alignment between 

the read and the matched exons (i.e., extension). However, under the circumstance of frequent splicing 

events and serious sequencing errors, this task is non-trivial in practice. For a single read, it is usually 

difficult to accurately find matches between the read and all its spanning exons, especially for the read 

parts with serious sequencing errors and relatively short exons. Thus, it is hard to compose a local 

reference sequence containing all the spanning exons of the read, so that the extension alignment 

would be less accurate, or some of the read parts could be unaligned or clipped. Moreover, due to the 

randomness of the sequencing errors, both of the seeding and the extension phases could make 

various mistakes for the multiple reads from the same gene isoform, and the produced alignments of 

the reads are divergent to each other.  

Motivated by these technical problems and existing short RNA-seq read alignment algorithms[26, 

32], deSALT uses a tailored two-pass approach to align the noisy long reads (a schematic illustration is 

in Figure 1). In the first pass, it employs graph-based genome index [33] to find match blocks (MBs) 

between the read and the reference and uses a sparse dynamic programming (SDP) approach to 

compose the MBs to alignment skeletons (referred to “alignment skeleton generation” step). All the 

alignment skeletons of all the reads are then integrated to comprehensively detect the exon regions 

(referred to “exon inference” step). In the second pass, deSALT re-locates the short matches between 

the read and the detected exons to compose a local spliced reference sequence (LSRS), which is 

expected to be concatenation of all the spanning exons of the read, and the read is aligned against the 

LSRS to produce refined base-level alignment (referred to “refined alignment” step).  

The key point of deSALT is its comprehensive analysis on the local matches of all the reads through 

the generation and integration of the alignment skeletons. Since the sequencing errors are random[17], 

each of the alignment skeletons contains some distinct as well as complement information about exon 

regions, like puzzle pieces, and the integration of them can effectively filter the sequencing errors to 

implement a sensitive and noise-robust detection of exons. The detected exons then help in the later 

step to narrow down the searching space to find additional short matches which cannot be detected by 

the relatively longer seeds used in the initial step. With these local matches, deSALT enables to 

effectively infer all the spanning exons of a given read and compose high-quality spliced reference 

sequence to produce accurate full-length alignment. This approach is robust to very short exons (e.g., 

exons < 30bp), frequent splicing events, potential single nucleotide variants (SNVs) and small indels, 

as well as sequencing errors. Furthermore, deSALT generates homogeneous LSRSs for the reads from 
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the same gene isoform with the integrated information, which enables to produce highly consensus 

alignments for them.  

deSALT also has fast speed with its tailored design. Not like conventional two-pass alignment 

approaches[26, 32] that both of the two passes produce base-level alignment, deSALT only uses 

pseudo-alignment (alignment skeleton) in the first pass, whose operation is similar to the seeding 

process. Thus, the whole process is just like a one-pass alignment plus a fast integration of the 

alignment skeletons. Moreover, some optimized implementations, e.g, graph-index-based skeleton 

generation and SIMD-based local alignment[31], also help to accelerate the speed. 

Results on simulated datasets 

We simulated 36 RNA-seq long read datasets in various sequencing error rates and read lengths 

(Supplementary Table 1) to mimic the datasets from main stream platforms, i.e., ONT 1D reads (error 

rate: 25%, mean read length: 7800 bp), ONT 2D (1D2) reads (error rate: 12%, mean read length: 7800 

bp), PacBio subreads (error rate: 15%, mean read length: 8000 bp) and PacBio ROI reads (error rate: 

2%, mean read length: 2000 bp). For each of the mimicked platforms, there are 9 datasets respectively 

from 3 species (human, mouse and fruitfly) and in 3 sequencing depths (4X, 10X and 30X). All the 

datasets were produced by PBSim[34] based on Ensembl gene annotations[35] (human: GRCh38, 

version 94, mouse: GRCm38, version 94 and fruitfly: BDGP6, version 94), and the error models are 

configured by referring to previous studies on the characteristics of the sequencing platforms[17, 36]. 

deSALT and two state-of-the-art approaches, Minimap2 and GMAP, were implemented on all the 

datasets for comparison. Refers to Methods section for more details on the implementation of the 

benchmarking. 

The following five metrics were used to assess the sensitivity, accuracy and performance of the 

aligners, respectively. 

Base%: the proportion of bases being correctly aligned to their ground truth positions, i.e., the 

mapped positions of the bases are within 5bp of their ground truth positions.  

