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Abstract 19 

The neurobehavioral mechanisms of human motor-control and learning evolved in free 20 

behaving, real-life settings, yet this is studied mostly in reductionistic lab-based experiments. Here 21 

we take a step towards a more real-world motor neuroscience using wearables for naturalistic full-22 

body motion-tracking and the sports of pool billiards to frame a real-world skill learning 23 

experiment. First, we asked if well-known features of motor learning in lab-based experiments 24 

generalize to a real-world task. We found similarities in many features such as multiple learning 25 

rates, and the relationship between task-related variability and motor learning. Our data-driven 26 

approach reveals the structure and complexity of movement, variability, and motor-learning, 27 

enabling an in-depth understanding of the structure of motor learning in three ways: First, while 28 

expecting most of the movement learning is done by the cue-wielding arm, we find that motor-29 

learning affects the whole body, changing motor-control from head to toe. Second, during learning, 30 

all subjects decreased their movement variability and their variability in the outcome. Subjects who 31 

were initially more variable were also more variable after learning. Lastly, when screening the link 32 

across subjects between initial variability in individual joints and learning, we found that only the 33 

initial variability in the right forearm supination shows a significant correlation to the subjects’ 34 

learning rates. This is in-line with the relationship between learning and variability: while learning 35 

leads to an overall reduction in movement variability, only initial variability in specific task-36 

relevant dimensions can facilitate faster learning.  37 
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Introduction 38 

Motor learning is a key feature of our development and daily lives, from a baby learning 39 

to crawl, an adult learning a new sport, or a patient undergoing rehabilitation after a stroke. The 40 

process of learning a real-world motor skill is usually long and complex, and difficult to quantify 41 

as tasks are naturally unconstrained and highly variable. Most of the motor learning literature 42 

focuses on relatively simple tasks, performed in a laboratory setup or even within an MRI scanner, 43 

such as force-field adaptations1–4, visuomotor perturbations5–9, and sequence-learning of finger 44 

tapping or pinching tasks10–13. These laboratory-based learning tasks enable us to isolate specific 45 

features of motor learning and dissect them individually, thus provide elegant experiment designs 46 

to verify the experimenters’ hypothesis. As a result, motor learning in the real world is rarely 47 

studied. While laboratory-tasks play an important role in our understanding of sensorimotor control 48 

and learning, they address a very restricted range of behaviours that do not capture the full 49 

complexity of real-world motor control and may overlook fundamental principles of motor control 50 

and learning in real-life14,15. 51 

Neurobehavioral mechanisms are subject to evolutionary selection pressures and survive 52 

only if they are relevant in natural tasks. Thus, studying operation in natural contexts allows us to 53 

evaluate mechanisms the nervous system has been designed for16,17. E.g. in sensory neuroscience 54 

the use of natural sensory stimuli has led to a revolution of our mechanistic understanding of 55 

perception18,19. Over the past decade, there were a few notable efforts to study motor learning in 56 

unconstrained tasks. One line of research devised more complex tasks for skill learning20–22 (e.g. 57 

skittles) which were implemented as computer-based gamified tasks that emulate real-world tasks. 58 

Others moved away from the computer screen but were still highly constrained; e.g. throwing a 59 

frisbee while the subject’s trunk is strapped to the chair to prevent trunk movement23. Another line 60 

of inquiry used free-behaviour in real-world tasks such as tool-making or juggling17,24–27. In these 61 

studies, we and others focused on anatomical and functional MRI measurable changes following 62 

learning. In a 3-year long complex tool-making apprenticeship experiment17 we were able to 63 

quantify changes in motor control precision and improvements of task outcomes, but given the 100s 64 

of hours of training involved and complexity of the task itself, we were not able to record trial-by-65 

trial learning effects. Therefore, the findings and insights of learning studied in the computational 66 

motor control literature – at the level of actual changes in motor coordination and control policies 67 

– has received little attention in previous real-world learning studies. 68 

One of the main challenges of understanding real-world behaviour and specifically motor 69 

learning is to identify underlying simplicities in a highly variable stream of movements that are not 70 

well constrained. We take a data-driven approach to analyse a real-world task and thereby illustrate 71 

a process by which one can investigate a real-world motor learning task in a principled manner. We 72 

aim to inject as few assumptions a priori as possible about task-relevant joints or mechanisms of 73 
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learning, instead we aim to use plausible methods to reveal these to us. The paradigm we choose is 74 

the game of pool table billiards. Pool is a real-world task that involves many different sub-tasks 75 

(precision, alignment, ballistic movements, high-level sequential planning and sequencing of shots 76 

and ball positions) which requires advanced skills – hence it is a highly competitive sport. While 77 

our ultimate goal is to move to a data analysis framework for real-world motor learning in arbitrary 78 

tasks, we find that the game of pool offers a useful intermediate goal that frames the behavioural 79 

data in a way that makes our approach amenable to be understood in the currently dominant 80 

framework of laboratory-tasks and measures. Pool billiards has natural spatial constraints (the area 81 

in and around the pool table), divisibility of behaviour into trials (shots of the ball) allowing us to 82 

visualize results in the same framework of lab-based motor learning tasks and a clear outcome (sink 83 

the ball into the pocket). Subjects had to do a pool shot to put the ball in the pocket using 84 

unconstrained full-body, self-paced movement, with as many preparatory movements as the subject 85 

needs for each shoot, the only constraints arose from the placement of the white cue ball which the 86 

subjects shoot with the cue stick and the red target ball (that needs to go into the pocket). We 87 

implemented this as a real-world experiment, effectively only adding sensors to the subject and the 88 

pool table, i.e. subjects use the normal pool cue, balls, and pool table they would in a leisure setting 89 

and thus carry out natural motor commands, receive the natural somatosensory feedback and 90 

experience the same satisfaction (rewards) when they put the ball in the pocket as this is a real-91 

world task. Crucially, the skill of subjects in putting the ball into the pocket is learnable in the time 92 

course of 1-2 hours, allowing us to record and analyse the experiments as one session. 93 

