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Abstract 

Long-read RNA sequencing (RNA-seq) is promising to transcriptomics studies, however, the 

alignment of long RNA-seq reads is still non-trivial due to high sequencing errors and complicated gene 

structures. Herein, we propose deSALT, a tailored two-pass alignment approach, which constructs 

graph-based alignment skeletons to infer exons and uses them to generate spliced reference 

sequences to produce refined alignments. deSALT addresses several difficult technical issues, such as 

small exons and sequencing errors, which breakthroughs the bottlenecks of long RNA-seq read 

alignment. Benchmarks demonstrate that deSALT has a greater ability to produce accurate and 

homogeneous full-length alignments. deSALT is available at: https://github.com/hitbc/deSALT. 
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Background 

RNA sequencing (RNA-seq) has become a fundamental approach to characterize transcriptomes. 

It reveals precise gene structures and quantifies gene/transcript expressions [1-5] in various 

applications, such as variant calling [6], RNA editing analysis [7, 8], and gene fusion detection [9, 10]. 

However, current widely used short read sequencing technologies have limited read length and 

systematic bias from library preparation. These drawbacks limit more accurate alignment [11] and 

precise gene isoform analysis [12], thus creating a bottleneck for transcriptomic studies.  

Two kinds of long read sequencing technologies, i.e., single molecule real time (SMRT) sequencing 

produced by Pacific Biosciences (PacBio) [13] and nanopore sequencing produced by Oxford 

Nanopore Technologies (ONT) [14], are emerging and promising to breakthrough the bottleneck of short 

reads in transcriptomic analysis. Both of them enable the production of much longer reads, the mean 

and maximum lengths of the reads being over ten to hundreds of thousands of base pairs (bp) [15, 16], 

respectively. Taking this advantage, full-length transcripts can be sequenced by single reads, which is 

promising for substantially improving the accuracy of gene isoform reconstruction. Furthermore, there 

is less systematic bias in the sequencing procedure [17], which is also beneficial to gene/transcript 

expression quantification.  

Besides their advantages, PacBio and ONT reads have much higher sequencing error rates than 

that of short reads. For PacBio SMRT sequencing, the sequencing error rate of raw reads (“subreads”) 

is about 10% to 20% [16]; for ONT nanopore sequencing, the sequencing error rates of 1D and 2D (also 

known as 1D2) reads are about 25% and 12% [18, 19], respectively. PacBio SMRT platforms can 

produce reads of inserts (ROIs) by sequencing circular fragments multiple times to largely reduce 

sequencing errors. However, this technology has lower sequencing yields and reduced read lengths. 

Therefore, these high sequencing errors raise new technical challenges for RNA-seq data analysis. 

Read alignment could be the most affected one, and the effect may not be limited to the read alignment 

itself since it is fundamental to many downstream analyses. 

Previous studies [20-22] have demonstrated that noisy DNA-seq long read alignment is a non-

trivial task. Many technical issues, such as the high sequencing errors, potential genome variants, and 

large read lengths, need to be handled well. For RNA-seq long read alignment, the task is even more 

difficult since the aligner has to deal with numerous splicing events besides the issues mentioned above. 

This requires the aligner to have a strong ability to implement a highly complicated split alignment (also 

called “spliced alignment”) to correctly recognize many splicing junctions and map the bases to the 

corresponding exons. Although most of the proposed DNA-seq long read alignment approaches have 

the ability to implement split alignment to handle genome structure variations (SVs) [21-23], tailored 

algorithms are still in high demand because splicing junctions occur more frequently and the lengths of 
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exons are much shorter and divergent.  

There have been several approaches supporting RNA-seq long read alignment, such as BBMap 

[24], GMAP [25], STAR [26], BLAT [27], GraphMap2 [28] and Minimap2 [29]. All of these approaches 

are based on the commonly used seed-and-extension strategy, by which various seeding and extension 

methods are implemented to address the technical issues. They all have the ability to handle splicing 

junctions. However, most of them have relatively slow speed [28, 29], mainly because of the numerous 

short matches in the seeding step and the time-consuming local alignment in the extension step. 

Moreover, some of the algorithms have lower sensitivity [30], i.e., many reads are unaligned or only 

partially aligned, potentially due to their relatively poor ability to handle sequencing errors. An 

outstanding algorithm is Minimap2, which simultaneously achieves tens of times faster speed and 

similar or higher sensitivity than other state-of-the-art aligners. This algorithm mainly benefits from its 

well-designed minimizer-based indexing [31] and SSE-based local alignment methods [32], which 

greatly improve the efficiency of the seeding and extension steps. Furthermore, its specifically designed 

local extension method is suited to handling splicing junctions. 

In absolute terms, the ultimate goal of the task is to map all the bases for all the reads correctly. 

However, this could still be non-trivial to state-of-the-art aligners in several aspects. One problem is the 

alignment of the bases from relatively short exons (e.g., exons having only a few tens of bp). It is 

extremely hard to find seeds in the read parts from such short exons under the circumstances of high 

sequencing errors and potential variants, so that the read parts are usually unaligned or mistakenly 

aligned. Another issue is that it is difficult to align the bases near the splicing junctions correctly. This 

problem also exists in short RNA-seq read alignment; however, it is more serious in the alignment of 

noisy long RNA-seq reads. Moreover, with the effect of sequencing errors, the alignments of the reads 

from the same gene isoform are usually divergent from each other, which is also misleading 

downstream analysis.  

Herein, we propose the de Bruijn graph-based spliced aligner for long transcriptome reads 

(deSALT). deSALT is a fast and accurate RNA-seq long read alignment approach which takes the 

advantages of a novel two-pass read alignment strategy based on the de Bruijn graph-based index. It 

has a strong ability to handle complicated gene structures and high sequencing errors to produce 

sensitive, accurate and homogeneous alignments. For most of the reads, deSALT can produce full-

length alignments to recover the exons and splicing junctions thoroughly along the entire reads. 

