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Summary 21 

The behavioral and neural processes of real-world motor learning remain largely unknown. 22 

We demonstrate the feasibility of real-world neuroscience, using wearables for naturalistic full-23 

body motion tracking and mobile brain imaging, to study motor learning in billiards. We highlight 24 

the similarities between motor learning in-the-wild and classic toy-tasks in well-known features, 25 

such as multiple learning rates, and the relationship between task-related variability and motor 26 

learning. However, we found that real-world motor learning affects the whole body, changing 27 

motor control from head to toe. Moreover, with a data-driven approach, based on the relationship 28 

between variability and learning, we found the arm supination to be the task relevant joint angle. 29 

Our EEG recordings highlight groups of subjects with opposing dynamics of post-movement Beta 30 

rebound (PMBR), not resolved before in toy-tasks. The first group increased PMBR over learning 31 

while the second decreased. These opposite trends were previously reported in error-based learning 32 

and skill learning tasks respectively. Behaviorally, the PMBR decreasers better controlled task-33 

relevant variability dynamically leading to lower variability and smaller errors in the learning 34 

plateau. We speculate that these PMBR dynamics emerge because subjects must combine multi-35 

modal mechanisms of learning in new ways when faced with the complexity of the real-world.  36 
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Introduction 37 

Motor learning is a key feature of our development and daily lives, from a baby learning 38 

to roll, to an adult learning a new sport, or a patient undergoing rehabilitation after a stroke. The 39 

process of learning a real-world motor skill is usually long and complex, and difficult to quantify. 40 

As a result, real-world motor learning is rarely studied, and most of the motor learning literature 41 

focuses on relatively simple tasks, performed in a lab setup or an MRI scanner, such as force-field 42 

adaptations (e.g. Diedrichsen et al., 2005; Howard et al., 2015; Shadmehr and Mussa-Ivaldi, 1994; 43 

Smith et al., 2006), visuomotor perturbations (e.g. Haar et al., 2015; Krakauer et al., 2000; Mazzoni 44 

and Krakauer, 2006; Taylor et al., 2014), and sequence-learning of finger tapping or pinching tasks 45 

(Clerget et al., 2012; Ma et al., 2011; Reis et al., 2009; Yokoi et al., 2018).  46 

These reductionistic tasks enable to isolate specific features of the motor learning and 47 

tackle them individually. While this plays an important role in our understanding of sensorimotor 48 

control and learning, it addresses a very restricted range of behaviors that do not capture the full 49 

complexity of real-world motor control and may overlook fundamental principles of motor control 50 

and learning in real-life (Ingram and Wolpert, 2011; Wolpert et al., 2011). It is only in natural 51 

behavioral settings that neuroscientific mechanisms are subject to evolutionary selection pressures 52 

and it is the operation in these contexts for which the nervous system has been designed (Hecht et 53 

al., 2014). Over the past decade there were few important efforts in this direction. One line of 54 

studies devised more complex tasks for skill learning (e.g. Abe and Sternad, 2013; Cohen and 55 

Sternad, 2009; Shmuelof et al., 2012), but those were still computer screen based toy-tasks which 56 

try to emulate real-world tasks. Another line used actual real-world tasks such as juggling (e.g. 57 

Hecht et al., 2014; Ono et al., 2015; Sampaio-Baptista et al., 2014, 2015; Scholz et al., 2009), but 58 

these studies analyzed only anatomical and functional MRI changes following learning and did not 59 

address behavior or neural activity during the learning process.  60 

Here we are taking a novel data-driven approaches to study behavior where it matters most 61 

– in natural real-life settings. The paradigm in which we study real-world motor learning is the 62 

game of pool table billiards. Billiards is a real-world task ideally suited to neurobehavioral study 63 

as motion tracking in terms of movement in space, the natural constraints of game play, and 64 

divisibility into trials captures the style of reductionistic lab-based motor learning tasks. Billiards 65 

is also a natural task which is complex and involves many different sub-tasks (precision, alignment, 66 

ballistic movements, high-level sequential planning) which requires complex skills. To tackle the 67 

complexity of the high dimensional task space of this real-world task we applied naturalistic 68 

approaches and developed a Bioinformatics of Behavior database (Faisal et al., 2010) of real-world 69 

motor learning behavior. This includes the full body movement and EEG brain activity during the 70 

entire learning period, as well as the measurements of task performance (balls movement on the 71 

table). This enabled us to quantify the trends of changes in each of them separately, during the 72 
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entire learning process, and to look for correlations between the physiological measures and reveal 73 

neurodynamical processes behind motor learning. To the best of our knowledge, this is the first 74 

study to record both the behavior and the neural responses throughout the entire process of real-75 

world motor learning. 76 

The main neural signatures of voluntary movement and motor learning, that can be 77 

measured with EEG, are the Beta oscillations (13–30 Hz), which are related to GABAergic activity 78 

(Hall et al., 2010, 2011; Roopun et al., 2006; Yamawaki et al., 2008). More specifically, there is 79 

transient and prominent increase in beta oscillations across the sensorimotor network after cessation 80 

of voluntary movement known as post-movement beta rebound (PMBR) or post-movement beta 81 

synchronization (Pfurtscheller et al., 1996). In motor adaptation studies, PMBR was reported to 82 

negatively correlate with movement errors, lower errors induced higher PMBR (e.g. Tan et al., 83 