Exon%: the proportion of the exons being correctly mapped. An exon in a certain read is considered 

as correctly mapped only if its two boundaries are mapped within 5bp of their ground truth positions. 

Read80%: the proportion of Read80% reads. A read is considered as a Read80% read only if it 

meets two conditions that 𝑁𝑇 𝑁𝐺⁄ > 80% and 𝑁𝑇 𝑁𝑃⁄ > 80%, where 𝑁𝐺 is the number of ground truth 

exons within the read, 𝑁𝑃 is the number of exons predicted by the alignment and 𝑁𝑇 is the number of 

true positive exons. Herein, a predicted exon being considered as a true positive exon only if there is a 

ground truth exon in the read, that the distance between the corresponding boundaries of the predicted 

exon and the ground truth exon are within 5 bp.  
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Read100%: the proportion of Read100% reads. A read is considered as a Read100% read only if 

it meets two conditions that 𝑁𝑇 𝑁𝐺⁄ = 100% and 𝑁𝑇 𝑁𝑃⁄ = 100%. It is worthnoting that a Read100% 

read indicates that the read has a highly correct full-length alignment. 

#Bases/s: the bases aligned per second, which depicts the alignment speed and is computed by 

𝑁𝑏𝑎𝑠𝑒 𝑇𝑎𝑙𝑛⁄ , where 𝑁𝑏𝑎𝑠𝑒 is the total number of bases in the dataset and 𝑇𝑎𝑙𝑛 is the elapsed time.  

Results on the thirty-six simulated datasets are in Figure 2 and Supplementary Tables 2-6. Mainly, 

four issues are observed as following.  

1) deSALT has outstanding alignment yields.  

deSALT has overall highest base% statistics, indicating that it mapped more bases to their correct 

positions. Especially, the advantage of deSALT is more obvious on the datasets in medium and high 

error rates (i.e., ONT 2D reads, PacBio subreads, and ONT 1D reads), which is preferable to handle 

real noisy long reads. Moreover, deSALT has larger advantages on exon% statistics, suggesting that it 

has stronger ability to recover the exons and splicing junctions within the reads. 

deSALT also obviously outperforms other state-of-the-art aligners on Read80% and Read100% 

statistics, indicating that it has better ability to produce full length alignments. Especially, deSALT 

produces highest number of Read100% reads for all the datasets, i.e., for more reads deSALT can 

correctly aligns all their exons without introducing false positives. Such accurate full-length read 

alignments are valuable to downstream analysis. 

In absolute terms, deSALT correctly aligns most of the bases as well as exons for the reads in low 

and medium error rates (i.e., PacBio ROIs and subreads and ONT 2D reads). For the error-prone ONT 

1D reads, the exon% statistics (about 64%-90%) is to some extent affected, although it outperforms. 

The most affected ones are the low coverage (4X) mammalian (human and mouse) datasets. This is 

mainly due to that the bases nearby exon boundaries are very difficult to confidently align under the 

circumstance of the serious noise. However, it is worthnoting that the yield on these error-prone reads 

improves with the increase of read depth. This is a feature of the two-pass approach, that the affection 

of sequencing errors can be better mitigated and the exon detection can be improved with more 

available reads, and all the reads share this profit to compose more sensitive alignments.  

Furthermore, deSALT has the ability to produce not only accurate, but also highly consensus 

alignment. This is also an advantage of the two-pass alignment, that deSALT likes to compose 

homogeneous LSRSs for the reads from same gene isoforms, which is beneficial to simultaneously 

aligns them to correct positions. However, one-pass approaches are easier to be affected by 

sequencing errors as well as other factors such as very small exons and frequent splicing events, which 

usually produces more heterogeneous alignments with more mistakes.  
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In terms of speed, deSALT is similar to that of Minimap2, and both of them are tens of times faster 

than GMAP (Figure 1B and Supplementary Table 6). This speed is suited to large scale datasets.  

A typical example describing the characteristics of deSALT is in Figure 3. 

2) deSALT has good ability to align the reads spanning short exons.  

We specifically assessed the alignment of the reads spanning short exons (exons < 31 bp), and 

the results (Supplementary Table 3) suggest that deSALT largely outperforms other aligners. This 

derives from the two-pass approach that short exons can be better detected with the generation and 

integration of alignment skeletons, and the discovered exons are fully considered by the shorter local 

matches used in the second pass. It helps to compose high quality LSRSs to correctly align the read 

parts spanning those short exons. However, other state-of-the-art aligners using one-pass strategy are 

more likely to be affected by the splicing events and sequencing errors, which results in reduced ability 

to find local matches on short exons and the corresponding read parts are mistakenly aligned. Two 

examples are in Figure 3B and Supplementary Figure 1.  