Moreover, the speed of deSALT is also faster than or comparable to state-of-the-art approaches. We 

believe that it has the potential to play an important role in many forthcoming transcriptomic studies.  
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Results 

Overview of the deSALT approach  

The seed-and-extension approach is suited to spliced alignment since it is able to match the short 

tokens of the read to its spanning exons first (i.e., seeding) and then implement base-level alignment 

between the read and the matched exons (i.e., extension). However, under the circumstances of 

frequent splicing events and high sequencing errors, this task is non-trivial in practice. For a single read, 

it is usually difficult to find matches between the read and all of its spanning exons accurately, especially 

for the read parts with high sequencing errors and relatively short exons. Since it is hard to compose a 

local reference sequence containing all the spanning exons of the read, the extension alignment would 

be less accurate, or some of the read parts could be unaligned or clipped. Moreover, due to the 

randomness of the sequencing errors, various mistakes could be made in the seeding and extension 

phases in regard to multiple reads from the same gene isoform, and the produced alignments of the 

reads could be divergent from each other.  

Motivated by these technical problems and existing short RNA-seq read alignment algorithms [26, 

33], deSALT uses a two-pass approach to align the noisy long reads (a schematic illustration is in Figure 

1). In the first pass, it employs a graph-based genome index [34] to find match blocks (MBs) between 

the read and the reference and uses a sparse dynamic programming (SDP) approach to compose the 

MBs into alignment skeletons (referred to as the “alignment skeleton generation” step). All the alignment 

skeletons of all the reads are then integrated to comprehensively detect the exon regions (referred to 

as the “exon inference” step). In the second pass, deSALT relocates the short matches between the 

read and the detected exons to compose a local spliced reference sequence (LSRS), which is expected 

to be a concatenation of all the spanning exons of the read. The read is aligned against the LSRS to 

produce a refined base-level alignment (referred to as the “refined alignment” step).  

The key point of deSALT is its comprehensive analysis of the local matches of all the reads through 

alignment skeletons. Since the sequencing errors are random [17], each of the alignment skeletons 

contains some distinct as well as some complementary information about exon regions, which look like 

puzzle pieces, and the integration of alignment skeletons can effectively filter the sequencing errors to 

implement a sensitive and noise-robust detection of exons. In the later step, the detected exons help to 

narrow down the searching space to find additional short matches which cannot be detected by the 

relatively longer seeds used in the initial step. With these local matches, deSALT enables the effective 

inference of all the spanning exons of a given read and the composition of a high-quality spliced 

reference sequence to produce accurate full-length alignment. This approach is robust to very short 

exons, frequent splicing events, potential small variants, as well as sequencing errors. Furthermore, 

deSALT generates homogeneous LSRSs for the reads from the same gene isoform with the integrated 
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information, which enables the production of more homogeneous alignments. 

deSALT has fast speed with its tailored design. Unlike conventional two-pass alignment 

approaches [26, 33] where both of the two passes produce base-level alignment, deSALT only uses 

pseudo-alignment (alignment skeleton) in the first pass, the operation of which is similar to the seeding 

process. Thus, the whole process is like a one-pass alignment plus a fast integration of the alignment 

skeletons. Moreover, some optimized implementations, for example, graph-index-based skeleton 

generation and SIMD-based local alignment [29, 32], also help to accelerate the speed. 

Results on simulated datasets 

We simulated 60 long RNA-seq read datasets with 6 simulation models, respectively termed as 

“PacBio ROI reads”, “PacBio subreads”, “ONT 2D reads”, “ONT 1D reads”, “PS-ONT reads” and “NS-

ONT reads”, which have specific sequencing error profiles and read lengths to mimic various 

sequencing platforms. The error models were configured according to previous studies [17, 35, 36]. 

More precisely, “PacBio ROI reads” (error rate: 2%) and “PacBio subreads” (error rate: 15%) models 

were respectively generated by PBSim [37] with fixed parameters to mimic PacBio ROIs and subreads; 

“ONT 2D reads” (error rate: 12%) and “ONT 1D reads” (error rate: 25%) models were respectively 

generated by PBSim with fixed parameter to mimic ONT 2D and ONT 1D reads; and “PS-ONT reads” 

and “NS-ONT reads” were respectively generated by PBSim and NanoSim [36] based on a real ONT 

dataset (SRA Accession Number: SRR2848544) to simulate more realistic ONT datasets. Refer to 

Supplementary Table 1 and Supplementary Notes for the used command lines and parameters of the 

simulators.  

For each model, there were 10 simulated datasets from three species based on Ensembl gene 

annotations [38] (human: GRCh38, version 94; mouse: GRCm38, version 94; fruit fly: BDGP6, version 

94). One was generated by all coding genes of human to mimic the variable isoform level expressions. 

In details, for each of the genes with multiple isoforms, one of the isoforms was randomly selected as 

“highly expressed” and the other ones were selected as “lowly expressed”. And for the genes with single 

isoforms, all their isoforms were selected as “highly expressed”. Then high (30X) and low (4X) coverage 

simulations were implemented for the highly and the lowly expressed isoforms, respectively, and the 

simulated reads were mixed to build the dataset. To benchmark the aligners on the datasets from 

various species and in various coverages more comprehensively, we referred to a previous study [30] 

to randomly select three sets of genes respectively from the three species to simulate 9 datasets. Each 

of the datasets was built with one of the gene-sets and a fixed coverage (4X, 10X or 30X). Also refer to 

Methods section for more details about the implementation of the benchmarking. 

deSALT and three state-of-the-art approaches, Minimap2, GraphMap2 and GMAP, were applied to 
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all 60 datasets for comparison. In the benchmark, the indexes of all the aligners were pre-built. Five 

metrics (i.e., Base%, Exon%, Read80%, Read100%, and #Bases/m) were used to assess the sensitivity, 

accuracy and performance of the aligners (refer to the Methods section for the definitions). The results 

of the simulated datasets are provided in Figure 2 and Supplementary Tables 2-8. Mainly, five 

observations were made. 

1) deSALT has outstanding alignment yields. The results of the aligners without gene annotations 

(the first four columns of all the subplots of Figure 2) indicate that deSALT had higher or comparable 

base% statistics on all the datasets (the results with gene annotations are described in the fifth 

observation below). In particular, the outperformance of deSALT was more obvious on the datasets 

having medium and high error rates, and this is preferable for handling real noisy long reads. Moreover, 

deSALT showed its advantages in the exon% statistics, suggesting that it has a stronger ability to 

recover the exons and splicing junctions within the reads. deSALT also outperformed other state-of-the-

art aligners on the Read80% and Read100% statistics, indicating that it is good at producing full-length 

alignments. In particular, the highest Read100% statistics of deSALT suggests that, for more reads, it 

can correctly align all of their exons without introducing false positives. It is also worth noting that both 

of GraphMap2 and Minimap2 outperformed GMAP. Moreover, GraphMap2 and Minimap2 outperformed 

each other on various datasets and various metrics, and they overall had comparable yields. 