2014, 2016; Torrecillos et al., 2015), and therefore PMBR increases over learning. In skill learning 84 

tasks the PMBR shows the opposite trend; e.g., in a force tracking task PMBR decreased with 85 

learning (Kranczioch et al., 2008). Additionally, PMBR is positively correlated with MRS-86 

measured GABA concentration (Cheng et al., 2017; Gaetz et al., 2011) that also decreases over 87 

skill learning tasks such as sequence learning in force tracking (Floyer-Lea et al., 2006) and serial 88 

reaction time (Kolasinski et al., 2019). These different tasks are associated with distinct learning 89 

mechanisms, model-based processes are likely to predominate in adaptation (error-based learning) 90 

tasks, and model-free processes predominate in skill tasks (Haith and Krakauer, 2013). While both 91 

mechanisms can contribute to learning in any given task, the constrains of toy-tasks induce the 92 

predominance of one over the other. Here we introduced a real-world learning task where 93 

performance errors are not driven by perturbations. Learning in this paradigm may not be 94 

predominantly mediated by a specific learning mechanism, or by the same learning mechanism for 95 

all subjects. Since there is no clear method to identify the learning mechanism used by subjects 96 

from their behavior and performance, here we explored the use of the PMBR dynamics as a 97 

signature for the dominant learning mechanism.  98 

We structured the results as follows: We ground our results in previous work on 99 

reductionistic lab tasks, to show that our unconstrained task and its task goal (directional error of 100 

the target ball relative to the pocket it is meant to go in) displays the well-known features of human 101 

motor learning. We then characterize full-body movement structure during the task, and how 102 

learning changes the kinematics of all joints over trials. Next, we compare across subjects to map 103 

their performance, learning rates, and motor variability, and how initial variability and learning 104 

rates are linked. We then relate the EEG activity during learning which reveals two groups of 105 

learners with different PMBR dynamics and learning characteristics. We address the neural and 106 

behavioral differences between the two groups which are suggestive of differences in the learning 107 

mechanisms employed by the subjects.     108 
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Results 109 

30 right-handed volunteers, with little to no previous experience playing billiards, 110 

performed 300 repeated trials (6 sets of 50 trials each with short breaks in-between) where the cue 111 

ball and target ball were placed in the same locations, and subjects were asked to shoot the target 112 

ball towards the far-left corner pocket (Figure 1A). During the entire learning process, we recorded 113 

the subjects' full body movements with a ‘suit’ of inertial measurement units (IMUs; Figure 1B), 114 

their brain activity with wireless EEG (Figure 1C), and the balls on the pool table were tracked with 115 

a high-speed camera to assess the outcome of each trial (Figure 1D). 116 

 117 

Movement and Learning in a real-world pool task  118 

The ball tracking data showed a double exponential learning curve for the decay in the 119 

directional error of the target ball (relative to the direction from its origin to the center of the target 120 

pocket) over trials (Figure 1E). The direction of the initial trials error was consistent across subject 121 

A 

B C 

D 

Figure 1. Experimental setup and task performance. (A) 30 right-handed healthy subjects performed 300 repeated trials of billiards 
shoots of the target (red) ball towards the far-left corner. (B) Full body movement was recorded with a ‘suit’ of 17 wireless IMUs 
(Xsens MVN Awinda). (C) Brain activity was recorded with wireless EEG systems: 20 subjects with eMotiv EPOC+ (left) and 10 subjects 
with Wearable Sensing DSI-24 (right). (D) The pool balls were tracked with a high-speed camera. Dashed lines show the trajectories 
of the cue (white) and target (red) balls over 50 trials of an example subject. (E) The trial-by-trial directional error of the target-ball 
(relative to the direction from its origin to the centre of the target pocket), averaged across all subjects, with a double-exponential 
fit (red curve). (F) The mean absolute directional error of the target-ball. (G) The success rate. (H) directional variability. and (I) 
directional variability corrected for learning (see text). (F-H) presented over blocks of 25 trials, averaged across all subjects, error 
bars represent SEM. 

E 

F 

H 

G 

I 

𝜏𝑓 = 6      
𝜏𝑠 = 129 
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as they tended to hit the center of the target ball and shot it forward towards the center of the table. 122 

For measuring success rates and intertrial variability we divided the trials into blocks of 25 trials 123 

(each experimental set of 50 trials was divided to two blocks to increase the resolution in time). 124 

The learning curve over blocks (Figure 1F) emphasized the reduction in the inter-subject variability 125 

during learning (decreasing error bars). The success rate over blocks (percentage of successful trials 126 

in each block; Figure 1G) showed similar learning to the directional error. The learning was also 127 

evident in the intertrial variability in the shooting direction which decayed over learning (Figure 128 

1H). Since learning also occured within a block (especially during the first block) and the variability 129 

might be driven by the learning gradient, we corrected for it by calculating intertrial variability over 130 

the residuals from a regression line fitted to the ball direction in each block. This corrected intertrial 131 

variability showed the same pattern (Figure 1I). Overall, the task performance data suggested that 132 

subjects reached their peak performance on the fifth experimental set (blocks 9-10, trials 200-250) 133 

and are doing the same (or even slightly worse) on the last experimental set (blocks 11-12, trials 134 

250-300). Thus, we refer to the last two experimental sets (blocks 9-12, trials 201-300) as the 135 