3) deSALT has good ability to handle multiple splicing events and multiple gene isoforms.  

It is also non-trivial for state-of-the-art aligners to align reads having many splicing events and/or 

from the genes having multiple isoforms [11]. We assessed the alignment of the reads from the 

transcripts having various number of exons (2-5 exons, 6-9 exons and >9 exons). deSALT can produce 

equally good alignment for all the three read groups (Supplementary Table 4), indicating that it enables 

to handle the numerous splicing events within the reads (an example is in Supplementary Figure 2). 

Minimap2 has similar trend, but its Read80% and Read100% statistics are lower. GMAP has significant 

decreases on Read80% and Read100% statistics with the increase of exon numbers, indicating that it 

could be not good at handling the reads having many splicing events. We also assessed the alignment 

of the reads from the genes having multiple isoforms. The results of deSALT (Supplementary Table 5) 

demonstrate that there is no significant difference to that of the genes having single isoforms, 

suggesting that it has the ability to handle genes having multiple isoforms. 

4) deSALT can further improve the alignment of error-prone reads with gene annotations. 

deSALT supports to input gene annotations to facilitate read alignment. Mainly, it combines the 

annotated exons with the alignment skeletons, to build a more comprehensive exon map. The results 

(Figure 2A and Supplementary Table 2) demonstrate that gene annotations are helpful to enhance the 

alignment of very noisy reads (i.e., ONT 1D reads). This is mainly due to that, for most of such reads, 

deSALT only finds a few matches to build incomplete alignment skeletons which lower the sensitivity of 

exon detection. In this situation, gene annotations supply additional information to find matches for 

those read parts from missed exon regions. This solves many read parts (an example is in 
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Supplementary Figure 3) and is beneficial to produce full-length alignments (see the improvements on 

Read80% and Read100% metrics). With this feature, deSALT provides the opportunity to better use 

noisy long reads, which has many potentials in transcriptomics studies. 

Overall, the simulation results demonstrate that deSALT is able to simultaneously achieve excellent 

sensitivity, accuracy and performance. Especially, it has the ability to address many difficult issues, such 

as serious sequencing errors, short exons, numerous splicing events, multiple isoforms, etc., which is 

promising to breakthrough the bottlenecks of long RNA-seq read alignment. 

Results on real sequencing datasets 

We assessed the aligners with two real sequencing datasets. One is from a well-studied CEPH 

sample (NA12878) produced by ONT platform (available at: https://github.com/nanopore-wgs-

consortium/NA12878, containing 15152101 reads and 14134831170 bases in total), and the other one 

is from a mouse sample produced by PacBio platform [37] (Accession Number: SRR6238555, 

containing 2269795 reads and 3213849871 bases in total).  

Due to lack of ground truth, we use a series of metrics based on gene annotations to evaluate the 

alignments, which are defined as following. 

#BaseA: the number of bases being aligned. 

#BaseGA: the number of bases aligned to the positions within annotated exons. 

#ExonP: the number of exons predicted by the alignments (also termed as “predicted exons”). Here, 

the predicted exons in various reads are independently considered.  

#ExonGO: the number of predicted exons being overlapped by annotated exons (also termed as 

“overlapped exons”). Herein, a predicted exon is considered as overlapped by annotated exons only if 

there is at least one annotated exon, that there is at least 10 pb overlapping between the predicted exon 

and the annotated exon. 

#ExonGA: the number of predicted exons being exactly matched by annotated exons (also termed 

as “exactly matched exons”). Herein, a predicted exon is considered as exactly matched by annotated 

exons, only if there is an annotated exon, that the distance between the corresponding boundaries of 

the predicted exon and the annotated exon is within 5 bp. 

#ExonGA(x): the number of exactly matched exons whose lengths are shorter than x bp. 

#ReadGA: the number of ReadGA reads. A read is considered as a ReadGA read only if each of 

the intron boundaries implied by its alignment is within 5bp of an annotated exon. Herein, a ReadGA 

read indicates that the read could has a correct full-length alignment. 
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Ensembl gene annotations (human: GRCh38, version 94 and mouse: GRCm38, version 94) are 

employed for the assessment.  

The results are in Figure 4 and Supplementary Tables 7 and 8. Mainly, four issues are observed.  

1) deSALT still has the best alignment yields.  