To tackle the complexity of the high dimensional full-body motor control and task-space 94 

(game objects) movement, we recorded continuously the full-body movement during the entire 95 

learning period (about an hour and a half) and measured balls movements automatically on the 96 

table. EEG activity was also recorded during the task via mobile brain imaging, but to focus here 97 

on the motor kinematics learning we chose to report the neural activity results elsewhere28. We 98 

quantify the trends in full-body movement and task performance separately during the entire 99 

learning process, and look for correlations between the changes in the body movement and the 100 

performance in the task.  101 

We structured the results as follows: We ground our results in previous work on laboratory-102 

tasks, to show that our unconstrained task and its task goal (directional error of the target ball 103 

relative to the pocket it is meant to go in) displays the well-known features of human motor 104 

learning, namely learning curves with characteristic double exponential shape. We then 105 

characterize full-body movement structure during the task, and how learning changes the 106 

kinematics of every of the measured 18 joints. In our analysis, we will alternate between taking a 107 

data-driven view that attempts to be task-ignorant to identify underlying simplicities indicative of 108 

biological mechanisms in the data, and a task-based view to interpret the data-driven findings by 109 
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using task-domain knowledge. Finally, we compare across subjects to characterize how their 110 

performance, motor variability, and learning rates are linked.     111 

Results 112 

30 right-handed volunteers, with little to no previous experience playing billiards, 113 

performed 300 repeated trials (6 sets of 50 trials each with short breaks in-between) where the cue 114 

ball and target ball were placed in the same locations, and subjects were asked to shoot the target 115 

ball towards the far-left corner pocket (Figure 1A). During the entire learning process, we recorded 116 

the subjects' full-body movements with a ‘suit’ of inertial measurement units (IMUs; Figure 1B), 117 

and the balls on the pool table were tracked with a high-speed camera to assess the outcome of each 118 

trial (Figure 1C). 119 

 120 

A 

B 

C 

Figure 1. Experimental setup and task performance. (A) 30 right-handed healthy subjects performed 300 repeated trials of billiards 

shoots of the target (red) ball towards the far-left corner. (B) Full body movement was recorded with a ‘suit’ of 17 wireless IMUs 

(Xsens MVN Awinda). (C) The pool balls were tracked with a high-speed camera. Dashed lines show the trajectories of the cue (white) 

and target (red) balls over 50 trials of an example subject. (D) The trial-by-trial directional error of the target-ball (relative to the 

direction from its origin to the centre of the target pocket), averaged across all subjects, with a double-exponential fit (red curve). 

The time constant of the fast and slow components were 6 and 129 trials, respectively. Grey lines mark the range of successful trials 

(less than 3 degrees form the centre of the pocket). (E) The mean absolute directional error of the target-ball. (F) The success rates. 

(G) directional variability. and (H) directional variability corrected for learning (see text). (E-H) presented over blocks of 25 trials, 

averaged across all subjects, error bars represent SEM. 

D 

𝜏𝑓 = 6      
𝜏𝑠 = 129 

𝑅2 = 0.668 
𝑅𝑀𝑆𝐸 = 2.74 

E 

G 

F 

H 
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Movement and Learning in a real-world pool task  121 

The ball tracking data showed learning curve for the decay in the directional error of the 122 

target ball (relative to the direction from its origin to the centre of the target pocket) over trials 123 

(Figure 1D). This learning curve was best fit with a double exponential curve (Supplementary 124 

Figure 1). The direction of the error in the initial trials was consistent across subjects as they tended 125 

to hit the centre of the target ball and shot it forward towards the centre of the table. For measuring 126 

success rates and intertrial variability we divided the trials into blocks of 25 trials (each 127 

experimental set of 50 trials was divided into two blocks to increase the resolution in time). To 128 

improve robustness and account for outliers, we fitted the errors in each block with a t-distribution 129 

and used the location and scale parameters (µ and σ) as the blocks’ centre and variability measures. 130 

The learning curve over blocks (Figure 1E) emphasised the reduction in the inter-subject variability 131 

during learning (decreasing error bars). The success rate over blocks (percentage of successful trials 132 

in each block; Figure 1F) showed similar learning to the directional error.  133 

Learning was also evident in the intertrial variability in the shooting direction which 134 

decayed over learning (Figure 1G). Since learning also occurred within a block (especially during 135 

the first block) and the variability might be driven by the learning gradient, we corrected for it by 136 

calculating intertrial variability over the residuals from a regression line fitted to the ball direction 137 

in each block (while the learning curve is exponential, within the small blocks of 25 trials it is 138 

almost linear). This corrected intertrial variability showed only minor reduction in the initial blocks, 139 

relative to the uncorrected variability, and showed the same decay pattern over the learning (Figure 140 

