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Abstract 18 

Microbes are embedded in complex communities where they engage in a wide array of 19 

intra- and inter-specific interactions. The extent to which these interactions drive or 20 

impede microbiome diversity is not well understood. Historically, two contrasting 21 

hypotheses have been suggested to explain how species interactions could influence 22 

diversity. ‘Ecological Controls’ (EC) predicts a negative relationship, where the evolution 23 

or migration of novel types is constrained as niches become filled. In contrast, ‘Diversity 24 

Begets Diversity’ (DBD) predicts a positive relationship, with existing diversity 25 

promoting the accumulation of further diversity via niche construction and other 26 

interactions. Using high-throughput amplicon sequencing data from the Earth 27 

Microbiome Project, we provide evidence that DBD is strongest in low-diversity biomes, 28 

but weaker in more diverse biomes, consistent with biotic interactions initially favoring 29 

the accumulation of diversity (as predicted by DBD). However, as niches become 30 

increasingly filled, diversity hits a plateau (as predicted by EC). 31 

 32 

 33 

Impact statement: 34 

Microbiome diversity favors further diversity in a positive feedback that is strongest in 35 

lower-diversity biomes (e.g. guts) but which plateaus as niches are increasingly filled in 36 

higher-diversity biomes (e.g. soils).  37 
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Introduction 38 

The majority of the genetic diversity on Earth is encoded by microbes (Hug et al., 39 

2016; Lapierre & Gogarten, 2009; Sunagawa et al., 2015) and the functioning of all 40 

Earth’s ecosystems is reliant on diverse microbial communities (Falkowski et al., 2008). 41 

High-throughput 16S rRNA gene amplicon sequencing studies continue to yield 42 

unprecedented insight into the taxonomic richness of microbiomes (e.g. (Louca et al., 43 

2019; Sogin et al., 2006)), and abiotic drivers of community composition (e.g. pH; 44 

Lauber et al., 2009; Power et al., 2018) are increasingly characterized. Although it is 45 

known that biotic (microbe-microbe) interactions can also be important in determining 46 

community composition (Needham & Fuhrman, 2016), comparatively little is known 47 

about how such interactions, either positive (e.g. cross-feeding; Seth & Taga, 2014) or 48 

negative (e.g. toxin-mediated interference competition; Czárán et al., 2002; Hibbing et 49 

al., 2010), shape microbiome diversity as a whole.  50 

The dearth of studies exploring how microbial interactions could influence 51 

diversity stands in marked contrast to a long research tradition on biotic controls of plant 52 

and animal diversity (Elton, 1946; Gause, 2003). In an early study of 49 animal 53 

(vertebrate and invertebrate) community samples, Elton plotted the number of species 54 

versus the number of genera and observed a ~1:1 ratio in each individual sample, but a 55 

~4:1 ratio when all samples were pooled (Elton, 1946). He took this observation as 56 

evidence for competitive exclusion preventing related species, more likely to overlap in 57 

niche space, to co-exist. This concept, more recently referred to as niche filling or 58 

Ecological Controls (EC) (Schluter & Pennell, 2017), predicts speciation (or, more 59 

generally, diversification) rates to decrease with increasing standing species diversity 60 
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because less niche space is available (Rabosky & Hurlbert, 2015). In contrast, the 61 

Diversity Begets Diversity (DBD) model predicts that when species interactions create 62 

novel niches, standing biodiversity favors further diversification (Calcagno et al., 2017; 63 

Whittaker, 1972). For example, niche construction (i.e. the physical, chemical or 64 

biological alteration of the environment) could influence the evolution of the species 65 

constructing the niche, as well as that of co-occurring species (Laland et al., 1999; San 66 

Roman & Wagner, 2018). An alternative to either EC or DBD is The Neutral Theory of 67 

Biodiversity and Biogeography, in which all species are functionally equivalent and 68 

communities assemble via random sampling (Hubbell, 2001). Neutral Theory serves as a 69 

null hypothesis of community assembly in macrobes (Azaele et al., 2016; N. J. Gotelli & 70 

McGill, 2006), and more recently in microbiome research (Harris et al., 2017; Li & Ma, 71 

2016). 72 

Empirical evidence for the action of EC vs. DBD in natural plant and animal 73 

communities has been mixed (Calcagno et al., 2017; Emerson & Kolm, 2005; Palmer & 74 