In absolute terms, deSALT correctly aligned most of the bases as well as the exons for the reads 

with low and medium error rates. But for the error-prone ONT 1D reads (error rate: 25%), the exon% 

statistics of deSALT is about 64%–90%, lower than that of deSALT on other simulated datasets. This 

indicates that deSALT was to some extent affected by the high sequencing errors. It is observed that 

the most affected datasets are the low coverage (4X) mammalian (human and mouse) datasets. This 

was mainly due to the fact that the bases near exon boundaries are very difficult to confidently align 

under the circumstance of serious noise. However, the yield on these error-prone reads improved with 

the increase in read depth. It is a feature of the two-pass approach that the effect of sequencing errors 

can be better mitigated and the detection of exons can be improved with more available reads, and all 

the reads share this profit to compose more sensitive alignments. 

Furthermore, deSALT has the ability to produce not only accurate, but also homogeneous 

alignments. This is also an advantage of the two-pass alignment, that deSALT tends to compose 

homogeneous LSRSs for the reads from same gene isoforms, which helps to align them to the correct 

positions simultaneously. However, one-pass approaches are more easily affected by sequencing 

errors and other factors, such as very small exons and frequent splicing events, which usually produce 

more heterogeneous alignments potentially with more mistakes. Figure 3 shows a typical example 

describing the characteristics of deSALT. 
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Besides the yields, deSALT also has good performance. Its speed is similar to that of Minimap2 

and tens of times faster than that of GraphMap2 and GMAP (Figure 2B and Supplementary Table 8). 

This speed is suited to large-scale datasets. Moreover, the aligners have different memory footprints 

(Figure 2C and Supplementary Table 8). The memory footprints of deSALT is higher than that of 

Minimap2 and GMAP, since the RdBG-index of deSALT uses a hash table-based data structure to index 

all the k-mers of RdBG, which needs larger RAM space. However, the memory use of deSALT is still 

acceptable to most of modern servers (e.g., about 35GB for human). It is observed that the memory 

footprints of GraphMap2 increased with the number of input reads, and higher than that of all the other 

benchmarked aligners. 

2) deSALT has good ability to align the reads spanning short exons. We specifically assessed the 

alignment of the reads spanning short exons (exons < 31 bp), and the results (Supplementary Table 3) 

suggest that deSALT outperformed other aligners. This is derived from the two-pass approach that short 

exons can be better detected with the generation and integration of alignment skeletons, and the 

discovered exons are fully considered by the shorter local matches used in the second pass. Thus, 

high-quality LSRSs can be composed and help the alignment of the read parts spanning short exons. 

However, other state-of-the-art aligners that use a one-pass strategy are more likely to be affected by 

splicing events and sequencing errors. This results in reduced ability to find local matches on short 

exons and some of the read parts from short exons are mistakenly aligned. Two examples are provided 

in Figure 3B and Supplementary Figure 1.  

3) deSALT has good ability to handle multiple splicing events. We assessed the alignment of the 

reads from the transcripts with various number of exons (2–5 exons, 6–9 exons, and >9 exons). deSALT 

can produce equally good alignments for all the three read groups (Supplementary Table 4), indicating 

that it enables the handling of numerous splicing events within the reads (an example is provided in 

Supplementary Figure 2). Minimap2 showed a similar trend, but its Read80% and Read100% statistics 

were lower. GMAP showed significant decreases in the Read80% and Read100% statistics as the 

number of exons increased, indicating that it might not be good at handling reads with many splicing 

events. GraphMap2 also showed such decreases, but not as significant as that of GMAP. 

4) deSALT has good ability to handle genes with multiple isoforms. We separately assessed the 

alignments of the reads from the genes with single and multiple isoforms (Supplementary Table 5), and 

found that overall deSALT has equally good yields for both of the two categories of reads, indicating 

that it has the ability to handle genes with various numbers of isoforms. An example of deSALT to align 

the reads from a gene with many isoforms is in Supplementary Figure 3. To further investigate the ability 

of the aligners on the reads from alternative splicing genes, we assessed the alignments of the reads 

from “highly expressed isoforms” and “lowly expressed isoforms” of all human coding genes datasets 
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separately (Supplementary Table 6). The yields of deSALT were still better than those of other aligners, 

and the difference between the reads from highly- and lowly expressed isoforms was overall quite small. 

However, for error-prone ONT 1D reads, the difference between lowly- and highly expressed isoforms 

was larger, e.g., there was a 10% decrease for the exon% statistics (Supplementary Figure 4). We 

investigated some intermediate results of deSALT, and found that the decreased statistics are not due 

to a poor ability of handling alternative splicing genes, but the low coverage of the datasets, which is 

similar to that of the low coverage ONT 1D datasets. That is, there were only a small number of reads 

being from lowly expressed isoforms, and they were not enough to mitigate the sequencing noise with 

their own alignment skeletons. Thus, some difficult and isoform-specific cases could not be well handled, 

e.g., some read parts from isoform-specific short exons. To further justify this issue, we used the ONT 

1D reads from lowly expressed isoforms as an independent dataset and asked deSALT to run it. Similar 

results were obtained (the red bars in Supplementary Figure 4), and this suggested that deSALT was 

not affected by the variable expression levels of the isoforms.  

Moreover, there is also a category of special cases that pairs of genes overlap in the genome but 

are on opposite strands. The alignment of the reads from such genes are to some extent similar to that 

of the reads from alternative splicing genes. We implemented an assessment on the alignments of 

these reads (Supplementary Table 7), and found that there was no significant difference to that of 

deSALT’s alignment results on the reads from non-overlapped genes (Supplementary Figure 5), 

indicating that deSALT can also produce accurate alignments for such reads. An example is in 

Supplementary Figure 6. 