1H). Overall, the task performance data suggested that subjects reached peak performance by the 141 

fifth experimental set (blocks 9-10, trials 200-250) and were doing the same (or even slightly worse) 142 

on the last experimental set (blocks 11-12, trials 250-300). Thus, we refer to the last two 143 

experimental sets (blocks 9-12, trials 201-300) as the ‘learning plateau’, while being mindful that 144 

professional pool players train over months and years to improve or maintain their skills. 145 

Kinematic data were recorded using a wearable motion tracking ‘suit’ of wireless IMUs, 146 

where individual wireless sensors (matchbox-sized) were attached via Velcro to elastic straps fixed 147 

around the subjects’ body without constraining movement. The full-body kinematics were analysed 148 

in terms of joint angles using 3 degrees of freedom for each joint following the International Society 149 

of Biomechanics (ISB) recommendations for Euler angle extractions of Z (flexion/extension), X 150 

(abduction/adduction), and Y (internal/external rotation). Note, this standard approach includes 151 

hinge joints of the body which have only 1 degree of freedom being recorded as 3 Euler angles. 152 

The full-body movements were analysed over the angular joint velocity profiles of all joints. The 153 

data allowed us to reconstruct the full-body pose at any given moment, which we checked for visual 154 

correctness on a subject-by-subject basis against video ground truth. However, we chose not to look 155 

at joint angle’s probability distributions, as those are more sensitive to potential drifts in the IMUs 156 

(and contain small changes not spottable by the human eye). We previously showed that joint 157 
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angular velocity probability distributions are more subject invariant than joint angle distributions 158 

suggesting these are the reproducible features across subjects in natural behavior29. In the current 159 

study, this robustness is quite intuitive: all subjects stood in front of the same pool table and used 160 

the same cue stick, thus the subjects’ body size influenced their joint angles distributions (taller 161 

subjects with longer arms had to bend more towards the table and flex their elbow less than shorter 162 

subjects with shorter limbs) but not joints angular velocity probability distributions  (Figure 2). 163 

 164 

In the first step of our data-driven analysis, we wanted to identify the key joints for the 165 

task: we analysed the angular velocity profiles of all joints, averaged across the initial block trials 166 

of all subjects, and found that most of the movement is done by the right arm, and specifically in 167 

the right shoulder (Figure 2 inner circle). This is expected as all subjects were right-handed and 168 

Time (sec) 

Angular Velocity (rad/sec) 

Figure 2. Angular velocity profiles. Angular velocity profiles in 3 degrees of freedom (DoF) for each joint (blue: flexion/extension, 

red: abduction/adduction; green: internal/external rotation) averaged across subjects and trials over the first block of trials (1-25) 

in the inner circle (grey background) and the first block after learning plateau (201-225) in the outer circle (white background). 

Shaded areas represent the standard error of the mean. Data was recorded in 60 Hz, X axis is in seconds, covering a 1 second window 

around the timepoint the cue hit the ball. Y axis is in radians per second. The joints of the right arm which do most of movement in 

the task are highlighted in orange box and have a different scale on the Y axis and grey line to indicate the Y axis limits of all other 

joints.  

Trials   1-25    

Trials 201-225 
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used their right hand to hold the cue stick and make the shot. Taking domain understanding of the 169 

task into account, we can explain the shoulder movement by the naivety of the subjects, as pool 170 

billiards guidebooks30–33 emphasize that the shooting movement should be from the elbow down 171 

while the shoulder should be kept still. Correspondingly, the angular velocity profiles averaged 172 

across the initial block of the learning plateau (trials 201-225) showed similar distributions with an 173 

overall decrease in peak velocities relative to the initial trials but an increase in the peak angular 174 

velocity of ‘right elbow rotation’, which is the rotation between the upper arm and the forearm 175 

sensor and is equivalent to forearm supination  (Figure 2 outer circle).  176 

The angular velocities of all other joints were much smaller than those of the shooting 177 

(right) arm. For visibility, we increased the y-axis range of the right arm joints by a factor of 3 178 

relative to all other joints (Figure 2). The high variance (relative to the mean) in some of the non-179 

shooting arm joints that do move (such as the left elbow) suggests variability across trials and 180 

subjects in the movement of this joint and specifically in its timing relative to the shot. While some 181 

subjects in some shots had a small left elbow movement just before the peak of the shot, others had 182 

it shortly after. The sensor noise was much smaller than variability across trials and subjects, as 183 

demonstrated in a recent work where we provide the noise floor for the IMU, specifically, angular 184 

velocity precision evaluated against ground-truth marker-based optical motion tracking34. 185 

To quantify the overall change in the within-trial variability structure of the body over 186 

trials, we use the generalised variance, which is the determinant of the covariance matrix35 and is 187 

intuitively related to the multidimensional scatter of data points around their mean. We measured 188 

the generalised variance over the angular velocity profiles of all joints and found that it increased 189 

rapidly over the first ~40 trials and later decreased slowly (Figure 3A). To understand what drives 190 

the generalised variance peak we plotted the variance-covariance matrixes of the first block, the 191 

second block (over the peak generalised variance), and ninth block (after learning plateaus) (Figure 192 