Maurer, 1997; Price et al., 2014; Rabosky et al., 2018). Laboratory evolution experiments 75 

tracking the diversification of a focal bacterial lineage in communities of varying 76 

complexity have also yielded contradictory results, with support for EC, DBD, or 77 

intermediate scenarios (Brockhurst et al., 2007; Meyer & Kassen, 2007). For example, 78 

diversification of a focal Pseudomonas clone was favored by increasing community 79 

diversity in the range of 0-20 other strains or species within the same genus (Calcagno et 80 

al., 2017; Jousset et al., 2016) but diversification was inhibited in highly diverse 81 

communities (e.g. hundreds or thousands of species in compost; (Gómez & Buckling, 82 
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2013)). These experiments are consistent with interspecific competition initially driving 83 

(Bailey et al., 2013), but eventually inhibiting diversification as niches are filled. 84 

Most laboratory experiments are restricted to relatively short evolutionary time 85 

scales and include only a small number of taxa; it is therefore unclear if they can be 86 

generalized to natural communities consisting of many more taxa evolving and 87 

assembling over much longer periods, spanning more environmental change, greater 88 

evolutionary diversification, and frequent migration events. Although the absence of a 89 

substantial prokaryotic fossil record hinders deconvoluting speciation and extinction rates 90 

(Louca & Pennell, 2020; Marshall, 2017), Louca et al. (Louca et al., 2018) recently 91 

estimated that bacterial diversity has mostly increased over the past billion years, with 92 

speciation rates slightly exceeding extinction rates. However, because many free-living 93 

microbes have high migration rates (“everything is everywhere, but the environment 94 

selects” (de Wit & Bouvier, 2006)), we expect that the majority of diversity present 95 

within a typical microbiome sample is selected from a pool of migrants rather than 96 

having evolved in situ. As such, here we broadly define “diversity begets diversity” 97 

(DBD) to include the combined effects of community assembly from a migrant pool 98 

(‘ecological species sorting’) and in situ evolutionary diversification (Fig. 1).  99 

 100 
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 101 

Fig. 1. Contrasting the Diversity Begets Diversity (DBD) and Ecological Controls 102 

(EC) models. (A) In this hypothetical scenario, microbiome sample 1 contains one non-103 

focal genus, and two amplicon sequence variants (ASVs) within the focal genus (point at 104 

x=1, y=2 in the plot). Sample 2 contains three non-focal genera, and four ASVs within 105 

the focal genus (point at x=3, y=4). Tracing a line through these points yields a positive 106 

diversity slope, supporting the DBD model (red). (B) Alternatively, a negative slope 107 

would support the Ecological Controls (EC) model (blue line). In the middle panel, we 108 

consider a community assembly model to explain the hypothetical data of the top panel,  109 

in which standing diversity (black points) in a community selects (for or against) new 110 

types (referred to here as ASVs) which arrive via migration (purple points & arrows). In 111 

the bottom panel, we consider an evolutionary diversification model of a focal lineage 112 

(genus) into ASVs as a function of initial genus-level community diversity present at the 113 

time of diversification. 114 
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To test whether patterns of diversity in natural communities conform to EC or 115 

DBD dynamics, we used 2,000 microbiome samples from the Earth Microbiome Project 116 

(EMP), the largest available repository of biodiversity based on standardized sampling 117 

and sequencing protocols, with 16S rRNA gene amplicon sequence variants (ASVs) as 118 

the finest-grained taxonomic unit (Thompson et al., 2017). Following Elton (Elton, 119 

1946), we use the equivalent of Species:Genus ratios, calculating a range of taxonomic 120 

diversity ratios (up to the Class:Phylum level) as proxies for diversity within a focal 121 

taxon, from shallow to deep evolutionary time. We then plot each ratio as a function of 122 

the number of non-focal taxa (Genera, Families, Orders, Classes, and Phyla, respectively) 123 

with which the focal taxon could interact. We refer to the slope of these plots as the 124 

“diversity slope”, with negative slopes supporting EC and positive slopes supporting 125 

DBD (Fig. 1). As a null, we compare these slopes to the expectation under Neutral 126 

Theory. To avoid a trivially positive diversity slope due to variation in sequencing effort, 127 

all samples were rarefied to 5,000 observations (counts of 16S rRNA gene sequences), as 128 

diversity estimates are highly sensitive to sampling effort (Nicholas J. Gotelli & Colwell, 129 

2001). As 16S evolves at a rate of roughly 1-2 substitutions per million years (Kuo & 130 