‘learning plateau’. 136 

The full body movements were analyzed over the velocity profiles of all joints, and not the 137 

joint angles profiles, as those are less sensitive to potential drifts in the IMUs and have proven to 138 

be more robust and reproducible across subjects in natural behavior (Thomik, 2016). In the current 139 

data we can also see this robustness across trials (Figure 2A). The covariance of the velocity 140 

profiles, averaged across the initial ten trials of all subjects, showed that most of the variance in the 141 

movement is in the right arm, and specifically in the right shoulder (Figure 2B). This is a signature 142 

for the naivety of the subjects, as pool billiards guide books emphasize that the shooting movement 143 

should be from the elbow down while the shoulder should be kept still. The covariance of the 144 

velocity profiles averaged across the initial ten trials of the learning plateau (trials 201-210) showed 145 

similar structure with an overall decrease relative to the initial trials but an increase in the variance 146 

of right elbow rotation (Figure 2C). On the group level, the velocity profiles of all joints (including 147 

the joints of the right arm that carry most of the movement variance) showed only minor changes 148 

following learning. For example, the flexion/extension of the right elbow showed a decrease in 149 

velocity from the initial trials to the trials of the learning plateau (Figure 2A).  150 
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 151 

Time (seconds) 

Velocity (degrees/frame) 

Figure 2. Velocity profiles and covariance. (A) Velocity profiles in 3 degrees of freedom (DoF) for each joint (blue: flexion/extension, 
red: abduction/adduction; green: internal/external rotation) averaged across subjects and trials over the initial trials (1-10) in the 
inner circle (grey background) and after learning plateau (201-210) in the outer circle (white background). The joints of the right 
arm, which do most of movement in the task, are highlighted in orange box. (B,C) The variance covariance matrix of the velocity 
profiles of all joints averaged across subjects and trials (B) over the initial trials (1-10) and (C) after learning plateau (201-210). The 
order of the DoF for each joint is: flexion/extension, abduction/adduction, internal/external rotation. 

B C 

A 

Trials   1-10    

Trials 201-210 
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The generalized variance (GV; the determinant of the covariance matrix (Wilks, 1932)) 152 

over the velocity profiles of all joints increased fast over the first ~30 trials and later decreased 153 

slowly (Figure 3A), suggesting active control of the exploration-exploitation trade-off. The 154 

covariance over the initial trials, the trials over the peak GV, and trials after learning plateau (Figure 155 

3B), showed that the changes in the GV were driven by an increase in the variance of all DoFs of 156 

the right shoulder, and the negative covariance between the abduction/adduction and 157 

internal/external rotation of the right shoulder to the flexion/extension of the right shoulder and 158 

wrist. The internal/external rotation of the right elbow showed a continuous increase in its variance, 159 

which did not follow the trend of the GV. Principal component analysis (PCA) across joints for the 160 

velocity profiles per trial for each subject, showed a slow but consistent rise in the number of PCs 161 

that explain more than 1% of the variance in the joint velocity profiles (Figure 3C). The 162 

manipulative complexity (Belić and Faisal, 2015) showed the same trend (Figure 3D), which 163 

suggests that over trials subjects use more degrees of freedom in their movement.  164 

 165 

As a measure of task performance in body space, correlation distances were calculated 166 

between the velocity profile of each joint in each trial to the velocity profile of that joint in all 167 

successful trials. The mean over these correlation distances produced a single measure of Velocity 168 

Profile Error (VPE) for each joint in each trial.  169 

𝑉𝑃𝐸𝑖 =
∑ 𝑐𝑜𝑟𝑟𝐷𝑖𝑠𝑡(𝑣𝑒𝑙𝑃𝑟𝑜𝑓𝑖, 𝑣𝑒𝑙𝑃𝑟𝑜𝑓𝑠)
𝑁𝑠𝑐𝑠
𝑠

𝑁𝑠𝑐𝑠
 170 

Figure 3. Variance and Complexity. (A) The trial-by-trial generalized variance (GV), with a double-exponential fit (red curve). (B) The 
variance covariance matrix of the right arm joints velocity profiles averaged across subjects and trials over the initial trials (1-10), 
the peak GV trials (41-50) and after learning plateau (201-210). The order of the DoF for each joint and the colorbar are the same as 
in Figure 2. (C) The number of principal components (PCs) that explain more than 1% of the variance in the velocity profiles of all 
joints in a single trial, with an exponential fit (red curve). (D) The manipulative complexity (Belić and Faisal, 2015), with an exponential 
fit (red curve). (A,C,D) Averaged across all subjects over all trials. 