3B). It shows that the changes in the generalised variance were driven by an increase in the variance 193 

of all DoFs of the right shoulder and the negative covariance between the abduction/adduction and 194 

internal/external rotation of the right shoulder to the flexion/extension of the right shoulder and 195 

wrist. The internal/external rotation of the right elbow showed a continuous increase in its variance, 196 

which did not follow the trend of the generalised variance.  197 

Next we set to study the complexity of the movement – as defined by the number of degrees 198 

of freedom used by the subject – since the use of multiple degrees of freedom in the movement is 199 

a hallmark of skill learning36. For that purpose, we applied Principal component analysis (PCA) 200 

across joints for the angular velocity profiles per trial for each subject and used the number of PCs 201 

that explain more than 1% of the variance to quantify the degrees of freedom in each trial 202 

movement. While in all trials of all subjects most of the variance can be explained by the first PC 203 

(Supplementary Figure 2), there is a slow but consistent rise in the number of PCs that explain more 204 

than 1% of the variance in the joint angular velocity profiles (Figure 3C). The manipulative 205 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 12, 2020. ; https://doi.org/10.1101/612218doi: bioRxiv preprint 

https://doi.org/10.1101/612218


8 
 

complexity, suggested by Belić and Faisal37 as a way to quantify complexity for a given number of 206 

PCs on a fixed scale (C = 1 implies that all PCs contribute equally, and C = 0 if one PC explains 207 

all data variability), showed cleaner trajectory with the same trend (Figure 3D). This suggests that 208 

over trials subjects use more degrees of freedom in their movement. 209 

  210 

In the next step of our data-driven analysis, we wanted to identify signatures of learning 211 

joint-by-joint. For that, we defined a measure of task performance in single-joint space, which we 212 

named the Velocity Profile Error (VPE). VPE is the minimal correlation distances between the 213 

angular velocity profile of each joint in each trial to the angular velocity profiles of that joint in all 214 

successful trials (for more see methods). For all joints, VPE showed a clear pattern of decay over 215 

trials in an exponential learning curve (Figure 4A). We fitted it with a single exponential learning 216 

curve (see fits time constants and goodness of fit in Supplementary Table 1). A proximal-to-distal 217 

gradient in the time constant of these learning curves was observed across the right arm, from the 218 

shoulder to the elbow and the wrist rotation (Supplementary Figure 3). Intertrial variability in joint 219 

movement was measured over the VPEs in each block. Learning was also evident in the decay of 220 

the VPE intertrial variability during the learning over most joints across the body (Figure 4B).  221 

Figure 3. Variance and Complexity. (A) The trial-by-trial generalised variance, with a double-exponential fit (red curve). (B) The 

variance covariance matrix of the right arm joints angular velocity profiles averaged across subjects and trials over the initial block 

(trials 1-25), the second block (trials 26-50), in which the generalised variance peaks, and first block after learning plateau (block 9, 

trials 201-225). The order of the DoF for each joint is: flexion/extension, abduction/adduction, internal/external rotation. (C) The 

number of principal components (PCs) that explain more than 1% of the variance in the angular velocity profiles of all joints in a 

single trial, with an exponential fit (red curve). (D) The manipulative complexity (Belić and Faisal, 2015), with an exponential fit (red 

curve). (A, C, D) Averaged across all subjects over all trials. 

A C 

B D 

𝑅2 = 0.26 

𝑅𝑀𝑆𝐸 = 0.11 

𝑅2 = 0.63 

𝑅𝑀𝑆𝐸 = 0.003 

𝑅2 = 0.3 

𝑅𝑀𝑆𝐸 = 0.77 
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 222 

Trials 

VPE 

Blocks 

ITV(VPE) 

Figure 4. Learning over 

Joints. (A) Trial-by-trial 

Velocity Profile Error 

(VPE) for all 3 DoF of all 

joints, averaged across 

all subjects, with an 

exponential fit. The time 

constants of the fits are 

reported under the title. 

(B) VPE intertrial 

variability (ITV) over 

blocks of 25 trials, 

averaged across all 

subjects. The color code 

of the DoF is the same as 

in figure 2 (blue: 

flexion/extension; red: 

abduction/adduction; 

green: internal/external 

rotation). 

A 

B 
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Inter-subject differences in variability and learning  223 

In the final step of our data-driven analysis, we addressed the individuality of the subjects 224 

and looked across subjects for correlations between their task performance, learning rate, and joint 225 

movements. Since this is an exploratory study, all statistical tests are reported with caution and thus 226 

are not presented in the text but only in the figure (Figure 5) – where the readers can see the data 227 

points and make their judgment as for the true significance. The statistics are presented in Spearman 228 

rank correlation, to deal account for outliers and non-linear trends, and p-values are FDR corrected 229 

for multiple comparisons. The regression lines are presented only for visual account and include 230 

their 95% confidence intervals to address outlier biases. We found substantial differences between 231 

subjects in their initial errors, final errors, intertrial variability, and learning, which are overlooked 232 

in the group average results. One subject, who had low initial errors, showed no learning, i.e. did 233 

not reduce her error over trials from the first block (trials 1-25) to the learning plateau (trials 201-234 

300). For all other subjects, the final errors were smaller than the initial errors (Figure 5A). There 235 

was a significant correlation between the initial and the final errors, meaning subjects with higher 236 

initial errors tended to have higher final errors as well.  237 

While over the learning most subjects decreased their intertrial variability in the outcome 238 

(ball direction; Figure 1H & 5B) there was some tendency (though non-significant) for subjects 239 

who were initially more variable to be also more variable after learning (Figure 5B). The intertrial 240 

variability of the joint angular velocity profiles, which also decreased over learning (Figure 4B), 241 

showed a clearer and stronger correlation between the initial and the final intertrial variability 242 