Ochman, 2009b), evolutionary diversification within individual EMP samples cannot be 131 

uncovered using this marker; rather our data represent mainly a record of community 132 

assembly. 133 

 134 

  135 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2020. ; https://doi.org/10.1101/612739doi: bioRxiv preprint 

https://doi.org/10.1101/612739
http://creativecommons.org/licenses/by-nc/4.0/


8 

Results 136 

 137 

Quantifying the DBD-EC continuum in prokaryote communities compared to 138 

neutral null models. We used generalized linear mixed models (GLMMs) to estimate the 139 

diversity slope at each taxonomic level in the EMP data, which revealed a tendency 140 

toward positive slopes with significant variation explained by the random effects of 141 

lineage, environment, and their interaction (Table 1, Figure 2, Figure 2 supplements 1-142 

6, Supplementary Data file 1 Section 1). All models reported here provide significantly 143 

better fits compared to models without the fixed effect of community diversity, and 144 

coefficients of determination (R2) are higher with the inclusion of random effects, 145 

showing their importance (Supplementary Data file 2). Examples of how the diversity 146 

slope varies across lineages and environments are shown in Figure 2 and Figure 2 147 

supplements 2-6. To assess the significance of these slope estimates in light of potential 148 

sampling bias and data structure (Gotelli & Colwell, 2001; Jarvinen, 1982), we 149 

considered null models, all of which randomize the associations between ASVs within a 150 

sample, thus randomizing any true biotic interactions. Models 1 and 2 are based on draws 151 

from the zero-sum multinomial (ZSM) distribution, which arises from the standard 152 

Neutral Theory of Biodiversity (Methods). Model 1, in which each microbiome sample 153 

is drawn from the same ZSM distribution, produces a significantly negative diversity 154 

slope (Figure 2 supplement 7; Table 2). Model 2, in which each environment draws 155 

from a separate distribution, is effectively a composite of Model 1 in which different 156 

environments, each with a negative slope, are 'stacked' to yield an overall positive slope 157 

(Figure 2 supplement 7). However, the Model 2 slope is not significant in a GLMM 158 
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accounting for variation across environments (Table 2, Supplementary Data file 3 159 

Section 1.2). In the real EMP data, most individual environments tend toward a positive 160 

slope (Figure 2 supplement 8). The tendency toward positive diversity slopes in the 161 

EMP is therefore not straightforwardly explained by neutral processes.  162 

 To estimate the power to detect either DBD or EC, we specifically added each of 163 

these effects to data simulated under a null model. As expected, adding DBD reversed the 164 

negative slope and rendered it positive (Table 2; Figure 2 supplement 7, 165 

Supplementary Data file 3 Section 2.1), suggesting reasonable power to detect DBD 166 

when truly present. In contrast, the addition of EC had little effect on the slope, 167 

suggesting low power to detect EC under some null models. Taken together, these 168 

modelling results suggest that positive diversity slopes observed in the EMP are more 169 

readily explained by DBD than by Neutral Theory, whereas negative slopes could be 170 

explained by EC, Neutral Theory, or some combination of the two. 171 

 Because taxonomic labels can be unavailable or inconsistent with phylogenetic 172 

relationships (Parks et al., 2018; Vos, 2011) we repeated the analyses using nucleotide 173 

sequence identity in the 16S rRNA gene instead of taxonomy, and again recovered 174 

generally positive diversity slopes (Methods). As a final sensitivity analysis, we repeated 175 

the GLMMs using unrarefied community Shannon diversity instead of richness 176 

(Methods) and obtained similar results, with generally positive diversity slopes that 177 

could in some cases be reversed depending on the lineage or environment (Table 3, 178 

Supplementary Data file 1 Section 2). The Shannon diversity metric is robust to 179 

sampling effort, suggesting that the results are not biased by undersampling in diverse 180 

biomes. Even if undersampling could bias the diversity slope downward in more diverse 181 
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samples, the effect is unlikely to be large at a rarefaction to 5,000 sequences, and only to 182 

occur at the extremes of diversity (e.g. very many genera and high ASV:genus ratios) and 183 

not at higher taxonomic levels (e.g. Class:Phylum) (Figure 2 supplement 9). 184 

 185 

 186 

Fig. 2. Focal lineage diversity as a function of community diversity in the top two 187 

most prevalent taxa at each taxonomic level. As in Fig. 1, the x-axes show community 188 

diversity in units of the number of non-focal taxa (e.g. the number of non-Proteobacteria 189 

phyla for the left-most column), and the y-axes show the taxonomic ratio within the focal 190 

taxon (e.g. the number of classes within Proteobacteria). Significant positive diversity 191 

slopes are shown in red, negative in blue (linear models, P <0.05, Bonferroni corrected 192 

for 17 tests), and non-significant in grey. Note that linear models are distinct from 193 