For both of the two real datasets, deSALT achieved highest #BaseGA statistics, i.e., it aligned most 

bases to annotated exon regions. Moreover, deSALT also has highest numbers of predicted exons 

being overlapped by (#ExonGO) and exactly matched to (#ExonGA) annotated exons. These statistics 

indicate that deSALT achieved good sensitivity. Furthermore, deSALT has highest #ReadGA statistics, 

indicating that it has better ability to produce correct full-length read alignment.  

It is also observed that the #BaseGA of Minimap2 on the two datasets are close to that of deSALT, 

indicating that they have overall similar alignment yields. However, deSALT outperforms Minimap2 on 

#ExonGO, #ExonGA and #ReadGA statistics for both of the two datasets. We investigated detailed 

alignment results and found that, similar to that of simulated reads, this derives from the better ability 

of deSALT to deal with short exons and produce more consensus alignment (see below for details). A 

typical example of the alignment of real sequencing reads is in Figure 5.  

2) deSALT has outstanding ability to handle relatively short exons.  

Like that of simulated reads, deSALT also shows outstanding ability to handle short exons. We 

assessed the alignment of the bases putatively from short exons by a series of #ExonGA(x) statistics 

(Figures 4B and 4D), i.e., ExonGA(20), ExonGA(30), ExonGA(40), ExonGA(50) and ExonGA(60). The 

results demonstrate that deSALT enables to recover higher numbers of short exons for both of the two 

datasets. It is worthnoting that although only a small proportion of exons are short, they are important 

to study gene splicing, so that it is of great value to correctly align such read parts. However, this is still 

a difficult task to other state-of-the-art aligners. Furthermore, this advantage helps deSALT to produce 

better full-length alignment for the reads from the genes having small exons (an example is in 

Supplementary Figure 4), and achieve overall higher #ReadGA statistics. 

3) deSALT produces more consensus alignment.  

Another outstanding ability of deSALT is to produce more consensus alignment. It is observed from 

the read alignments of deSALT that, in local regions, various reads usually have highly similar 

alignments and exon boundary predictions, which also coincide with gene annotations. However, for 

other aligners, the predicted exon boundaries of the same reads are usually more divergent to each 

other. An example is shown in Supplementary Figure 5, that the more consensus alignment of deSALT 

could be overall more accurate, especially for those bases nearby exon boundaries. The consensus 
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alignments are also more useful to study splicing events since there is less noise than that of ambiguous 

alignments.  

4) A proportion of bases are aligned to unannotated regions 

According to Ensembl gene annotations, it is observed that about 10% of the bases are aligned by 

deSALT to the regions other than annotated exons: 1) a proportion of the bases (5.60% for the human 

ONT dataset and 5.13% for the mouse PacBio dataset) are aligned to intron regions; 2) a proportion of 

the bases (4.61% for the human ONT dataset and 4.02% for the mouse PacBio dataset) are aligned to 

intergenic regions. Minimap2 also has similar proportions of bases aligned to such regions as well. We 

found that the alignments of these read parts are highly clustered, i.e., in most cases, there are multiple 

reads aligned in a local region, indicating that there could be unannotated exons (in intragenic regions) 

or novel transcripts (in intergenic regions). Moreover, we compared the detailed alignments of deSALT 

and Minimap2, and found that they have similar outputs for these read parts, which also partially 

suggests that the alignment of deSALT is plausible. Two examples in intragenic and intergenic regions 

are shown in Supplementary Figures 6 and 7, respectively. 

DISCUSSION AND CONCLUSION 

Long read sequencing technologies provide the opportunity to break the limitations of short reads 

to improve transcriptomics studies. However, complex gene structures and serious sequencing errors 

make it still a non-trivial task to produce accurate full-length alignments to exert the advantages of long 

RNA-seq reads, so that it is on wide demand to develop more advanced read alignment algorithm to 

breakthrough this bottleneck. Herein, we proposed deSALT, a novel read alignment algorithm using de 

Bruijn graph-based index and tailored two-pass strategy as a solution to this important open problem. 

Mainly, we show that how to build and integrate spliced alignment skeletons to handle sequencing errors 

and complex gene structures to generate high quality spliced reference sequences, and use them to 

produce highly accurate and consensus full-length alignments for long RNA-seq reads. To our 

knowledge, deSALT is the first long RNA-seq read alignment approach fully considering the 

intermediate results of all the reads and taking this advantage to produce refined spliced alignments. 