(Figure 5E & Supplementary Figure 4). While this phenomenon was observed in various joints 243 

across the body, and dominant in the abduction across the spine joints, it was most dominant in the 244 

right shoulder abduction and rotation, the two joint angles that do most of the movement and carry 245 

most of its variance (Figure 2).  246 

Learning was defined as the difference between the initial error (over the first block: trials 247 

1-25) and the final error (over the learning plateau: trials 201-300) normalised by the initial error. 248 

For the one subject who showed no learning (had bigger errors during the learning plateau than 249 

during the first block), we set learning to zero to avoid negative learning value. While there is a 250 

negative relation between learning and final error by definition, due to the normalization by the 251 

initial error (which was highly variant), there was no significant correlation between the learning 252 

and the final error (as subjects who started worse could have learned more but still not perform 253 

better after learning), but there was only a trend that more learning leads to smaller final errors 254 

(Figure 5C). We speculated that the manipulative complexity (the degrees of freedom in the 255 

movement) might explain part of the inter-subject variability in learning rates. Presumably, subjects 256 

that learn more also show a higher increase in their manipulative complexity. Yet, we found no 257 

such relation. Both the initial (over the first block: trials 1-25) and the final (over the learning 258 

plateau: trials 201-300) manipulative complexity levels showed only a weak, non-significant, 259 
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correlation to learning, and the increase in manipulative complexity showed no correlation to 260 

learning (Supplementary Figure 5).      261 

 262 

We then tested if higher levels of initial task-relevant motor variability (variability in the 263 

directional error of the target ball) in this complex real-world task could predict faster learning 264 

across individuals, as found in simple lab experiments38. We indeed found that individuals with 265 

higher intertrial variability in the directional error of the target ball over the first block showed more 266 

learning (Spearman rank correlation r=0.64, p<0.001; Figure 5D). Importantly, this is the corrected 267 

intertrial variability (as in Figure 1H) which is calculated over the residuals from a regression line 268 

fitted to the ball direction to correct for the learning that is happening within the block. As a control, 269 

we also tested for correlation with the initial variability in the target ball velocity – which is a task-270 

irrelevant motor variability – and found no correlation (Spearman rank correlation r=0.06, p=0.77). 271 

A B C D 

Figure 5. Variability and learning across subjects. (A) Correlation between subjects’ mean absolute directional error (in degrees) 

over the first block (trials 1-25) and the learning plateau (trials 201-300). (B) Correlation between subjects’ directional variability (in 

degrees) over first block (corrected for learning trend, see text) and over the learning plateau. (C) Correlation between subjects’ 

mean absolute directional error over the learning plateau and their learning. (D) Correlation between subjects’ directional variability 

over the first block (corrected for learning trend, see text) and their learning. (E) Correlation between subjects’ VPE variability (in 

logarithmic scale) over the first block and the learning plateau for the right arm joints. (F) Correlation between subjects’ VPE 

variability (in logarithmic scale) over the first block and their learning for the right arm joints. (A-F) Correlation values are Spearman 

rank correlation, p-values are FDR corrected for multiple comparisons, regression lines (black) are linear fits with 95% confidence 

intervals (doted lines). (A, B) unity lines are in grey. 

E 

F 
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Since much of the learning is happening during the first 25 trials, calculating learning over 272 

blocks can lead to a ceiling effect. Therefore, to test the robustness of the correlation between 273 

learning and variability, we re-calculated the learning rate based on the 5, 7, 10, 15, and 20 initial 274 

trials (Supplementary Figure 6). All choices of more than 5 trials showed a significant correlation 275 

between the initial variability and the learning. In the case of 5 trials, there were 2 outlier subjects 276 

with high variability and little learning who damaged the correlation. These 2 subjects had an initial 277 

‘lucky shot’ which biased the learning calculation. Once including more trials, this effect was 278 

washed out.  279 

 Next, we tested the link between learning and initial variability over the joint angular 280 

velocity profiles of the right arm (Figure 5F). We found that the only joint angle where the intertrial 281 

variability showed a significant correlation to learning was the right elbow rotation (Spearman rank 282 

correlation r=0.47, p=0.0086), which is the forearm supination. We further tested the link over the 283 

full-body kinematics (Supplementary Figure 7) and found no other joint that showed this 284 

correlation. Thus, while learning leads to an overall reduction in movement variability, only initial 285 

variability in specific, task-relevant, dimensions can facilitate/predict learning. 286 

Discussion 287 

In this paper, we introduce a new paradigm for studying naturalistic motor learning during 288 

whole-body movement in a complex real-world motor skill task. Our results present new insights 289 

into motor learning in the real-world. While the learning curves in this in-the-wild paradigm are 290 

within the same range of those reported in reductionistic motor adaptation tasks2,39 we find that this 291 

learning is taking place not only in the task-relevant joints but across the entire body. Also, we 292 

found that task-relevant initial variability in the ball direction (movement outcome) can predict 293 

learning, like in laboratory-tasks38, and so can the initial variability in the right forearm supination 294 

which is the task-relevant joint angle variability.  295 

While pushing towards real-world neuroscience, we started here with a relatively 296 

constrained version of the real-world task, asking subjects to perform repeated trials of the same 297 

pool shot. This was to enable analysis using well-developed methods of laboratory-tasks. 298 