GLMMs, and are for illustrative purposes only. Four representative environments are 194 

shown (see Figure 2 supplements 2-6 for plots in all 17 environments). 195 

 196 

DBD reaches a plateau at high diversity. It is expected from theory and experimental 197 

studies that a positive DBD relationship should eventually reach a plateau, giving way to 198 

EC as niches become saturated (Brockhurst et al., 2007; Gómez & Buckling, 2013). This 199 
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expectation is borne out in our dataset, particularly in the nucleotide sequence-based 200 

analyses which support quadratic or cubic relationships over linear diversity slopes 201 

(Figure 2 supplement 10). For example, in the animal distal gut, a relatively low-202 

diversity biome, we observed a strong linear DBD relationship at most phylogenetic 203 

depths; in contrast, the much more diverse soil biome clearly reaches a plateau (Figure 2 204 

supplement 11).  205 

To comprehensively test the hypothesis that more diverse microbiomes 206 

experience weaker DBD due to saturated niche space, we used a GLMM including the 207 

interaction between diversity and environment as a fixed effect. We considered this 208 

model only for taxonomic ratios with significant diversity slope variation by environment 209 

(Table 1): Family:Order, Order:Class, and Class:Phylum. Diversity slopes were 210 

significantly higher in less diverse (often host-associated) biomes, suggesting that niche 211 

filling leads to a plateau of DBD in more diverse biomes (Fig. 3, Supplementary Data 212 

file 1 Section 3). The interaction observed in the real EMP data between community 213 

diversity and biome type in shaping focal lineage diversity was not observed under a 214 

neutral null (Model 2, in which each environment has its own characteristic level of 215 

diversity) (Supplementary Data file 3 Section 1.2). The DBD plateau observed in more 216 

diverse biomes is thus not readily explained by a neutral model, nor is rarefaction 217 

expected to bias the diversity slope estimates, particularly at the Class:Phylum level 218 

(Figure 2 supplement 9). This suggests that the plateau of DBD at higher levels of 219 

community diversity is not an artefact of data structure or sampling effort. Finally, we 220 

considered whether variation along the EC-DBD continuum could be explained by 221 

differential cell density across environments, which could affect both the frequency of 222 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2020. ; https://doi.org/10.1101/612739doi: bioRxiv preprint 

https://doi.org/10.1101/612739
http://creativecommons.org/licenses/by-nc/4.0/


12 

cell-cell interactions (a biological effect) or the sampling depth (a technical artefact). 223 

Although precise estimates of cell densities in all EMP biomes are not available, we 224 

extracted plausible ranges for eight biomes from the literature (Kennedy & de Luna, 225 

2005; Lindow & Brandl, 2003; Sender et al., 2016; Whitman et al., 1998) and annotated 226 

these in Figure 3. It is clear from this figure that relatively high- and low-density samples 227 

are found along the range of community taxonomic diversities, demonstrating that cell 228 

density is unlikely to drive the trend of decreasing diversity slopes with increasing 229 

community diversity. 230 

 231 
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 232 

Fig. 3. The diversity slope of focal taxa is higher in low-diversity (often host-233 

associated) microbiomes. The x-axis shows the mean number of non-focal taxa: (A) 234 

phyla, B) classes, and C) orders in each biome. On the y-axis, the diversity slope was 235 

estimated by a GLMM predicting focal lineage diversity as a function of the interaction 236 

between community diversity and environment type at the level of A) Class:Phylum, B) 237 

Order:Class, and C) Family:Order ratios (Supplementary Data file 1 Section 3). The 238 

line represents a linear regression; the shaded area depicts 95% confidence limits of the 239 

fitted values. Adjusted R2 and P-values from the linear fits are shown at the top right of 240 

each panel. See Supplementary Data file 2 for model goodness of fit. Slopes not 241 

significantly different from zero are shown as empty circles. Estimates of bacterial cell 242 
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density from the literature are indicated in grey text, in units of bacteria/mm3. For animal 243 