A C 

B D 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 16, 2019. ; https://doi.org/10.1101/612218doi: bioRxiv preprint 

https://doi.org/10.1101/612218


8 
 

Thus, VPE in trial 𝑖 was the sum of the correlation distances between the velocity profile 171 

in trial 𝑖 and the velocity profile in successful trial 𝑠, divided by the number of successful trials 172 

(𝑁𝑠𝑐𝑠). For all joints, VPE showed a clear pattern of decay over trials in an exponential learning 173 

curve (Figure 4). A proximal-to-distal gradient in the time constant of these learning curves was 174 

observed across the right arm, from the shoulder to the elbow and the wrist rotation which showed 175 

very slow learning (the other wrist angles had very low VPE from the start, thus did not learn 176 

much). Intertrial variability in joint movement was measured over the VPEs in each block. Learning 177 

was also evident in the decay over learning of the VPE intertrial variability over most joints across 178 

the body (Fig 4 Supplement).  179 

 180 

Inter-subject differences in variability and learning  181 

We found significant differences between subjects in their initial errors, final errors, 182 

intertrial variability, and learning, which are overlooked in the group average results. One subject, 183 

who had low initial errors, showed no learning, i.e. did not reduce her error over trials from the first 184 

block (trials 1-25) to the learning plateau (trials 201-300). For all other subjects the final errors 185 

were smaller than the initial errors (Figure 5A). There was a significant correlation between the 186 

initial and the final errors, meaning subjects with higher initial errors tended to have higher final 187 

errors as well.  188 

While over learning most subjects decreased their intertrial variability in the outcome (ball 189 

direction; Figure 1H & 5B) there was some tendency (though non-significant) for subjects who 190 

were initially more variable to be also more variable after learning (Figure 5B). The intertrial 191 

Figure 4. Learning over 
Joints. Velocity Profile 
Error (VPE) reduction 
across all joints. The trial-
by-trial VPE for all 3 DoF of 
all joints, averaged across 
all subjects, with an 
exponential fit. The time 
constants of the fits are 
reported under the title. 
The color code of the DoF 
is the same as in figure 2 
(blue: flexion/extension; 
red: abduction/adduction; 
green: internal/external 
rotation).  

Trials 

VPE 
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variability of the joint velocity profiles, which also decreased over learning (Fig 4 Supplement), 192 

showed a clearer and stronger correlation between the initial and the final intertrial variability 193 

(Figure 5E & Fig 5E Supplement). While this phenomenon was observed in various joints across 194 

the body, and dominant in the abduction across the spine joints, it was most dominant in the right 195 

shoulder abduction and rotation, the two joint angles that do most of the movement and carry most 196 

of its variance (Figure 2).  197 

 198 

Learning was defined as the difference between the initial error (over the first block: trials 199 

1-25) and the final error (over the learning plateau: trials 201-300) normalized by the initial error.     200 

There was no significant correlation between the learning and the final error (as subjects who started 201 

worse could have learn more but still not perform better after learning), but there was a strong trend 202 

that more learning leads to smaller final errors (Figure 5C). We tested if higher levels of initial task-203 

relevant motor variability (variability in the directional error of the target ball) in this complex real-204 

A B C D 

Figure 5. Variability and learning across subjects. (A) Correlation between subjects’ mean absolute directional error over the first 
block (trials 1-25) and the learning plateau (trials 201-300). (B) Correlation between subjects’ directional variability over first block 
(corrected for learning trend, see text) and over the learning plateau (C) Correlation between subjects’ mean absolute directional 
error over the learning plateau and their learning (D) Correlation between subjects’ directional variability over the first block 
(corrected for learning trend, see text) and their learning (E) Correlation between subjects’ VPE variability (in logarithmic scale) over 
the first block and the learning plateau for the right arm joints. (F) Correlation between subjects’ VPE variability (in logarithmic scale) 
over the first block and their learning for the right arm joints. (A-F) Correlation values are Spearman rank correlation, regression 
lines are linear fits with 95% confidence intervals. 

E 

F 
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world task could predict faster learning across individual, as found in simple lab experiments (Wu 205 

et al., 2014). We indeed found that individuals with higher intertrial variability in the directional 206 

error of the target ball over the first block showed more learning (r=0.64, p<0.001; Figure 5D). 207 

Importantly, this is the corrected intertrial variability (as in Figure 1I) which is calculated over the 208 

residuals from a regression line fitted to the ball direction to correct for the learning that is 209 

happening within the block. Next, we tested the link between learning and initial variability over 210 

the joint velocity profiles of the right arm (Figure 5F). We found that the only joint angle where the 211 

intertrial variability showed significant correlation to learning was the right elbow rotation (r=0.47, 212 

p=0.0086), which is the arm supination. We further tested the link over the full body kinematics 213 

(Fig 5F Supplement) and found no other joint that showed this correlation. Thus, while learning 214 

leads to overall reduction in movement variability, only initial variability in specific, task-relevant, 215 

dimensions can facilitate/predict learning. 216 

EEG activity reveals two types of learners 217 

The most prominent feature of the EEG brain activity recorded in this study was the 218 

transient increase in beta oscillations across the sensorimotor network after the end of the 219 

movement, known as post-movement beta synchronization (Pfurtscheller et al., 1996) or post-220 

movement beta rebound (PMBR; Figure 6A). On average across subjects there was no clear trend 221 

of PMBR (increase or decrease) over learning (Figure 6B). Testing for the subject by subject PMBR 222 

change (the difference between the final PMBR over the learning plateau: trials 201-300, and the 223 

initial PMBR over the first block: trials 1-25) revealed subjects with opposing trends.  224 

While almost half of the subjects (N=17) showed an increase in the PMBR over learning, 225 

the other half (N=13) showed a decrease. The PMBR change was negatively correlated with the 226 

initial PMBR (Figure 6C), i.e. subjects who had higher initial PMBR had higher decrease (or lower 227 

increase) in PMBR over learning. Thus, the beta-power time courses over the first block showed a 228 

strong group effect (Figure 6D). The first group showed a clear trend of PMBR increase over 229 

learning, in consistence with adaptation studies, while the second group showed clear trend of 230 