On both of simulated and real datasets, the results of deSALT demonstrate its good sensitivity and 

accuracy. For most of the datasets, it maps the highest number of bases to their ground truth positions 

or the positions with support of gene annotations. And its advantage on the recovery of exons and 

splicing junctions is more obvious, suggesting that deSALT has an excellent ability to spliced alignment. 

This is further demonstrated by several kinds of difficult scenarios, such as the alignment of the reads 

having very short exons, having numerous splicing events and/or from the genes having multiple 

isoforms. 
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A more important feature of deSALT is its outstanding ability to produce accurate and consensus 

full-length alignment. With the ever-increasing read length, this feature is on widely demand since it 

provides the opportunity to directly investigate gene structures. However, this requires the employed 

aligner to well-handle many technical issues simultaneously. deSALT largely improved full-length 

alignment by using several key techniques, such as the sensitive exon detection, local exon matching 

and LSRS generation. For much more reads, deSALT can comprehensively and accurately recover 

their splicing junctions by single alignments, and the produced alignments are more consensus and 

confident. This contribution has the potential to facilitate many downstream analyses. 

The real read alignments of deSALT highly coincide with gene annotations, however, there are still 

a proportion of reads and bases being mapped to intron and intergenic regions. Considering the similar 

results independently produced by deSALT and Minimap2, there could be some unknown transcripts 

being sequenced and the alignments are plausible. Moreover, we also found that deSALT and Minimap2 

similarly clipped a proportion of bases. We tried to extract some of the corresponding read parts and 

align them with BLAT [38], however, no successful alignment is produced (data not shown). In this 

situation, we realized that these clipped read parts could have extremely low quality.  

Other than only using reference genome, deSALT supports to use gene annotations to enhance 

the alignment. However, the benchmarking results are to some extent unexpected that there is no 

significant difference between the alignment with and without gene annotations, only except for low 

depth high error rate (ONT 1D) datasets. This is also reasonable since the two-pass strategy has strong 

ability to mitigate the affection of moderate sequencing errors even if read depth is low. Moreover, this 

ability can be further enhanced with the increase of depth, so that high coverage ONT 1D datasets can 

also be sensitively aligned without gene annotations. However, this function of deSALT is still useful 

since gene expression is uneven, i.e., there are always less expressed genes with fewer reads being 

sequenced, and gene annotations could make its own contributions to align those reads.  

Overall, with the outstanding alignment yields and performance, deSALT is suited to align long 

RNA-seq reads. We believe it will be a useful alignment tool to play important roles in many cutting-

edge transcriptomics studies. 

METHODS 

Steps of deSALT  

deSALT supports long RNA-seq reads with either high (e.g., PacBio subreads and ONT reads) or 

low sequencing error rates (e.g., PacBio ROI reads). Input reads are aligned in three major steps as 

following.  

1) Alignment skeleton generation (first-pass alignment): for each of the reads, deSALT uses RdBG-

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 23, 2019. ; https://doi.org/10.1101/612176doi: bioRxiv preprint 

https://doi.org/10.1101/612176
http://creativecommons.org/licenses/by-nc/4.0/


index [33] to find maximal exact matches between the unitigs of Reference de Buijn Graph (RdBG) and 

the read (termed as U-MEMs), and build one or more alignment skeletons in a sparse dynamic 

programming (SDP) approach.  

2) Exon inference: deSALT maps all the alignment skeletons to the reference, and infer potential 

exons from the projections of the skeletons. A local sequence-based scoring system[39] is employed to 

refine the inferred exons. Moreover, it is optional to introduce gene annotations as additional information 

to enhance exon detection.  

3) Refined alignment (second-pass alignment): for each of the reads, deSALT find additional local 

matches to inferred exons with shorter tokens (seeds) than the ones used in the first step. Further, it 

combines the newly found matches and the alignment skeleton to retrieve and stich all the spanning 

exons to build LSRS and implement base-level read alignment. 

Alignment skeleton generation (first-pass alignment) 

The RdBG-index is built in advance by the indexing module of deBGA[33] (Supplementary Notes), 

and the k-mer size of the index is set as the default value (k=22) if not specifically mentioned.  