(skin) and plant surface, units of bacteria/mm2 were converted to mm3 assuming layers of 244 

bacteria 1 micron thick. For rhizosphere samples we assume a density of 1-2g/cm3 245 

(Kennedy & de Luna, 2005). 246 

 247 

Abiotic drivers of diversity. Our results thus far suggest that community diversity is a 248 

major determinant of the EC-DBD continuum, and by extension that biotic interactions 249 

may override abiotic factors in determining where a community lies on the continuum. 250 

To formally test for the additional role abiotic drivers might play in generating the 251 

observed EC-DBD continuum, we analyzed two data sets in more detail.  252 

First, we analyzed a subset of 192 EMP samples with measurements of four key 253 

abiotic factors shown to affect microbial diversity (pH, temperature, latitude, and 254 

elevation; (Delgado-Baquerizo et al., 2018; Lauber et al., 2009; Power et al., 2018; 255 

Schluter & Pennell, 2017)). We fitted a GLMM with focal lineage-specific diversity as 256 

the dependent variable, and with the number of non-focal lineages, the four abiotic 257 

factors and their interactions as predictors (fixed effects). As in the full EMP dataset 258 

(Table 1), focal lineage diversity was positively associated with community diversity at 259 

all taxonomic ratios in the EMP subset (Table 4). As expected, certain abiotic factors, 260 

alone or in combination with diversity, had significant effects on focal lineage diversity 261 

(Table 4). However, the effects of abiotic factors were always weaker than the effect of 262 

community diversity (Table 4; Supplementary Data file 1 Section 4).  263 

Second, we used a global 16S sequencing dataset of 237 soil samples associated 264 

with more detailed environmental metadata (Delgado-Baquerizo et al., 2018) which we 265 

reprocessed to yield ASVs comparable to those in the EMP (Methods). This dataset 266 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2020. ; https://doi.org/10.1101/612739doi: bioRxiv preprint 

https://doi.org/10.1101/612739
http://creativecommons.org/licenses/by-nc/4.0/


15 

revealed weaker evidence for DBD and stronger effects of abiotic variables on diversity. 267 

Community diversity generally had significant positive effects on focal-lineage diversity, 268 

but the effect was weak and not detectable at all taxonomic ratios (Table 5). Known 269 

abiotic drivers of soil bacterial diversity such as pH (Lauber et al., 2009) and latitude 270 

(Delgado-Baquerizo et al., 2018) had effects of similar or stronger magnitude compared 271 

to the effect of community diversity (Table 5, Supplementary Data file 4). The 272 

relatively weak effect of DBD and strong effect of abiotic drivers on diversity in this soil 273 

dataset can be explained by the fact that soils generally are highly diverse and have 274 

relatively low diversity slopes (Figure 3).  275 

We note that it remains possible that unmeasured abiotic effects could explain 276 

some of the DBD effects observed in the EMP. Although only a small subset of abiotic 277 

factors was considered, the generally positive diversity slopes in the EMP are not likely 278 

to be driven by these factors in the abiotic environment (Table 4). Specifically, we 279 

consider it unlikely that unmeasured abiotic factors would always act similarly, and in the 280 

same direction across multiple different environments, to drive DBD. However, as 281 

demonstrated in soil (Table 5), abiotic factors may become increasingly important in 282 

highly diverse biomes with weak DBD. 283 

 284 

DBD is more pronounced in resident taxa than in migrant- or generalist taxa.  A 285 

recent meta-analysis of 16S sequence data from a variety of biomes suggests there is an 286 

important distinction between generalist lineages found in many environments, compared 287 

to specialists with a more restricted distribution (Sriswasdi et al., 2017). Generalists were 288 

inferred to have higher speciation rates, suggesting that the DBD-EC balance might differ 289 
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between generalists and specialists (Sriswasdi et al., 2017). To further investigate this 290 

difference, we defined ‘residents’, taxa with a strong preference for a specific biome, in 291 

addition to generalists without a strong biome preference in the EMP dataset. We first 292 

clustered environmental samples by their genus-level community composition using 293 

fuzzy k-means clustering (Fig. 4a), which identified three major clusters: ‘animal-294 

associated’, ‘saline’, and ‘non-saline’. The clustering included some outliers (e.g. plant 295 

corpus grouping with animals), but was generally consistent with known distinctions 296 

between host-associated vs. free-living (Thompson et al., 2017), and saline vs. non-saline 297 

communities (Auguet et al., 2010; Lozupone & Knight, 2007). Resident genera were 298 

defined as those with a strong preference for a particular environment cluster (whether 299 

due to dispersal limitation or narrow niche breadth) using indicator species analysis 300 