PMBR decrease over learning, in consistence with skill learning studies (Figure 6E).  231 

The grouping was validated using leave-one-out classification over the PMBR data (12 232 

data points per subject, one for each block). The classifier yielded 93% accuracy. The two subjects 233 

who were miss classified were the PMBR decreasers who had the lowest negative PMBR change 234 

(>-2.5). Moving these two subjects to the other group does not change any of the reported group 235 

differences. Additionally, since the beta-power changes were calculated as percent signal change 236 

relative to the average power over the block (see methods), these group differences could 237 

potentially be driven by differences in the baseline. Importantly, this was not the case as there was 238 

no real difference in the baseline between the groups, not in the values nor in the trend over learning 239 

(Figure 6F).  240 
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 241 

Following the results in the EEG data, which suggest two groups of subjects who employ 242 

different learning mechanisms, we looked for group differences in the movement data. While there 243 

was no difference in the initial error between the groups, after learning plateaus the PMBR 244 

decreasers were more accurate (Figure 7A) and less variable (Figure 7B). PMBR decreasers also 245 

seemed to modify their variability (actively control of the exploration-exploitation trade-off, 246 

explicitly or implicitly) to improve learning, as evidenced by their high variability in the first block 247 

and the very steep decrease towards the second (Figure 7B). The dynamical control of the 248 

variability was even more significantly evident in their full-body movement. PMBR decreasers 249 

showed a clear decrease in their GV after learning towards the learning plateau while PMBR 250 

increasers showed no clear trend in their GV (Figure 7C). Lastly, PMBR increasers tended to have 251 

higher complexity in their movement, i.e. used more DoF (Figure 7D).  252 

Within subject, the PMBR increasers showed significant negative correlations over blocks 253 

between the directional error and the PMBR (mean correlation: r=-0.3, t test p=0.008), while the 254 

PMBR decreasers showed significant positive correlations (mean correlation: r=0.41, t test 255 

p<0.001), leading to a very significant difference between the groups (t test p<0.001; Figure 7E). 256 

The same trend was evident for the directional variability. PMBR increasers showed negative 257 

correlations over blocks between the variability and the PMBR (mean correlation: r=-0.2, t test 258 

Figure 6. Post-movement beta rebound. (A) Time-frequency map of a typical subject aligned to movement offset (ball movement 
onset), obtained by averaging the normalized power over electrode C3. (B) PMBR over blocks of 25 trials, averaged across all subjects, 
error bars represent SEM. (C) Correlation between subjects’ PMBR changes (from the first block (trials 1-25) to the learning plateau 
(trials 201-300)) and their initial PMBR (over the first block). Subjects are color coded based on their PMBR trend: subjects with a 
positive PMBR change are in blue (PMBR increasers) and subjects with a negative PMBR change are in red (PMBR decreasers). (D) 
Beta power profile over the first block for the PMBR increasers (blue) and decreasers (red). Line is averaged across all subjects in the 
group and the light background mark the SEM. (E,F) PMBR (E) and Baseline beta power (F) of the PMBR increasers (blue) and PMBR 
decreasers (red) over blocks, averaged across all subjects in each groups, error bars represent SEM.  

A B C 

D E F 
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p=0.03), while the PMBR decreasers showed positive correlations (mean correlation: r=0.42, t test 259 

p<0.001), leading to a very significant group difference (t test p<0.001; Figure 7F). We also looked 260 

for correlation over blocks between the PMBR and the peak head acceleration during the same time 261 

interval, as a control for head movements contamination of the PMBR effect. Here we found no 262 

significant correlations for either of the groups (mean correlation: r=0.19, t test p=0.08 and r=0.21, 263 

t test p=0.16, for the PMBR increasers and decreasers respectively; Figure 7G), and most 264 

importantly, no difference between the groups (t test p=0.91).  265 

 266 

 Finally, the PMBR decreasers were on average better learners (mean learning rates were 267 

0.47 and 0.62 for the PMBR increasers and decreasers respectively) though the group difference 268 

was not significant (t test p=0.07). We explored the correlation between PMBR and learning. 269 

Across all subjects, we found no correlation between the learning rate and the initial PMBR or the 270 

PMBR change. When considering each group separately, both groups showed a clear trend (though 271 

non-significant) of positive correlation of the PMBR change with learning (Figure 7H). Meaning, 272 

for the PMBR increasers, more increase suggests more learning; for the PMBR decreasers, less 273 

decrease suggests more learning. This suggests that in the PMBR of both group there is a signature 274 

for a motor adaptation mechanism, where PMBR increase with learning, but while this is the 275 

predominant mechanism for the PMBR increasers, for the PMBR decreasers the predominant 276 

mechanism is of skill learning which have the opposing PMBR signature. 277 

Figure 7. Behavioural differences between the PMBR groups. (A-D) Directional absolute error (A), directional variability (B), 
generalized variance (C), and manipulative complexity (D) of the PMBR increasers (blue) and decreasers (red) over blocks of 25 trials, 
averaged across all subjects in each group, error bars represent SEM. Black asterisk indicates significant difference between the 
groups in a block. Grey asterisk indicates significant difference between the groups in the change between blocks. Black asterisk 
with a line over the learning plateau indicates significant difference between the groups in the learning plateau. (E-G) Correlation 
coefficients over blocks for all individual subjects between the PMBS and the absolute directional error (E), the directional variability 
(F), and the head movements (G). Grey asterisk indicates group correlations significantly different than zero. Black asterisk indicates 
significant difference in the correlation coefficients between the groups. (H) Correlations between the PMBR change and the 
learning, across all subjects (black line) and within each group (blue: increases; red: decreases). 