5) deSALT can further improve the alignment of error-prone reads with gene annotations. We used 

Ensembl gene annotations as input to benchmark the alignments of deSALT and Minimap2. The results 

(Figure 2A and Supplementary Table 2) demonstrate that both of deSALT and Minimap2 had better 

yields with the help of gene annotations, especially for the alignment of the error-prone ONT 1D reads. 

Moreover, the difference between the yields of the two aligners is also smaller. For deSALT, the 

improvement comes from that gene annotations help to rescue missed exons. In details, deSALT 

usually finds only a few matches on very noisy reads to build incomplete alignment skeletons which 

lower the sensitivity of exon detection. In this situation, gene annotations supply additional information 

to find matches for those read parts from missed exon regions. This solves many error-prone read parts 

(an example is provided in Supplementary Figure 7) and helps to produce full-length alignments (see 

the gains in the Read80% and Read100% statistics).  

Overall, the simulation results demonstrate that deSALT is able to achieve high sensitivity, accuracy 

and performance simultaneously. Especially, it has the ability to address many difficult issues, such as 

sequencing errors, short exons, frequent splicing events, multiple isoforms and so on, which is useful 
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to breakthrough the bottlenecks of long RNA-seq read alignment. 

Results on real sequencing datasets 

We assessed the aligners with three real sequencing datasets. The first two datasets are from a 

well-studied CEPH sample (NA12878), and respectively produced by ONT cDNA sequencing 

(containing 15,152,101 reads and 14,134,831,170 bases in total) and ONT direct RNA sequencing 

(containing 10,302,647 reads and 10,614,186,428 bases in total). The two datasets are available at 

https://github.com/nanopore-wgs-consortium/NA12878. The third dataset is from a mouse sample 

produced by the PacBio platform [39] (SRA Accession Number: SRR6238555; containing 2,269,795 

reads and 3,213,849,871 bases in total).  

We used a series of metrics based on gene annotations to evaluate the alignments (i.e., #BaseA, 

#BaseGA, #ExonP, #ExonGO, #ExonGA, #ExonGA(x), #ReadGA) due to a lack of ground truth (refer 

to Methods section for definitions). Ensembl gene annotations (human: GRCh38, version 94 and mouse: 

GRCm38, version 94) were employed for the assessment. It is also worth noting that we only showed 

the results of GraphMap2 on the ONT cDNA dataset, since it unaligned most of the reads of the ONT 

direct RNA dataset and raised a “segmentation fault” for the PacBio dataset during benchmarking. The 

results are provided in Figure 4 and Supplementary Tables 9 and 10. Four observations were made as 

follows.  

1) deSALT still has the best alignment yields. For the three real datasets, deSALT achieved the 

highest #BaseGA statistics (i.e., it aligned most bases to the annotated exon regions). Moreover, 

deSALT also had the highest numbers of predicted exons being overlapped by (#ExonGO) and exactly 

matched to (#ExonGA) annotated exons. These statistics indicate that deSALT achieves good 

sensitivity. Furthermore, deSALT had the highest #ReadGA statistics, indicating that it has better ability 

to produce correct full-length read alignments. The time costs with 24 threads were also assessed (both 

wall clock time and CPU time, Supplementary Table 9), and it suggests that deSALT and Minimap2 has 

similar speed and both of them are faster than GMAP and GraphMap2. 

It was also observed that the #BaseGA of Minimap2 was close to that of deSALT, indicating that 

the two approaches have similar alignment yields overall. However, deSALT outperformed Minimap2 

on #ExonGO, #ExonGA, and #ReadGA statistics. We investigated the detailed alignment results and 

found that, similar to that of the simulated reads, this derives from deSALT’s ability to handle short 

exons and produce homogeneous alignments (see below for details). A typical example of the alignment 

of real sequencing reads is in Figure 5.  

2) deSALT enables to handle relatively short exons. We assessed the alignment of the bases 

putatively from short exons by a series of #ExonGA(x) statistics (Figures 4D-F), i.e., ExonGA(20), 
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ExonGA(30), ExonGA(40), ExonGA(50) and ExonGA(60). The results demonstrate that deSALT 

enables the recovery of a higher number of short exons. It is worth noting that although only a small 

proportion of exons are short, they are important to the study of gene splicing, and so it is of great value 

to correctly align such read parts. However, this is still a difficult task for other state-of-the-art aligners. 

Furthermore, this advantage helps deSALT to produce better full-length alignments for reads from the 

genes with small exons (an example is shown in Supplementary Figure 8) and to achieve overall higher 

#ReadGA statistics. 

3) deSALT produces homogeneous alignments. It can be observed from the alignments of deSALT 

that in local regions, various reads usually have highly similar alignments and exon boundary 

predictions which also coincide with gene annotations. However, for other aligners, the predicted exon 

boundaries of the same reads could be more divergent from each other. As shown in the example in 

Supplementary Figure 9, the homogeneous alignments of deSALT could be more accurate overall, 

especially for those bases near exon boundaries. The homogeneous alignments are more useful to the 

study of splicing events since there is less noise in these alignments than in ambiguous alignments.  

4) A proportion of bases are aligned to unannotated regions. According to the Ensembl gene 

annotations, there were about 10% of the bases aligned by deSALT to regions other than the annotated 

exons: 1) a proportion of the bases (5.60% and 5.21% for the human ONT cDNA and direct RNA 

sequencing datasets, respectively, and 5.13% for the mouse PacBio dataset) were aligned to intron 

regions; 2) a proportion of the bases (4.61% and 0.9% for the human ONT cDNA and direct RNA 

sequencing datasets, respectively, and 4.02% for the mouse PacBio dataset) were aligned to intergenic 

regions. Minimap2 also had similar proportions of bases aligned to such regions. We found that the 

alignments of these read parts were highly clustered: i.e., in most cases, there were multiple reads 

aligned in a local region, indicating that there could be unannotated exons or novel transcripts. 

Furthermore, we found that deSALT and Minimap2 had similar outputs for these read parts, which also 

indicates that the alignments are plausible. Two examples in intragenic and intergenic regions are 

shown in Supplementary Figures 10 and 11, respectively. 