(permutation test, P<0.05; Fig. 4a; Figure 4 supplement 1; Supplementary Data file 5), 301 

and genera without a strong preference were considered generalists. When residents of 302 

one environmental cluster were (relatively infrequently) observed in a different cluster, 303 

we defined them as “migrants” in that sample. For each environment cluster, we ran a 304 

GLMM with resident genus-level diversity (the number of non-focal genera) as a 305 

predictor of focal-lineage diversity (the ASV:Genus ratio) for residents, generalists, or 306 

migrants to that sample (Supplementary Data file 1 Section 5).  307 

Resident community diversity had no significant effect on the diversity of 308 

generalists in animal-associated, saline and non-saline clusters (GLMM, Wald test, 309 

P>0.05), but was positively correlated with lineage-specific resident diversity (GLMM, 310 

Wald test, z=7.1, P= 1.25e-12; z=3.316, P=0.0009; z=7.109, P=1.17e-12, respectively). 311 

Resident community diversity significantly decreased migrant diversity in saline 312 
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(GLMM, z=-3.194, P=0.0014) and non-saline environment clusters (GLMM, z=-2.840, 313 

P=0.0045), but had no significant effect in the animal-associated cluster (GLMM, 314 

P>0.05) (Fig. 4b). These results suggest that, although generalist lineages may have 315 

higher speciation rates and colonize more habitats than specialists (Sriswasdi et al., 316 

2017), they have lower diversity slopes. Migrants to the “wrong” environment experience 317 

even less DBD, and are even subject to EC in two out of three environment types (Fig. 318 

4b). The accumulation of diversity via successful establishment of migrants may thus be 319 

limited, presumably because most niches are already occupied by residents. 320 

 321 
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Fig. 4. The DBD relationship varies between resident and non-resident genera. (A) 322 

Ordination showing genera clustering into their preferred environment clusters. The 323 

matrix of 1128 genera (rows) by 17 environments (columns), with the matrix entries 324 

indicating the percentage of samples from a given environment in which each genus is 325 

present, was subjected to principal components analysis (PCA). Circles indicate genera 326 

and triangles indicate environments (EMPO 3 biomes). Colored circles are genera 327 

inferred by indicator species analysis to be residents of a certain environmental cluster, 328 

and grey circles are generalist genera. The three environment clusters identified by fuzzy 329 

k-means clustering are: Non-saline (NS, blue), saline (S, green) and animal-associated 330 

(purple). Triangles of the same color indicate EMPO 3 biomes clustered into the same 331 

environmental cluster. (B) DBD in resident versus non-resident genera across 332 

environment clusters. Results of GLMMs modeling focal lineage diversity as a function 333 

of the interaction between community diversity and resident/migrant/generalist status. 334 

The x-axis shows the standardized number of non-focal resident genera (community 335 

diversity); the y-axis shows the number of ASVs per focal genus. Resident focal genera 336 

are shown in orange, migrant focal genera in red, and generalist focal genera in black. 337 

Red stars indicate a significantly positive or negative slope (Wald test, P<0.005). See 338 

Supplementary Data file 2 for model goodness of fit. 339 

 340 

Discussion 341 

Using ~10 million individual marker sequences from the EMP, we demonstrate an overall 342 

trend for diversity in focal lineages to be positively associated with overall community 343 

diversity, albeit with significant variation across lineages and environments. The strength 344 

of the DBD relationship dissipates with increasing microbiome diversity, which we 345 

hypothesize is caused by niche saturation. In more diverse biomes such as soil, abiotic 346 

factors therefore may become relatively more important in driving focal-lineage diversity. 347 