A C B D 

E F H G 
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Discussion 278 

In this paper we introduce a new paradigm for studying naturalistic motor learning during 279 

whole-body movement in a complex real-world motor skill task. Our results present new insights 280 

into motor learning in the real-world. While the learning curves in this in-the-wild paradigm are 281 

within the same range of those reported in reductionistic motor adaptation tasks (e.g. McDougle et 282 

al., 2015; Smith et al., 2006) we find that this learning is taking place not only in the task relevant 283 

joints but across the entire body. Also, we found that task relevant initial variability in the ball 284 

direction (movement outcome) can predict learning, like in toy tasks (Wu et al., 2014), and so can 285 

the initial variability in the right arm supination which is the task relevant joint angle variability. 286 

Most importantly, our neural recordings revealed two types of motor learners: PMBR increasers 287 

and PMBR decreasers. These groups were defined by their patterns of beta oscillations, which the 288 

literature link to different learning mechanism (adaptation and skill learning respectively), but also 289 

showed clear behavioral differences. PMBR decreasers were better learners, more accurate, they 290 

effectively modulated their movement variability, and they used less DoF in their movement. These 291 

is the first study to report such neurobehavioral identification of two types of learners.  292 

Fundamentals of real-world motor learning 293 

Across all subjects, we found that motor learning is a holistic process - the entire body is 294 

learning the task. This was evident in the decrease in the VPE and the intertrial variability over 295 

learning (Figure 4 & Fig 4 Supplement). This result should not come as a surprise considering 296 

decades of research in sport science showing this relationship. For example, baseball pitcher's torso, 297 

pelvis, and leg movements are directly associated with ball velocity (Kageyama et al., 2014; Oliver 298 

and Keeley, 2010; Stodden et al., 2006). Recently it was also demonstrated with full-body motion 299 

capture in a ball throwing task (Maselli et al., 2017).  And yet, unlike baseball pitches, basketball 300 

throws, or any unconstrained overarm throw, where the whole body is moving, in a pool shot the 301 

shooting arm is doing most of the movement and there is very little body movement. Thus, the 302 

whole-body learning is not trivial and suggestive that even in arm movement toy-tasks there is a 303 

whole-body learning aspect which is overlooked.    304 

We also found a proximal-to-distal gradient in the learning rates over the right arm joints 305 

(Figure 4). This is especially interesting in light of the well-known phenomenon of proximal-to-306 

distal sequence in limb movements in sports science (Herring and Chapman, 1992) and in 307 

rehabilitation (Twitchell, 1951). While there are records of proximal-to-distal sequence at multiple 308 

time scales (Serrien and Baeyens, 2017), our results are the first to suggest that this gradient also 309 

occur over repetitions as part of the learning process.  310 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 16, 2019. ; https://doi.org/10.1101/612218doi: bioRxiv preprint 

https://doi.org/10.1101/612218


14 
 

Variability & learning 311 

Intertrial variability is a fundamental characteristic of human movements and its underling 312 

neural activity (for review see Faisal et al., 2008). It was recently reported that individuals exhibit 313 

distinct magnitudes of movement variability, which are consistent across movements and effectors, 314 

suggesting an individual traits in movement variability (Haar et al., 2017). Our results show that 315 

subjects who were initially more variable tended to be also more variable after learning in many 316 

joints across the body (Figure 5E & Fig 5E Supplement) and specifically in those of right shoulder 317 

that carry most of the variance in the movement. This supports the notion that there is an individual 318 

trait in movement variability. 319 

Intertrial  kinematic variability is also thought to be critical for motor learning (e.g., Braun 320 

et al., 2009; Dhawale et al., 2017; Herzfeld and Shadmehr, 2014; Teo et al., 2011; Wilson et al., 321 

2008). It was suggested that individuals with higher levels of task-relevant movement variability 322 

exhibit faster motor learning in both skill learning and motor adaptation error-based paradigms (Wu 323 

et al., 2014). The failures to reproduce this result in visuomotor adaptation studies (He et al., 2016; 324 

Singh et al., 2016), led to the idea that experiments with task-relevant feedback (which is common 325 

in visuomotor studies) emphasize execution noise over planning noise, whereas measurements 326 

made without feedback (as in Wu et al., 2014) may primarily reflect planning noise (Dhawale et 327 

al., 2017). This is in-line with a recent modeling work in a visuomotor adaptation study (with task-328 

relevant feedback) in which subjects with higher planning noise showed faster learning, but the 329 

overall movement variability was dominated by execution noise that was negatively correlated with 330 

learning (van der Vliet et al., 2018). In our task there were no manipulations or perturbations, thus, 331 

task-relevant feedback was fully available to the participants. On the other hand, in real-world there 332 

is no baseline variability, and the variability was measured during early learning and therefore is 333 

probably dominated by planning noise, as subjects explore, regardless of the visual feedback. 334 