Nonetheless, it is a major step in the direction of a naturalistic study. First, we allow full-body 299 

unconstrained movement. Second, we do not use any artificial go cue and allow self-paced 300 

movement and as many preparatory movements as the subject needs for each shoot. Third, subjects 301 

receive natural somatosensory feedback. And last, we do not perturb the feedback to induce 302 

learning. 303 
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Fundamentals of real-world motor learning 304 

Across all subjects, we found that motor learning is a holistic process - the body is affected 305 

as a whole by learning the task. This was evident in the decrease in the VPE and the intertrial 306 

variability over learning (Figure 4A & B). This result should not come as a surprise considering 307 

decades of research in sport science showing this relationship. For example, baseball pitcher's torso, 308 

pelvis, and leg movements are directly associated with ball velocity40–42. Recently it was also 309 

demonstrated with full-body motion capture in a ball throwing task43.  And yet, unlike baseball 310 

pitches, basketball throws, or any unconstrained overarm throw, where the whole body is moving, 311 

in a pool shot the shooting arm is doing most of the movement and there is very little body 312 

movement. Thus, the whole-body learning is not trivial and suggestive that even in arm movement 313 

laboratory-tasks there is probably a whole-body learning aspect that is overlooked.    314 

We also found a proximal-to-distal gradient in the learning rates over the right arm joints 315 

(Figure 4A & Supplementary Figure 3). This is especially interesting in light of the well-known 316 

phenomenon of proximal-to-distal sequence in limb movements in sports science44 and 317 

rehabilitation45. While there are records of proximal-to-distal sequence at multiple time scales46, 318 

our results are the first to suggest that this gradient also occur over repetitions as part of the learning 319 

process.  320 

Variability & learning 321 

Intertrial variability is a fundamental characteristic of human movements and its underling 322 

neural activity47. It was recently reported that individuals exhibit distinct magnitudes of movement 323 

variability, which are consistent across movements and effectors, suggesting individual traits in 324 

movement variability48. Our results show that subjects who were initially more variable tended to 325 

be also more variable after learning in many joints across the body (Figure 5E & Supplementary 326 

Figure 4) and specifically in those of right shoulder that carry most of the variance in the movement. 327 

This result is in-line with the notion that there is an individual trait in movement variability. 328 

Intertrial kinematic variability is also thought to be critical for motor learning49–53. It was 329 

suggested that individuals with higher levels of task-relevant movement variability exhibit faster 330 

motor learning in both skill learning and motor adaptation error-based paradigms38. The failures to 331 

reproduce this result in visuomotor adaptation studies54,55, led to the idea that experiments with 332 

task-relevant feedback (which is common in visuomotor studies) emphasize execution noise over 333 

planning noise, whereas measurements made without feedback (as in38) may primarily reflect 334 

planning noise53. This is in-line with a recent modelling work in a visuomotor adaptation study 335 

(with task-relevant feedback) in which subjects with higher planning noise showed faster learning, 336 

but the overall movement variability was dominated by execution noise that was negatively 337 

correlated with learning56. In our task there were no manipulations or perturbations, thus, task-338 

relevant feedback was fully available to the participants. On the other hand, in real-world, there is 339 

no baseline variability, and the variability was measured during early learning and therefore is 340 
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probably dominated by planning noise, as subjects explore, regardless of the visual feedback. 341 

Indeed, subjects with higher variability in the target ball direction over the first block showed higher 342 

learning rates (Figure 5D). Our results straighten the link between variability and learning and are 343 

the first to show that it applies to real-world tasks. Moreover, the only joint angle that showed a 344 

significant correlation between initial variability and learning was the right forearm supination 345 

(measured by the right elbow rotation in our IMUs setup, Figure 5F & Supplementary Figure 7). 346 

Following the idea that task-relevant variability predicts learning, it would suggest that the right 347 

elbow rotation is the task-relevant joint angle to adjust during the initial learning of a simple pool 348 

shoot. Indeed, guidebooks for pool and billiards emphasize that while shooting one should keep 349 

one’s body still and move only the back (right) arm from the elbow down. While the elbow flexion 350 

movement gives the power to the shoot, the forearm supination (also known as ‘screwing’ in 351 

billiards) maintains the direction of the cue.  352 

It is important to note that this refers specifically to the forearm supination around the 353 

elbow and not around the wrist. This is due to the nature of the data collected with the sensors suit 354 

where the joint angles are recorded with 3 degrees of freedom based on the angles between the 355 

sensors from both sides of each joint. Thus, hinge joints of the body which have only one anatomical 356 

degree of freedom been recorded as 3 Euler angles. Specifically, the elbow rotation is the rotation 357 

between the upper arm sensor and the forearm sensor and is equivalent to forearm supination around 358 

the elbow. The wrist rotation is the rotation between the forearm sensor and the hand sensor and is 359 

equivalent to hand supination. 360 

It is also important to highlight that the above are correlational and cannot address the 361 

question of causality: i.e. can higher initial variability cause faster learning? While the study of 362 

real-world tasks takes us closer to understanding real-world motor-learning, it is lacking the key 363 

advantage of laboratory tasks (which made them so popular) of highly controlled manipulations of 364 

known variables, to isolate specific movement/learning components. To address this issue and 365 

introduce manipulations to this real-world task and establish causality, we developed an embodied 366 

virtual reality version of our pool task57. The VR-based approach can overcome this limitation. 367 