The effect of DBD is strongest among habitat specialists (residents), suggesting that long-348 

term niche adaptation tends to select against the establishment of migrant diversity.  349 
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While most of the DBD literature considers a model of evolutionary 350 

diversification (Schluter & Pennell, 2017; Whittaker, 1972), our results pertain mainly to 351 

ecological community assembly dynamics. At the limited resolution of 16S rRNA gene 352 

sequences, we do not expect measurable diversification within an individual microbiome 353 

sample (Kuo & Ochman, 2009b); however, community diversity could still select for (as 354 

in DBD) or against (as in EC) increasing diversity in a focal lineage, even if this lineage 355 

diversified before the sampled community assembled. Future work with higher resolution 356 

genomic or metagenomic data will enable testing if and how DBD arises in microbial 357 

communities via evolutionary diversification, and also how prokaryote diversification is 358 

affected by other community members including phages (Brockhurst et al., 2005), 359 

protists (Meyer & Kassen, 2007), and fungi (Kastman et al., 2016). Predator-prey, cross-360 

feeding, and other biotic interactions with these non-prokaryotic community members 361 

could explain some of the unaccounted variation we observed in diversity slopes across 362 

environments. 363 

 Our dataset also provides an opportunity to explore how DBD relates with 364 

genome size evolution. Bacteria with larger repertoires of accessory genes, and thus 365 

larger genomes, are able to occupy a wider range of niches (Barberán et al., 2014). Taxa 366 

with larger genomes might therefore be hypothesized to better survive and thrive when 367 

they disperse into a new location, exhibiting stronger DBD. Although a comprehensive 368 

test of this hypothesis will require higher resolution genomic or metagenomic data, as a 369 

preliminary exploration we assigned genome sizes to 576 focal genera for which at least 370 

one whole genome sequence was available (using the largest recorded genome size for 371 

each genus) and added an interaction term between genome size and diversity as a fixed 372 
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effect in the GLMM (Methods). Consistent with our expectation, we observed a 373 

significant positive effect of genome size on the diversity slope (GLMM, Wald test, 374 

z=2.5, P=0.01; Fig. 5, Supplementary Data file 1 Section 6). This effect was not 375 

observed in null models, in which the interaction between community diversity and focal 376 

genus genome size was never significant (Supplementary Data file 3 Section 1.3 and 377 

2.2) and so this effect of genome size cannot be trivially explained by data structure. The 378 

positive relationship between genome size and DBD is likely even stronger than 379 

estimated, because assigning genome sizes to entire genera is imprecise (i.e. there is 380 

variation in genome size within a genus, or even within species), therefore weakening the 381 

correlation.  382 

 The positive correlation between genome size and DBD observed here could be 383 

driven by larger metabolic repertoires encoded by larger genomes (40), potentially 384 

creating more opportunities to benefit from cross-feeding, niche construction (San Roman 385 

& Wagner, 2018), and other interspecies interactions. This tendency appears to be at odds 386 

with the Black Queen hypothesis, which predicts that social conflict between interacting 387 

species leads to the inactivation and loss of genes involved in shareable metabolites 388 

(public goods), eventually resulting in reduced genome size (Morris & Lenski, 2012). 389 

Such a process would produce a negative correlation between the degree of species 390 

interactions (i.e. community diversity) and genome size (Morris & Lenski, 2012). The 391 

interaction between genome size, biotic interactions and diversification thus deserves 392 

further study. 393 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2020. ; https://doi.org/10.1101/612739doi: bioRxiv preprint 

https://doi.org/10.1101/612739
http://creativecommons.org/licenses/by-nc/4.0/


21 

 394 

Fig. 5. Positive effect of genome size on DBD. Results are shown from a GLMM 395 

predicting focal lineage diversity as a function of the interaction between community 396 

diversity and genome size at the ASV:Genus ratio (Supplementary Data file 1 Section 397 

6). The x-axis shows the standardized number of non-focal genera (community diversity); 398 

the y-axis shows the number of ASVs per focal genus. Variable diversity slopes 399 

corresponding to different genome sizes are shown in a blue color gradient; the shaded 400 

area depicts 95% confidence limits of the fitted values. See Supplementary Data file 2 401 

for model goodness of fit. 402 

 403 

Alongside theory and experimental data, the EMP survey data provide a window 404 

into the biotic drivers of microbial diversity in nature. In particular, our correlational 405 

results support previous experimental and theoretical results showing that DBD is strong 406 
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when community diversity is low (Calcagno et al., 2017; Jousset et al., 2016), driving the 407 

accumulation of diversity in a positive feedback loop until niches are filled and EC starts 408 

to predominate (Bailey et al., 2013; Brockhurst et al., 2007; Gómez & Buckling, 2013; 409 

Meyer & Kassen, 2007). However, due to the correlational nature of the EMP data, it is 410 

not possible to test whether DBD is primarily due to the creation of novel niches via 411 

biotic interactions and niche construction (Laland et al., 1999), or due to increased 412 

competition leading to specialization on underexploited resources (Hibbing et al., 2010; 413 