For a certain read, deSALT extracts l-mers (l<k, default value: l=15) at every m bp (default value: 

m=5) as seeds and match them to the unitigs of RdBG with RdBG-index. The matches are extended in 

both directions to generate U-MEMs. deSALT then merges co-linear U-MEMs on the same unitigs as 

super U-MEMs (SU-MEMs), and maps the SU-MEMs as well as the U-MEMs cannot be merged to 

reference genome as MBs to build alignment skeletons. 

deSALT uses the MBs as vertices to build a direct acyclic graph (DAG). The edges of the DAG are 

defined by the pairs of MBs whose distances are no longer than a pre-defined maximum intron length, 

Tintron (default value: Tintron=200,000 bp). A weight is assigned to each of the edges based on the 

sizes of the two corresponding MBs and their distances (Supplementary Notes). A sparse dynamic 

programming (SDP) approach is then used to find the path having largest sum weight as the alignment 

skeleton. It is also worthnoting that deSALT could produce multiple alignment skeletons with very similar 

scores (sum weights) for some of the reads, considering that such reads possibly have multiple equally 

best alignments. 

Also refer to Section 1.1-1.3 of Supplementary Notes of more implementation details.  

Exon inference 

deSALT maps all the alignment skeletons to reference genome and uses a set of pre-defined rules 

(Section 2.1 of Supplementary Notes) to iteratively combine the genomic regions covered by alignment 

skeletons from upstream to downstream. It is optional to introduce additional gene annotation file (in 
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GTF format) into this process. deSALT treats known gene isoforms as a special kind of alignment 

skeletons, and also maps them to reference genome, so that the genomic regions covered by known 

gene isoforms and alignment skeletons generated from reads are combined together. The combined 

regions are then recognized as draft exons, and their lengths and alignment skeleton coverages are 

calculated. The ones with too short lengths and too low coverages are then filtered out.  

A local sequence-based scoring system [39] is then employed to refine the draft exons (Section 

2.2 of Supplementary Notes). For each of the draft exons, deSALT selects two small flanking regions. 

The scoring system uses pre-defined acceptor and donor scoring matrixes to score each of the positions 

in the upstream and downstream regions, respectively. The positions with highest scores in the two 

regions are respectively recognized as acceptor and donor splicing sites, and the region in between is 

determined as a refined exon.  

Refined alignment (second-pass alignment) 

Refined alignment is mainly implemented in two sub-steps as following. 

1) LSRS generation: deSALT splits the read into a series of parts, and separately composes partial 

LSRSs for each of them (Section 3.1 of Supplementary Notes). Here, each read part is defined as a 

specific substring of the read within two neighboring MBs of its alignment skeleton. For a read part, 

deSALT detects a set of exons (termed as “spanning exons”) which are placed in between or nearby 

the two corresponding MBs and have short matches to the read part. The spanning exons are then 

stitched together as the whole LSRS.  

2) Base-level alignment: deSALT aligns each of the read part to its corresponding LSRS, using a 

SIMD-based implementation [31] of semi-global alignment (Section 3.2 of Supplementary Notes). 

Furthermore, deSALT checks if there are large deletion(s) in the CIGAR information. If so, deSALT 

removes the corresponding deletion part(s) in the LSRS, and re-align the read with the updated LSRS. 

This process is helpful to handle exons having alternative splicing sites, i.e., the read part is only from 

a part of some inferred exon, but the whole exon is fully included in the LSRS. 

It is also worthnoting that, for the reads having multiple alignment skeletons, deSALT separately 

processes each of the skeletons, and possibly produce multiple alignments for one read. In this situation, 

deSALT chooses the alignments having highest score as primary alignment, and outputs other 

alignments as secondary alignments.  

Implementation of simulation benchmark 

All the benchmarks were implemented on a server with Intel Xeon E4280 CPU at 2.0GHZ and 1 

Terabytes RAM, running Linux Ubuntu 16.04. The simulated datasets were generated from the 
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reference of the three organisms: Homo Sapiens GRCh38 (human), Mus Musculus GRCm38 (mouse) 

and Drosophila melanogaster r6 (fruit fly), with corresponding Ensembl gene annotations[35].  

More precisely, each of the datasets is simulated in the following three steps, which are similar to 

a previous study on the evaluation of long RNA-seq read aligners[29]: 

1) Given a gene annotation file, the recorded gene annotations on scaffolds, assembly patches 

and alternative loci are scanned, and three sets of genes were extracted. Each of the sets corresponds 

to a specific type, i.e., the genes having single splicing isoforms, the genes having multiple splicing 

isoforms and genes having short exons (<31 bp), respectively. 

2) The three sets of genes are separately used to generate in silico transcript sequences. For a 

certain gene in a specific set, the transcript sequences are generated according to all its isoforms. All 

the generated transcript sequences are integrated together, and the transcript sequences shorter than 

200 bp are filtered out. The remaining transcript sequences are used as inputs to PBSim [34]. The 

numbers of the generated transcript sequences from various organisms (gene annotations) are listed 

in supplementary Table 9. 