Conclusions 368 

In this study, we demonstrate the feasibility and importance of studying human 369 

neuroscience in-the-wild, and specifically in naturalistic real-world skill tasks. While finding 370 

similarities in learning structure between our real-world paradigm and lab-based motor learning 371 

studies, we highlight crucial differences, namely, real-world motor learning is a holistic full-body 372 

process. Looking at the motor behaviour over learning across the entire body enabled us to explore 373 

the relationship between variability and learning and define task-relevant variability that can 374 

facilitate learning. 375 

 376 
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Methods 377 

Ethics statement. All experimental procedures were approved by Imperial College 378 

Research Ethics Committee and performed in accordance with the declaration of Helsinki. All 379 

subjects gave informed consent prior to participating in the study. 380 

Experimental Setup and Design. 30 right-handed healthy human volunteers with normal or 381 

corrected-to-normal visual acuity (12 women and 18 men, aged 24±3) participated in the study. 382 

The recruitment criteria were that they played pool/billiards/snooker for leisure fewer than 5 times 383 

in their life, never in the recent 6 months, and had never received any pool game instructions. All 384 

volunteers gave informed consent before participating in the study, and all experimental procedures 385 

were approved by the Imperial College Research Ethics Committee and performed in accordance 386 

with the declaration of Helsinki. The volunteers stood in front of a 5ft pool table (Riley Leisure, 387 

Bristol, UK) with 1 7/8" (48mm diameter) pool balls. Volunteers performed 300 repeated trials 388 

where the cue ball (white) and the target ball (red) were placed in the same locations. We asked 389 

volunteers to shoot the target ball towards the pocket of the far-left corner (Figure 1A). Trials were 390 

split into 6 sets of 50 trials with a short break in-between to allow the subjects to rest a bit and 391 

reduce potential fatigue. Each experimental set (of 50 trials) took 8 to 12 minutes. For the data 392 

analysis, we further split each set into two blocks of 25 trials each, resulting in 12 blocks. During 393 

the entire learning process, we recorded the subjects' full-body movements with a motion-tracking 394 

‘suit’ of 17 wireless inertial measurement units (IMUs; Figure 1B). The balls on the pool table were 395 

tracked with a high-speed camera (Dalsa Genie Nano, Teledyne DALSA, Waterloo, Ontario) to 396 

assess the subjects’ success in the game and to analyze the changes throughout learning, not only 397 

in the body movement but also in its outcome – the ball movement (Figure 1C).   398 

Balls tracking. The balls movement on the pool table were tracked with a computer vision 399 

system mounted from the ceiling. The computer vision camera was a Genie Nano C1280 Color 400 

Camera (Teledyne Dalsa, Waterloo, Canada), colour images were recorded with a resolution of 401 

752x444 pixels and a frequency of 200Hz. This Ethernet-based camera was controlled via the 402 

Common Vision Blox Management Console (Stemmer Imaging, Puchheim, Germany) and image 403 

videos recorded with our custom software written in C++ based on a template provided by Stemmer 404 

Imaging. Our software captured the high-performance event timer, the camera frames and 405 

converted the images from the camera’s proprietary CVB format to the open-source OpenCV 406 

(https://opencv.org/) image format for further processing in OpenCV. The video frames were 407 

stored as an uncompressed AVI file to preserve the mapping between pixel changes and timings 408 

and the computer’s real-time clock time-stamps were recorded to a text file. Each trial was subject-409 

paced, so the experimenter observed the subject and hit the spacebar key as an additional trigger 410 

event to the time-stamps text file. This timing data was later used to assist segmentation of the 411 

continuous data stream into trials. The positions of the two pool balls (white cue ball and red target 412 
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ball) were calculated from the video recordings offline using custom software written in C++ using 413 

OpenCV. Then, with custom software written in MATLAB (R2017a, The MathWorks, Inc., MA, 414 

USA), we segmented the ball tracking data and extracted the trajectory of the balls in each trial. 415 

For each trial, a 20 x 20 pixels (approx 40 x 40 mm) bounding box was set around the centre of the 416 

48 mm diameter cue ball. The time the centre of the ball left the bounding box was recorded as the 417 

beginning of the cue ball movement. The pixel resolution and frame rate were thus sufficient to 418 

detect movement onset, acceleration and deceleration of the pool balls. The target (red) ball initial 419 

position and its position in the point of its peak velocity were used to calculate the ball movement 420 

angle (relative to a perfectly straight line between the white cue ball and the red target ball). We 421 

subtracted this angle from the centre of the pocket angle (the angle the target ball initial position 422 

and the centre of the pocket relative to the same straight line between the balls) to calculate the 423 

directional error for each shot. 424 

Full-Body Motion Tracking. Kinematic data were recorded at 60 Hz using a wearable 425 

motion tracking ‘suit’ of 17 wireless IMUs (Xsens MVN Awinda, Xsens Technologies BV, 426 

Enschede, The Netherlands). Data acquisition was controlled via a graphical interface (MVN 427 

Analyze, Xsens Technologies BV, Enschede, The Netherlands). Xsens MVN uses a biomechanical 428 

model and proprietary algorithms to estimate 3D joint kinematics 58,59. The Xsens sensors shows 429 

high accuracy34, and the Xsens MVN system was used and validated in tracking real-world 430 

behaviour in many sports including football60, horse riding61, ski62 and snowboarding63. The Xsens 431 