Indeed, subjects with higher variability in the target ball direction over the first block showed higher 335 

learning rates (Figure 5D). Our results straighten the link between variability and learning and are 336 

the first to show that it applies to real-world tasks. Moreover, the only joint angle that showed 337 

significant correlation between initial variability and learning was the right elbow rotation (Figure 338 

5F & Fig 5F Supplement). Following the idea that task-relevant variability predicts learning, it 339 

would suggest that the right elbow rotation is the task-relevant joint angle to adjust during initial 340 

learning of a simple pool shoot. Indeed, guide books for pool and billiards emphasize that while 341 

shooting one should keep one’s body still and move only the back (right) arm from the elbow down. 342 

While the elbow flexion movement gives the power to the shoot, the arm supination (also known 343 

as ‘screwing’ in billiards and measured by the elbow rotation in our IMUs setup) maintains the 344 

direction of the cue.  345 
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EEG activity predicts differences in motor learning strategy 346 

The motor learning literature traditionally classified its toy tasks into two broad categories,  347 

motor adaptation and motor skill/sequence learning, and suggest different learning process for these 348 

categories (e.g., Doyon and Benali, 2005; Doyon et al., 2003). It was suggested that in adaptation 349 

tasks the dominant learning mechanism is model-based, guided by an internal forward model which 350 

is updated based on prediction errors; while in skill-learning tasks the dominant mechanism is 351 

model-free where the controller learns by reinforcement of successful actions (Haith and Krakauer, 352 

2013). PMBR was reported to increase over error-based adaptation tasks (e.g. Tan et al., 2014, 353 

2016; Torrecillos et al., 2015), and decrease (itself or its MRS correlate) over skill-learning tasks 354 

(e.g. Floyer-Lea et al., 2006; Kolasinski et al., 2019; Kranczioch et al., 2008). Since Beta 355 

oscillations are related to GABAergic activity (Hall et al., 2010, 2011; Roopun et al., 2006; 356 

Yamawaki et al., 2008) and PMBR is positively correlated with MRS-measured GABA 357 

concentration (Cheng et al., 2017; Gaetz et al., 2011), the opposing PMBR (and MRS-measured 358 

GABA) trends suggest that there might be different GABAergic mechanisms related to the different 359 

learning mechanisms. Those might be GABAergic inputs from different subcortical regions: 360 

cerebellum for the model-based adaptation and basal ganglia for the model-free skill learning 361 

(Doyon and Benali, 2005; Doyon et al., 2003). Presumably, the dominance ratio between the 362 

learning mechanisms is revealed by the trend of the PMBR over learning.  363 

Accordingly, we looked at the PMBR as a signature of learning mechanism. In the EEG 364 

data recorded during real-world motor learning in the current study, we found two groups of 365 

subjects: PMBR increasers and decreasers. While future studies will need to capture the PMBR 366 

dynamics during learning of the same paradigm with different dominant mechanism (using 367 

feedback manipulations and constrains for example) to farther validate this approach, the 368 

behavioral differences between the groups support the notion of different predominant learning 369 

mechanism. The first group, that had low initial PMBR amplitudes and showed an increase over 370 

learning, presumably used model-based adaptation as its dominant learning mechanism. The 371 

second group, that had high initial PMBR amplitudes and showed a decrease over learning, 372 

presumably used model-free skill learning as its dominant learning mechanism. While there were 373 

no significant differences between the groups in their initial errors or in the total learning, there 374 

were clear group difference in the learning process and the learning plateau. PMBR decreasers 375 

(model-free skill learners) were more accurate at the end of learning in terms of directional error 376 

and directional variability of the target ball (Figure 7A&B). This is inline with previous studies 377 

showing that adding reward feedback can enhance motor learning in an error-based learning 378 

paradigm (e.g. Nikooyan and Ahmed, 2015). PMBR decreasers also used less degrees of freedom 379 

in their body movement (Figure 7D) and were less variable in their body movement following 380 

learning, as they decrease the overall variability of their movement (GV; Figure 7C). They also 381 

showed higher initial variability in the direction of the target ball which was quickly and drastically 382 
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suppressed in the second block (Figure 7B). This last two points suggest an active control of the 383 

exploration-exploitation trade-off, which is another support that those subjects used model-free 384 

learning (Phillips et al., 2011). 385 

Lab-based paradigms tend to emphasize a specific learning mechanism for all subjects 386 

based on the types of feedback and perturbation (e.g., Galea et al., 2015; Huang et al., 2011; Kim 387 

et al., 2019). In contrast, real-world motor learning involves multiple high- and low-level learning 388 

mechanisms, where different subjects might emphasize one learning modality over the other. In our 389 

real-world learning paradigm, subjects performed model-based adaptation as they learned from the 390 

directional error of the target ball in each trial, but they also performed model-free skill-learning as 391 

they learned to use the cue and their body joints while making a shot. We speculate that the PMBR 392 

increasers, who showed the neural pattern reported in motor adaptation paradigms, mostly learned 393 

from their error in a model-based motor adaptation approach, while the PMBR decreasers, who 394 

showed the neural pattern reported in skill learning tasks, used more model-free skill learning 395 

mechanism.  396 

Conclusions 397 

In this study we demonstrate the feasibility and importance of studying human 398 

neuroscience in-the-wild, and specifically in naturalistic real-world skill tasks. While finding 399 

similarities in learning structure between our real-world paradigm and lab-based motor learning 400 

studies, we highlight crucial differences: namely, real-world motor learning is a holistic full-body 401 

process which involves multi-modal learning mechanisms which subjects have to combine in new 402 

ways when faced with the complexity of learning in the real world, and different subjects will 403 

emphasize one over the other.    404 

Methods 405 

Experimental Setup and Design. 30 right-handed healthy human volunteers with normal or 406 

corrected-to-normal visual acuity (12 women and 18 men, aged 24±3) participated in the study. 407 