3) For each organism, four sequencing error models are used for the simulation: 

“PacBio ROI reads”: sequencing error rate = 2%, mean read length = 2000 bp; 

“PacBio subreads”: sequencing error rate = 15%, mean read length = 8000 bp; 

“ONT 2D (1D2) reads”: sequencing error rate = 13%, mean read length = 7800 bp; 

“ONT 1D reads”: sequencing error rate = 25%, mean read length = 7800 bp. 

The models are configured by referring to previous studies [17, 36]. And for each model, three 

datasets in various depths (4X, 10X, 30X) are simulated. Thus, there are totally 3 × 4 × 3 = 36 

datasets generated. The availability of the simulated datasets is in Supplementary Notes. 

Implementation of real data benchmark 

The benchmarks were implemented with the same hardware environment to that of simulation 

benchmark. Two real datasets respectively produced by ONT and PacBio platforms are used. The ONT 

dataset is from NA12878 sample, which was sequenced by ONT MinION sequencer using direct RNA 

sequencing kits (30 flowcells) and the 1D ligation kit (SQK-LSK108) on R9.4 flowcells with R9.4 

chemistry (FLO-MIN106). More detailed information about this dataset is available at: 

https://github.com/nanopore-wgs-consortium/NA12878. The PacBio dataset (Accession Number: 

SRR6238555) is a full-length isoform sequencing of total mouse RNA using standard PacBio-seq 

protocols [37]. The availability of the two real datasets is in Supplementary Notes. 
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Figure 1. A schematic illustration of deSALT approach 

(A) There is a gene (termed as “Gene A”) having four exons (respectively marked by blue, red, yellow and green colors, and introns are marked by grey color), and four reads 

that all of them sequence through the whole transcript (assuming that Gene A has only one isoform). Moreover, each of the reads have some sequencing errors (marked by the 

short black lines in the reads). (B) Alignment skeleton generation (first pass alignment): for each of the reads (read1 is employed as an example), deSALT find the MBs between 

it and the reference genome (marked as colored bars) and connects them to build an optimized alignment skeleton in a sparse dynamic programming (SDP) approach. (C) 

Exon inference: deSALT integrates all the generated alignment skeletons by mapping their involved MBs to the reference genome. The projections of the MBs are analyzed to 

infer exon regions in reference genome. (D-E) Refined alignment (second pass alignment): for each of the reads, deSALT finds additional local matches on the exons between 

or nearby the exons involved in the alignment skeleton. Further, it recognizes all the inferred exons related to the alignment skeleton or the newly found local matches as “hit 

exons”, and stitch all them to generate LSRS. (It is shown in the figure that there are two newly found matches on exon 2 and they help to recuse this exon to build correct 

LSRS.) The read is then aligned with LSRS to produce refined alignment.  
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Figure 2. Results on simulated datasets 

The figure depicts the yields (A) and speed (B) of the aligners on the simulated datasets, worthnoting that both of the 

results of deSALT without and with gene annotations are shown (indicated as “deSALT” and “deSALT+GTF”, 

respectively). (A) Each of the subplots indicates one of the four metrics (Base%, Exon%, Read80%, Read100%, 

respectively) of the aligners on the datasets in a specific error model (PacBio ROI, ONT2D, PacBio subreads and 

ONT1D, respectively). In each subplot, the blue, orange and green lines respectively correspond to the results of the 

datasets from various kinds of species, i.e., human, mouse and fruitfly. Moreover, the shapes (reverse triangles, 

rectangles and rounds) indicates the datasets in various sequencing depths (4X, 10X and 30X, respectively). (B) Each 

of the subplots indicates the speed (#Base/s) of the aligners (in 8 CPU threads) on the simulated human datasets in a 

specific error model (PacBio CCS, ONT2D, PacBio subreads and ONT1D, respectively). The datasets in various 

sequencing depths are separately shown, and the bars in different colors refer to various aligners. Also refer to 

Supplementary Table 6 for more comprehensive assessment of the alignment speeds in various numbers of CPU 

threads (1, 4, 8 and 16 CPU threads). 
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Figure 3. An example of the alignments of simulated reads by various aligners 