Discussion 

Long read sequencing technologies provide the opportunity to break the limitations of short reads 

and improve transcriptomics studies. However, complex gene structures and high sequencing errors 

make it still a non-trivial task to produce accurate full-length alignments to exert the advantages of long 

RNA-seq reads. So, there is wide demand for the development of more advanced read alignment 

algorithms to breakthrough this bottleneck. Herein, we proposed deSALT, a novel read alignment 

algorithm using the de Bruijn graph-based index and a tailored two-pass strategy, as a solution to this 

important open problem. Mainly, we show how to build and integrate spliced alignment skeletons to 
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handle sequencing errors and complex gene structures in order to generate high-quality spliced 

reference sequences and use them to produce accurate and homogeneous full-length alignments for 

long RNA-seq reads.  

On both the simulated and real datasets, the deSALT results demonstrate its good sensitivity and 

accuracy. For most of the datasets, it maps the highest number of bases to their ground truth positions 

or the positions supported by gene annotations. Its advantage with regard to the recovery of exons and 

splicing junctions is more obvious, suggesting that deSALT has the ability to produce spliced alignments. 

This is further demonstrated by several kinds of difficult scenarios, such as very short exons, numerous 

splicing events, and genes with multiple isoforms. 

A more important feature of deSALT is its ability to produce accurate and homogeneous full-length 

alignments. With the ever-increasing length of reads, this feature is in great demand since it provides 

the opportunity to investigate gene structures directly. However, it requires the employed aligner to 

handle many technical issues well and simultaneously. deSALT improves full-length alignment by using 

several key techniques such as sensitive exon detection, local exon matching, and LSRS generation. 

For larger numbers of reads, deSALT can recover their splicing junctions by single alignments 

comprehensively and accurately. And the produced alignments are homogeneous and confident. This 

contribution has the potential to facilitate many downstream analyses. 

According to gene annotations, there are still a proportion of reads and bases being mapped to 

intron and intergenic regions. Considering the similar results independently produced by deSALT and 

Minimap2, there could be some unknown transcripts being sequenced, and the alignments are plausible. 

Moreover, we found that deSALT and Minimap2 similarly clipped a proportion of bases. We tried to align 

some of the clipped read parts with BLAT [27]. However, no successful alignment was produced (data 

not shown). In this situation, we realized that these read parts could be extremely low quality. 

deSALT does not only use reference genome, it supports the use of gene annotations to enhance 

the alignment. However, the benchmarking results were to some extent unexpected in that there was 

no significant difference between the alignments with and without gene annotations, only except for the 

low depth, high error rate (e.g., ONT 1D) datasets. This is also reasonable since the two-pass strategy 

enables to mitigate the effect of moderate sequencing errors even if the read depth is low. Moreover, 

this ability can be enhanced with the increase of sequencing depth, so that high coverage high error 

rate datasets can also be sensitively aligned without gene annotations. However, this function of 

deSALT is still useful since gene expression is uneven, i.e., there are always less expressed genes with 

fewer reads being sequenced, and gene annotations could make their own contributions to the 

alignment of those reads.  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 15, 2019. ; https://doi.org/10.1101/612176doi: bioRxiv preprint 

https://doi.org/10.1101/612176
http://creativecommons.org/licenses/by-nc/4.0/


13 

 

Conclusion 

Overall, the benchmark results on simulated and real datasets demonstrate that the two-pass 

approach of deSALT is suited to address several difficult technical issues in long RNA-seq read 

alignment such as sequencing errors, small exons and numerous splicing events. It is able to produce 

high quality full-length alignments. Moreover, its tailored implementations also enable to achieve good 

performance. We believe deSALT will be a useful alignment tool to play an important role in many 

cutting-edge transcriptomics studies. 

Methods 

Genome indexing 

The reference genome is indexed by reference de Bruijn graph indexing (RdBG-index) approach, 

which was initially used by a short read aligner deBGA [34]. Given a reference, a de Bruijn graph of the 

reference (also called as “RdBG”) is constructed with a user-defined k-mer size, and the unitigs of RdBG 

are extracted. A RdBG-index is then constructed to index all the vertices (k-mers) of the graph as well 

as their unitig IDs and offsets. A RdBG-index is composed by several hash table and linear table-based 

data structures, and it enables to fast retrieve and merge short token matches between reads and 

reference. Refer to Supplementary Notes and Supplementary Figure 12 for more detailed information 

about the data structures of RdBG-index and their functions.  

It is worth noting that, the construction of RdBG-index for large genomes could cost a couple of 

hours (129, 112 and 4 minutes for human, mouse and fruit fly, respectively) and several tens of GB 

RAM space (73GB, 63GB and 5.5GB for human, mouse and fruit fly, respectively), depending on the 

number of distinct k-mers in the genome. This is mainly because that it needs to extract and sort all the 

k-mers to construct RdBG and analyze its unitigs at first. However, it is also affordable since the index 

needs only to be built once before use, and we also provide pre-built RdBG-indexes for human, mouse 

and fruit fly reference genomes (Supplementary Notes).  

Steps of the deSALT approach 

deSALT aligns input reads in three major steps as follows:  

1) Alignment skeleton generation (first-pass alignment): for each of the reads, deSALT uses the 

RdBG-index [34] to find the maximal exact matches between the unitigs of a reference de Buijn graph 

(RdBG) and the read (termed as U-MEMs) and to build one or more alignment skeletons using an SDP 

approach.  

2) Exon inference: deSALT maps all the alignment skeletons to the reference and infers potential 

exons from the projections of the skeletons. A local sequence-based scoring system [40] is employed 
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to refine the inferred exons. Moreover, it is optional to introduce gene annotations as additional 

information to enhance exon detection.  

3) Refined alignment (second-pass alignment): for each of the reads, deSALT finds additional local 

matches to the inferred exons with shorter tokens (seeds) than the ones used in the first step. Further, 

it combines the newly found matches and the alignment skeleton to retrieve and stich all the spanning 

exons to build an LSRS and implement a base-level read alignment. 