3D joint kinematics were exported as XML files and analysed using custom software written in 432 

MATLAB (R2017a, The MathWorks, Inc., MA, USA). The Xsens full-body kinematics were 433 

extracted in joint angles in 3 degrees of freedom for each joint that followed the International 434 

Society of Biomechanics (ISB) recommendations for Euler angle extractions of Z 435 

(flexion/extension), X (abduction/adduction) Y (internal/external rotation). This standard approach 436 

includes hinge joints of the body which have only 1 degree of freedom being recorded as 3 Euler 437 

angles. 438 

Angular Velocity Profile Analysis. From the Xsens 3D joint angles we extracted the angular 439 

velocity profiles of all joints in all trials. We defined the peak of the trial as the peak of the average 440 

absolute angular velocity across the DoFs of the right shoulder and the right elbow. We aligned all 441 

trials around the peak angular velocity of the trial and cropped a window of 1 sec around the peak 442 

for the analysis of joint angular velocity profiles during the shot and its follow-through. This time 443 

window covered the entire movement of the pool shoot while eliminating the preparatory 444 

movement and the mock shoots (Figure 2).  445 

Task performance & learning measures. The task performance was measured by the trial 446 

error which was defined as an absolute angular difference between the target ball movement vector 447 

direction and the desired direction to land the target ball in the centre of the pocket. The decay of 448 

error over trials is the clearest signature of learning in the task. For measuring success rates and 449 
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intertrial variability we divided the trials into blocks of 25 trials by dividing each experimental set 450 

of 50 trials to two blocks. This was done to increase the resolution in time from calculating those 451 

on the full sets. Success rate in each block was defined by the ratio of successful trial (in which the 452 

ball fell into the pocket). To improve robustness and account for outliers, we fitted the errors in 453 

each block with a t-distribution and used the location and scale parameters (µ and σ) as the blocks’ 454 

centre and variability measures. To correct for learning within a block, we also calculated a 455 

corrected intertrial variability, which was the intertrial variability over the residuals from a 456 

regression line fitted to the ball direction in each block. This correction for the learning trend within 457 

a block does not change the variability measure by much (Figure 1G&H). This is since our 458 

variability measure is not the standard deviation, but the scale parameter of a t-distribution fitted to 459 

the errors. When correcting the change in the distribution fitted was mostly an increase in the 460 

degrees of freedom and a not decrease in the scale. I.e. the early trials which were much higher than 461 

the mean and the late trials which were much lower become closer to the mean and therefore the 462 

distribution is more normal as it loses the heavy tails). This is highlighting the robustness of the 463 

scale measure for variability. 464 

To quantify the within-trial variability structure of the body movement, we use the 465 

generalised variance, which is the determinant of the covariance matrix35 and is intuitively related 466 

to the multidimensional scatter of data points around their mean. We measured the generalised 467 

variance over the velocity profiles of all joints in each trial to see how it changes with learning. To 468 

study the complexity of the body movement which was defined by the number of degrees of 469 

freedom used by the subject we applied principal component analysis (PCA) across joints for the 470 

velocity profiles per trial for each subject and used the number of PCs that explain more than 1% 471 

of the variance to quantify the degrees of freedom in each trial movement. We also calculated the 472 

manipulative complexity which was suggested by Belić and Faisal37 as a way to quantify 473 

complexity for a given number of PCs on a fixed scale (C = 1 implies that all PCs contribute equally, 474 

and C = 0 if one PC explains all data variability).  475 

Statistical Analysis. Trial by trial learning curves of single-trial performance measure 476 

(directional error of the target ball relative to the centre of the pocket) were fitted with a single, 477 

double, and triple exponential learning curve using Matlab fit function. As in most motor learning 478 

datasets, the double exponential curve showed the best fit (Supplementary Figure 1). 479 

As a measure of task performance in body space, correlation distances (one minus Pearson 480 

correlation coefficient) were calculated between the angular velocity profile of each joint in each 481 

trial to the angular velocity profiles of that joint in all successful trials. The minimum over these 482 

correlation distances produced a single measure of Velocity Profile Error (VPE) for each joint in 483 

each trial.  484 

𝑉𝑃𝐸𝑖 = min
𝑠
(𝑐𝑜𝑟𝑟𝐷𝑖𝑠𝑡(𝑣𝑒𝑙𝑃𝑟𝑜𝑓𝑖, 𝑣𝑒𝑙𝑃𝑟𝑜𝑓𝑠)) 485 
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Thus, VPE in trial 𝑖 was the minimal correlation distances between the angular velocity 486 

profile in trial 𝑖 (𝑣𝑒𝑙𝑃𝑟𝑜𝑓𝑖) and the angular velocity profiles in successful trials 𝑠 (𝑣𝑒𝑙𝑃𝑟𝑜𝑓𝑠). While 487 

there are multiple combinations of body variables that can all lead to successful task performance, 488 

this measure looks for the distance from the nearest successful solution used by the subjects and 489 

thus provides a metric that accounts for the redundancy in the body. 490 

All correlations between error, variability, and learning are Spearman's rank correlation 491 

coefficients to be robust to outliers and non-linear trends, and their p-values are FDR corrected for 492 

multiple comparisons. Regression lines are based on linear regression fits (in logarithmic scale for 493 

VPE variability) and are presented with 95% confidence intervals.  494 
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