This figure represents the snapshots of the alignments of the reads from the simulated 30X ONT 2D (1D2) human dataset around FCER1G gene (Chr1: 161215297 - 161219248) 

of reference GRCh38. FCER1G gene has 6 exons and 3 isoforms (according to Ensembl gene annotation). According to the ground truth of the dataset, there are totally 88 

reads in this region. In this region, the numbers of Read100 and Read80 reads of deSALT are 84 and 88, respectively, which are much higher than that of GMAP (#Read100: 

45 and #Read80: 54) and Minimap2 (#Read100: 19and #Read80: 23). This suggests that deSALT has strong ability to produce accurate full-length alignments. The subfigures 

depict several features of deSALT which results in the better yield. (A) The Sashimi plots of the three aligners represent the overall views of their alignments. Comparing to the 

ground truth (the bottom track), it is observed that all the three aligners have good ability to produce split-alignments to handle the multiple splicing events in the reads. However, 

the alignments of deSALT are more consensus, i.e., at each splicing site, most of the reads have highly similar and correct breakpoints, and overall these consensus alignments 

coincide with the ground truth better. The more heterogenous alignments of GMAP and Minimap2 are usually due to some less accurate alignments at small exons and exon 

boundaries, which are more precisely depicted in subfigures (B) and (C). (B) A detailed view at the 4th exon of FCER1G gene (length: 21bp). deSALT correctly aligns all the 88 

reads spanning this exon, however, the corresponding numbers of GMAP (68) and Minimap2 (24) are lower. This indicates that the two-pass approach of deSALT has better 

ability to handle small exons. (C) A detailed view at the 3rd exon of FCER1G gene (length: 36bp). It is observed that the reads have nearly the same breakpoints with the 

alignments of deSALT. However, for that of the other two aligners, the breakpoints of the reads are more divergent to each other and some of them are less accurate, which 

could be due to the affection of serious sequencing errors as well as the nearby small exons. 
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Figure 4. Results on real datasets.  

The figure depicts the yields of the aligners (subfigure A and C), and the sensitivity of the aligners on short exons (subfigure B and D). Subfigures (A) and (C) indicate the six 

metrics (BaseA, BaseGA, ExonP, ExonGO, ExonGA, ReadGA, respectively) of the aligners on the human ONT dataset (A) and the mouse PacBio dataset (C). Each bar in a 

subplot indicates the result of a specific aligner. Subfigures (B) and (D) indicate the ExonGA(x) metrics of the aligners on the human ONT dataset (B) and the mouse PacBio 

dataset (D). More precisely, ExonGA(20), ExonGA(30), ExonGA(40), ExonGA(50) and ExonGA(60) of the aligners are shown in subfigures (B) and (D), depicting the sensitivities 

of the aligners for relatively short (i.e., up to 60 bp) exons.  
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Figure 5. An example of the alignments of real sequencing reads by various aligners 

This figure represents the snapshots of the alignments of the reads from the human ONT dataset around VDAC3 gene (Chr8: 42391761-42405937) of reference GRCh38. 

VDAC3 gene has 10 exons and 12 isoforms (according to Ensembl gene annotation). deSALT, GMAP and Minimap2 respectively mapped 2652, 2639 and 2462 reads to this 

region. The ratios #BaseGA/#BaseT of the aligners are respectively 78.93% (deSALT), 74.2% (GMAP) and 72.69% (Minimap2), where #BaseT is the total number of bases 

aligned to VDAC3 region by the corresponding aligner. This indicates that deSALT produces overall more accurate split alignments. Moreover, the #ReadGA metrics of the 

aligners are respectively 1630 (deSALT), 889 (GMAP) and 751 (Minimap2), also indicating that deSALT produces better full-length alignments. (A) The overall views (sashimi 

plots) of the alignments indicate that deSALT produces more consensus alignments, like that of simulated reads. Considering the higher #BaseGA/# ratio and #ReadGA metrics, 

such alignments could be more plausible. (B) A detailed view at the 2nd exon of VDAC3 gene (exon length: 40 bp). deSALT aligns much more (i.e., 1703 reads) to this short 

exon than that of the GAMP (1267 reads) and Minimap2 (878 reads), moreover, the proportion of the matched bases also coincide with the common sequencing error rate of 

ONT datasets. This indicates that deSALT potentially handles this exon better. (C) A detailed view at the 3’ splicing site of 5th exon of VDAC3 gene (exon length: 153 bp). It is 

obvious that the alignments of deSALT near the splicing site is highly consensus, and the breakpoints of the reads coincide with the annotation. However, the alignments of 

GMAP and Minimap2 are more heterogenous and to less accurate. 
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