Alignment skeleton generation (first-pass alignment) 

For a read, deSALT extracts l-mers (l<k, default value: l=15) at every m bp (default value: m=5) as 

seeds and matches them to the unitigs of RdBG with the RdBG-index. The matches are extended in 

both directions to generate U-MEMs. deSALT then merges co-linear U-MEMs on the same unitigs as 

super U-MEMs (SU-MEMs) and maps the SU-MEMs, as well as the U-MEMs that cannot be merged, 

to reference genome as MBs to build alignment skeletons. 

deSALT uses the MBs as vertices to build a direct acyclic graph (DAG). The edges of the DAG are 

defined by the pairs of MBs whose distances are no longer than a pre-defined maximum intron length, 

Tintron (default value: Tintron=200,000 bp). A weight is assigned to each of the edges on the basis of 

the sizes of the two corresponding MBs and their distances (Supplementary Notes). An SDP approach 

is then used to find the path with the largest sum weight as the alignment skeleton. It is also worth 

noting that deSALT could produce multiple alignment skeletons with very similar scores (sum weights) 

for some of the reads, considering that such reads possibly have multiple “equally best” alignments. 

Exon inference 

deSALT maps all the alignment skeletons to the reference genome and uses a set of pre-defined 

rules (Section 3.1 of the Supplementary Notes) to iteratively combine the genomic regions covered by 

alignment skeletons from upstream to downstream. It is optional to introduce a gene annotation file (in 

GTF format) into this process. deSALT treats known gene isoforms as a special kind of alignment 

skeletons, and it also maps them to the reference genome so that the genomic regions covered by 

known gene isoforms and the alignment skeletons are combined together. The combined regions are 

then recognized as draft exons, and their lengths and alignment skeleton coverages are calculated. 

The ones with too short a length and too low coverage are then filtered out. 

A local sequence-based scoring system [40] is then employed to refine the draft exons (Section 

3.2 of Supplementary Notes). For each of the draft exons, deSALT selects two small flanking regions. 

The scoring system uses pre-defined acceptor and donor scoring matrixes to score each of the positions 

in the upstream and downstream regions respectively. The positions with the highest scores in the two 

regions are recognized as acceptor and donor splicing sites, and the region in between is determined 
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to be a refined exon.  

Refined alignment (second-pass alignment) 

Refined alignment is mainly implemented in two sub-steps as follows: 

1) LSRS generation: deSALT splits the read into a series of parts and composes partial LSRSs for 

each of them separately (Section 4.1 of the Supplementary Notes). Each read part is defined as a 

specific substring of the read within two neighboring MBs of its alignment skeleton. For a read part, 

deSALT detects a set of exons (termed “spanning exons”) which are placed in between or nearby the 

two corresponding MBs and have short matches to the read part. The spanning exons are then stitched 

together as the whole LSRS.  

2) Base-level alignment: deSALT aligns each of the read parts to its corresponding LSRS using a 

SIMD-based implementation [29, 32] of semi-global alignment (Section 4.2 of the Supplementary 

Notes). Furthermore, deSALT checks if there are large deletions in the CIGAR information; if there are, 

deSALT removes the corresponding deletion part(s) in the LSRS and realigns the read with the updated 

LSRS. This process is helpful for handling exons with alternative splicing sites. A schematic illustration 

is in Supplementary Figure 13. 

It is also worth noting that for the reads with multiple alignment skeletons, deSALT processes each 

of the skeletons separately and possibly produces multiple alignments for one read. In this situation, 

deSALT chooses the alignment with the highest score as the primary alignment and outputs other 

alignments as secondary alignments. 

Implementation of the simulation benchmark 

All the benchmarks were implemented on a server with Intel Xeon E4280 CPU at 2.0GHZ and 1 

Terabytes RAM, running Linux Ubuntu 16.04. The simulated datasets were generated from the 

reference of three organisms: Homo sapiens GRCh38 (human), Mus musculus GRCm38 (mouse), and 

Drosophila melanogaster r6 (fruit fly), with corresponding Ensembl gene annotations [38]. There are 60 

datasets used for the benchmark, and each of them was generated by a specific combination of 

sequencing model, simulated transcriptome and coverage.  

6 sequencing models were built according to previous studies [17, 35, 36], to comprehensively 

benchmark the aligners on the datasets produced by various long read sequencing platforms. For 

PacBio platforms, there were two models built with fixed parameters: “PacBio ROI reads” (error rate = 

2%, mean read length = 2000 bp) and “PacBio subreads” (error rate = 15%, mean read length = 8000 

bp). For ONT platforms, four models were built. Two of them were also with fix parameters: “ONT 2D 

reads” (error rate = 13%, mean read length = 7800 bp) and “ONT 1D reads” (error rate = 25%, mean 
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read length = 7800 bp). And the other two models, “PS-ONT reads” and “NS-ONT reads” were 

automatically built by PBSim [37] and NanoSim [36] based on a real ONT sequencing dataset (SRA 

Accession Number: SRR2848544), respectively. Although previous studies [36] indicate that data-

based models more coincide with the characteristics of real sequencing, we considered that real ONT 

datasets could also have various characteristics [35] and it is hard to build a number of models for 

benchmark. Thus, we used the two parameter-based models, “ONT 2D reads” and “ONT 1D reads”, as 

a complement, where the 25% and 12% error rates coincide with typical error rates of ONT 2D and 1D 

reads [18, 19]. The parameters and command lines of PBSim and NanoSim are in Supplementary Notes. 

We built two categories of simulated transcriptomes. The first category only has one simulated 

transcriptome (called as “H-all” transcriptome) which is from all the coding genes of human, and the 

second category has three simulated transcriptomes (called as “H-se”, “M-se” and “F-se” transcriptomes 

respectively) which are from three sets of randomly selected genes of human, mouse and fruit fly, 

respectively. Each of the transcriptomes was used to generate a series of simulated datasets with 

various sequencing models. Some details are as following. 

H-all transcriptome was composed by all the coding genes recorded in Ensembl gene annotations 

of human. For each of the genes with alternative splicing, one of the isoforms was randomly selected 

as “highly expressed” and the other isoforms were “lowly expressed”, and all the genes with single 

isoform were “highly expressed”. Then transcript sequences were made for all the isoforms of all the 

genes, i.e., for a specific gene isoform, all its exons were concatenated according to the Ensembl 

annotations to build a transcript sequence. 