The volunteers, who had little to no previous experience with playing billiards, performed 300 408 

repeated trials where the cue ball (white) and the target ball (red) were placed in the same locations 409 

and the subject was asked to shoot the target ball towards the pocket of the far-left corner (Figure 410 

1A). The trials were split into 6 sets of 50 trials with a short break in-between. For the data analysis 411 

we further split each set into two blocks of 25 trials each, resulting in 12 blocks. During the entire 412 

learning process, we recorded the subjects' full body movements with a motion tracking ‘suit’ of 413 

17 wireless inertial measurement units (IMUs; Figure 1B), and their brain activity with a wireless 414 

EEG headset (Figure 1C). The balls on the pool table were tracked with a high-speed camera (Dalsa 415 

Genie Nano) to assess the subjects’ success in the game and to analyze the changes throughout 416 
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learning, not only in the body movement and brain activity but also in its outcome – the ball 417 

movement (Figure 1D).   418 

Full-Body Motion Tracking. Kinematic data were recorded at 60 Hz using a wearable 419 

motion tracking ‘suit’ of 17 wireless IMUs (Xsens MVN Awinda, Xsens Technologies BV, 420 

Enschede, The Netherlands). Data acquisition was done via a graphical interface (MVN Analyze, 421 

Xsens technologies BV, Ensched, The Netherlands). The Xsens joint angles and position data were 422 

exported as XML files and analyzed using a custom software written in MATLAB (R2017a, The 423 

MathWorks, Inc., MA, USA). The Xsens full body kinematics were extracted in joint angles in 3 424 

degrees of freedom for each joint that followed the International Society of Biomechanics (ISB) 425 

recommendations for Euler angle extractions of Z (flexion/extension), X (abduction/adduction) Y 426 

(internal/external rotation). 427 

Movement Velocity Profile Analysis. From the joint angles we extracted the velocity 428 

profiles of all joints in all trials. We defined the peak of the trial as the peak of the average absolute 429 

velocity across the DoFs of the right shoulder and the right elbow. We aligned all trials around the 430 

peak of the trial and cropped a window of 1 sec around the peak for the analysis of joint angles and 431 

velocity profiles. 432 

EEG acquisition and preprocessing. For 20 subjects, EEG was recorded at 256Hz using a 433 

wireless 14 channel EEG system (Emotiv EPOC+, Emotiv Inc., CA, USA). For the other 10 434 

subjects, EEG was recorded at 300Hz using a wireless 21 channel EEG system (DSI-24, Wearable 435 

Sensing Inc., CA, USA) and down sampled to 256Hz to be analyzed with the same pipeline as the 436 

other subjects. EEG signals were preprocessed in EEGLAB (https://sccn.ucsd.edu/eeglab; Delorme 437 

and Makeig, 2004). EEG signals were first band-pass filtered at 5-35 Hz using a basic FIR filter, 438 

and then decomposed into independent component (IC) and artifacted ICs were removed with 439 

ADJUST, an EEGLAB plug-in for automatic artifact detection (Mognon et al., 2011). All farther 440 

analysis was performed on the C3 channel. For the Emotiv subjects it was interpolated from the 441 

recorded channels with spherical splines using EEGLAB 'eeg_interp' function.  442 

EEG time-frequency analysis. Each block was transformed in the time-frequency domain 443 

by convolution with the complex Morlet wavelets in 1 Hz steps. Event-related EEG power change 444 

was subsequently calculated as the percentage change by log-transforming the raw power data and 445 

then normalizing relative to the average power calculated over the block, as no clear baseline could 446 

be defined during the task (Alayrangues et al., 2019; Tan et al., 2014, 2016; Torrecillos et al., 2015), 447 

and then subtracting one from the normalized value and multiplying by 100. Event-related power 448 

changes in the beta band (13–30 Hz) were investigated. Since it is a free behavior study there was 449 

no go cue and the subject shoot when they wanted. As a result, the best-defined time point during 450 

a trial was the end of the movement, defined by the beginning of the cue ball movement. Thus, the 451 

post-movement beta rebound (PMBR) was defined as the average normalized power over a 200ms 452 
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window centered on the peak of the power after movement termination (Tan et al., 2016). The 453 

PMBR was calculated for each individual trial before averaging over blocks for further analysis. 454 

The time frequency analysis was performed with custom software written in MATLAB (R2017a, 455 

The MathWorks, Inc., MA, USA). 456 
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Supplementary Figures 610 

 611 

Figure 4 supp. Learning over Joints. Velocity Profile Error (VPE) intertrial variability over blocks of 25 trials, averaged 
across all subjects.  
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 612 

Figure 5E supp. Correlation between subjects’ VPE variability over the first block and over the learning plateau, for all joints. 
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 613 

Initial Variability 

Learning 

Figure 5F supp. Correlation between subjects’ VPE variability over first block and their learning, for all joints. 
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