Given a sequencing model, the sequences of highly and lowly expressed isoforms were input to 

the specifically configured simulator (PBSim or NanoSim) to implement a 30X and a 4X coverage in 

silico sequencing, respectively, and the two generated datasets were mixed as one for the use of 

benchmark. Thus, there were in total 6 datasets simulated with H-all transcriptome by various 

sequencing models. Herein, we used the term “coverage” only as a measure of the sizes of the datasets. 

That means, a specific sequencing coverage dX  (e.g., d = 30) indicates that a set of transcript 

sequences were input into the simulator to produce a dataset whose total size is 𝐿𝑇𝑆 × 𝑑, where 𝐿𝑇𝑆 

is the total length of the transcript sequences. 

H-se, M-se and F-se transcriptomes were composed in a similar way to a previous study [30]. For 

a specific species, the gene annotations were scanned to extract three sets of genes. Each of them 

corresponds to a specific type, i.e., genes with single splicing isoforms, genes with multiple splicing 

isoforms, and genes with short exons (<31 bp), respectively. A number of genes were randomly selected 

for each of the gene sets and other genes were no longer used (refer to Supplementary Table 11 for 

the numbers of selected genes). Transcript sequences were then made for the selected genes with the 
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same approach, i.e., given a gene isoform, a transcript sequence was made by concatenating all its 

exons, and the sequences were made for all the isoforms of all the selected genes. H-se, M-se and F-

se transcriptomes were then composed by the generated transcript sequences of human, mouse and 

fruit fly, respectively. 

For each of the transcriptomes (H-se, M-se or F-se), 3 datasets with various coverages, i.e., 4X, 

10X and 30X were simulated by a given sequencing model. Thus, with the 3 transcriptomes, 3 kinds of 

coverages and 6 models, there were in total 54 datasets produced. These datasets are used to assess 

the ability of the aligners on various species, coverage and platforms.  

The following five metrics were used to evaluate the alignment results of the simulated reads. 

Base%: the proportion of bases being correctly aligned to their ground truth positions (i.e., the 

mapped positions of the bases were within 5 bp of their ground truth positions).  

Exon%: the proportion of exons being correctly mapped. An exon in a certain read was considered 

to be correctly mapped only if its two boundaries were mapped within 5 bp of their ground truth positions. 

Read80%: the proportion of Read80% reads. A read was considered to be a Read80% read only if 

it met two conditions, namely 𝑁𝑇 𝑁𝐺⁄ > 80% and 𝑁𝑇 𝑁𝑃⁄ > 80%, where 𝑁𝐺 is the number of ground 

truth exons within the read, 𝑁𝑃  is the number of exons predicted by the alignment, and 𝑁𝑇  is the 

number of true positive exons. Herein, a predicted exon is considered to be a true positive exon only if 

there was a ground truth exon in the read, and the distance between the corresponding boundaries of 

the predicted exon and the ground truth exon were within 5 bp.  

Read100%: the proportion of Read100% reads. A read was considered to be a Read100% read 

only if it met two conditions, namely 𝑁𝑇 𝑁𝐺⁄ = 100%  and 𝑁𝑇 𝑁𝑃⁄ = 100% . It is worth noting that a 

Read100% read indicates that the read has a highly correct full-length alignment. 

#Bases/m: the number of bases aligned per minute, which depicts the alignment speed and is 

computed by 𝑁𝑏𝑎𝑠𝑒 𝑇𝑎𝑙𝑛⁄ , where 𝑁𝑏𝑎𝑠𝑒 is the total number of bases in the dataset and 𝑇𝑎𝑙𝑛 is the wall 

clock time.  

Implementation of the real data benchmark 

The benchmarks were implemented with the same hardware environment as that used for the 

simulated datasets. Three real datasets respectively produced by ONT and PacBio platforms were used. 

Two of them are from the NA12878 sample, and produced by cDNA sequencing and direct RNA 

sequencing, respectively. They were sequenced by the ONT MinION sequencer by using direct RNA 

sequencing kits (30 flowcells) and the 1D ligation kit (SQK-LSK108) on R9.4 flowcells with R9.4 

chemistry (FLO-MIN106). More detailed information about this dataset is available at 
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https://github.com/nanopore-wgs-consortium/NA12878. The third dataset (SRA Accession Number: 

SRR6238555) is a full-length isoform sequencing of total mouse RNA using standard PacBio-seq 

protocols [39]. The availability of the two real datasets is provided in the Supplementary Notes. 

The following metrics were used to evaluate the alignment results of the real sequencing reads. 

#BaseA: the number of bases being aligned. 

#BaseGA: the number of bases aligned to the positions within annotated exons. 

#ExonP: the number of exons predicted by the alignments (also termed “predicted exons”). Here, 

the predicted exons in various reads were independently considered.  

#ExonGO: the number of predicted exons being overlapped by annotated exons (also termed 

“overlapped exons”). Herein, a predicted exon was considered to be overlapped by annotated exons 

only if there was at least one annotated exon and at least 10 bp overlapping between the predicted 

exon and the annotated exon. 

#ExonGA: the number of predicted exons being exactly matched by annotated exons (also termed 

“exactly matched exons”). Herein, a predicted exon was considered to be exactly matched by annotated 

exons only if there was an annotated exon and the distance between the corresponding boundaries of 

the predicted exon and the annotated exon were within 5 bp. 

#ExonGA(x): the number of exactly matched exons whose lengths were shorter than x bp. 

#ReadGA: the number of ReadGA reads. A read was considered to be a ReadGA read only if each 

of the intron boundaries implied by its alignment was within 5 bp of an annotated exon. Herein, a 

ReadGA read indicates that the read could has a correct full-length alignment. 
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Figure 1. A schematic illustration of the deSALT approach 

(A) There is a gene (termed “Gene A”) with four exons (respectively marked by the colors blue, red, yellow and green; introns are marked by grey color) and four reads 

that all sequence throughout the whole transcript (assuming that Gene A has only one isoform). Moreover, each of the reads has some sequencing errors (marked by the 

short black bars in the reads). (B) Alignment skeleton generation (first-pass alignment): for each of the reads (read1 is employed as an example), deSALT finds the MBs 

between it and the reference genome (marked as colored bars) and connects them to build an optimized alignment skeleton using an SDP approach. (C) Exon inference: 

deSALT integrates all of the generated alignment skeletons by mapping their involved MBs to the reference genome. The projections of the MBs are analyzed to infer 

exon regions in the reference genome. (D-E) Refined alignment (second-pass alignment): for each of the reads, deSALT finds additional local matches on the exons 

between or near the exons involved in the alignment skeleton. Further, it recognizes all the inferred exons related to the alignment skeleton or the newly found local 

matches as “hit exons” and stitches all of them to generate an LSRS. (The figure shows that there are two newly found matches on exon 2, and they help to recuse this 

exon to build a correct LSRS.) The read is then aligned with the LSRS to produce a refined alignment.  
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Figure 2. Results on simulated datasets 

The figure depicts the yields (A), speed (B) and memory footprints (C) of the aligners on the simulated datasets. It is worth noting that for deSALT and Minimap2, both the results 

with and without gene annotations are shown (indicated as “deSALT+GTF”, “deSALT”, “Minimap2”, “Minimap2+GTF”, respectively). (A) Each of the subplots indicates one of 

the four metrics (Base%, Exon%, Read80%, and Read100%, respectively) of the aligners on the datasets in a specific sequencing model (PacBio ROI, PacBio subreads, 

ONT2D, ONT1D, PS-ONT and NS-ONT, respectively). In each subplot, the blue, green and red lines respectively correspond to the results of the datasets from randomly 

selected genes of human, mouse and fruit fly, and the orange lines correspond to the results of the dataset from all the protein coding genes of human. Moreover, the shapes 

(reversed triangles, rectangles, circles and rhombuses) indicate the datasets in various sequencing coverages. In (B) and (C), each of the subplots indicates the speed (#Base/m) 

and the memory footprint (in GB) of the aligners (in 8 CPU threads) on the datasets simulated from human (randomly selected genes) with a specific sequencing model. The 

datasets in various sequencing coverages are shown separately, and the bars in different colors refer to various aligners. Also refer to Supplementary Table 8 for a more 

comprehensive assessment of the alignment speeds and memory footprints in various numbers of CPU threads (1, 4, 8, and 16 CPU threads). 
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Figure 3. An example of the alignments of simulated reads by various aligners 

This figure represents the snapshots of the alignments of the reads from the simulated 30X ONT 2D human dataset, around FCER1G gene (Chr1: 161215297–161219248) of 

GRCh38. FCER1G gene has 6 exons and 3 isoforms. According to the ground truth, there are 88 reads in this region. The numbers of Read100 and Read80 reads of deSALT 

are 84 and 88, respectively, higher than those of GMAP (#Read100: 45 and #Read80: 54), Minimap2 (#Read100: 19 and #Read80: 23) and Graphmap2 (#Read100: 50 and 

#Read80: 78). (A) The Sashimi plots represent the overall views of the alignments. Compared to the ground truth (the bottom track), it is observed that the deSALT alignments 

are more homogenous, i.e., at each splicing site, most of the reads have similar breakpoints, which also coincide with the ground truth. The more heterogeneous alignments of 

GMAP, Minimap2 and Graphmap2 are usually due to some less accurate alignments at small exons and exon boundaries. (B) A detailed view at the fourth exon of the FCER1G 

gene (length: 21 bp). deSALT correctly aligns all of the 88 reads spanning this exon; however, the corresponding numbers for GMAP (68), Minimap2 (24) and Graphmap2 (53) 

are lower. (C) A detailed view at the third exon of the FCER1G gene (length: 36 bp). It is observed that the reads have nearly the same breakpoints with the homogeneous 

alignments of deSALT. However, for the other three aligners, the breakpoints of the reads are more divergent, and some of them are less accurate, which could be due to the 

effect of sequencing errors as well as to the nearby small exons. 
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Figure 4. Results on real datasets 

The figure depicts the yields of the aligners and the sensitivity of the aligners on short exons. (A-C) The six metrics 

(BaseA, BaseGA, ExonP, ExonGO, ExonGA, and ReadGA) of the aligners on the human ONT cDNA (A) and direct RNA 

(B) datasets, and the mouse PacBio dataset (C). Each bar in a subplot indicates the result of a specific aligner. (D-F) 

The ExonGA(x) metrics, i.e., ExonGA(20), ExonGA(30), ExonGA(40), ExonGA(50), and ExonGA(60), of the aligners on 

the human ONT cDNA (A) and direct RNA (B) datasets, and the mouse PacBio dataset (C), which depicts the 

sensitivities of the aligners for relatively short (up to 60 bp) exons.  
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Figure 5. An example of the alignments of real sequencing reads by various aligners 

This figure represents the snapshots of the alignments of the reads from the human ONT cDNA dataset around the VDAC3 gene (Chr8: 42391761–42405937) of reference 

GRCh38. The VDAC3 gene has 10 exons and 12 isoforms (according to Ensembl gene annotation). deSALT, GMAP, Minimap2 and Graphmap2 respectively mapped 2652, 

2639, 2462 and 2480 reads to this region. The ratios #BaseGA/#BaseT of the aligners are respectively 78.93% (deSALT), 74.2% (GMAP), 72.69% (Minimap2), 74.02% 

(Graphmap2), where #BaseT is the total number of bases aligned to the VDAC3 region. This indicates that deSALT produces overall more accurate split alignments. Moreover, 

the #ReadGA statistics of the aligners are respectively 1630 (deSALT), 889 (GMAP), 751 (Minimap2) and 1030 (Graphmap2), also indicating that deSALT produces better full-

length alignments. (A) The overall views (sashimi plots) of the alignments indicate that deSALT produces more homogenous alignments. Considering the higher #BaseGA/# 

BaseT and #ReadGA statistics, such alignments could be more plausible. (B) A detailed view at the second exon of the VDAC3 gene (exon length: 40 bp). deSALT aligns much 

more reads (i.e., 1703 reads) to this short exon than that of GMAP (1267 reads), Minimap2 (878 reads) and Graphmap2 (920 reads), indicating that deSALT potentially handles 

it better. (C) A detailed view at the 3’ splicing site of the fifth exon of the VDAC3 gene (exon length: 153 bp). It shows that the alignments of deSALT near the splicing site are 

more homogeneous, and the breakpoints of the reads coincide with the annotation, while the alignments of other approaches are more heterogeneous and seem less accurate. 
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