Jousset et al., 2016). We hope future higher resolution genomic studies, and 414 

complementary experiments, will be able to elucidate the types of biotic interactions that 415 

promote microbiome diversity. Regardless of the underlying mechanisms, our results 416 

demonstrate a general scaling between different levels of community diversity, which has 417 

important implications for modeling and predicting community function and stability in 418 

response to perturbations (Coyte et al., 2015; Pennekamp et al., 2018). The answer to the 419 

question ‘why are microbiomes so diverse?’ might in a large part be because 420 

microbiomes are so diverse (Emerson & Kolm, 2005). 421 
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Tables 436 

Table 1. Effects of community diversity on focal lineage diversity across taxonomic 437 
ratios. The GLMMs showed statistically a significant positive effect of community 438 
diversity on focal lineage diversity. Each row reports the effect of community diversity 439 
on focal lineage diversity (Div), as well as its standard error, Wald z-statistic for its effect 440 
size and the corresponding P-value (left section), or standard deviation on the slope for 441 
the significant random effects (right section). SE=standard error, Env=environment type, 442 
Lin=lineage type, Lab=Principal Investigator ID, Sample=EMP Sample ID. Interactions 443 
are denoted as ‘*’. n.s.=not significant (likelihood-ratio test). All models provide a 444 
significantly better fit than null models without fixed effects (∆AIC > 10 and P < 0.05; 445 
Supplementary Data file 2). 446 
 447 
 448 

 Slope (fixed effects) Standard deviation on the slope (random effects) 

 Div  SE z P  Env Lin Lin*Env Env*Lab Sample 

ASV:Genus 0.091   0.016   5.792 6.95e-09 n.s. 0.074 0.142 0.114 0.067     

Genus:Family 0.047   0.008   5.911 3.41e-09 n.s. 0.071 0.07 0.039 n.s. 

Family:Order 0.119 0.017   7.001 2.54e-12 0.023  0.094    0.092 0.106 n.s. 

Order:Class 0.109 0.020   5.447 5.13e-08 0.05    0.141 0.078 0.051 n.s. 

Class:Phylum 0.272 0.043   6.341 2.29e-10 0.119  0.174 0.119 0.114 n.s. 

  449 
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Table 2. GLMMs applied to data simulated under null models. Null models 1 and 2 450 
were generated under the ZSM distribution, with a single distribution for the whole 451 
dataset (Model 1) or one distribution per environment (Model 2). Model 3 is similar to 452 
Model 1, except with a single Poisson distribution for the whole dataset, and +DBD or 453 
+EC refer to adding these effects to 100% of ASVs (see Methods and Figure 2 454 
supplement 7). Each row reports the effect of community diversity on focal lineage 455 
diversity (Div), as well as its standard error, Wald z-statistic for its effect size and the 456 
corresponding P-value (Wald test) (left section), or standard deviation on the slope for 457 
the significant random effects (right section).  SE=standard error, Env=environment type, 458 
Lin=lineage type, Sample=EMP Sample ID. n.s.=not significant (likelihood-ratio test), 459 
n.t.= not tested, because separate environments were not included in Models 1 or 3. 460 
 461 

 Slope (fixed effects) Stand dev on the slope (random effects) 

 Div  SE z P  Env Lin Lin*Env Sample 

Model 1 -0.005 0.000 -9.807 <2e -16 n.t. 0.639 n.t. n.s. 

Model 2 n.s.         

Model 3 -0.012 0.002 -6.552 5.69e-11 n.t. 0.021 n.t. n.s. 

Model 3 + DBD 0.016 0.001 11.48    <2e-16 n.t. 0.008 n.t. n.s. 

Model 3 + EC -0.011 0.002 -6.14 8.26e-10 n.t. ns n.t. n.s. 

  462 
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Table 3. GLMMs with community diversity measured using Shannon diversity. 463 
Results are shown from GLMMs with Shannon diversity of non-focal taxa (Div) as a 464 
predictor of ASVs richness of focal taxa. Each row reports the estimate (Div), as well as 465 
its standard error, Wald z-statistic for its effect size and the corresponding P-value (Wald 466 
test) (left section), or standard deviation on the slope for the significant random effects 467 
(right section). SE=standard error, Env=environment type, Lin=lineage type, 468 
Lab=Principal Investigator ID, Sample=EMP Sample ID. n.s.=not significant (likelihood-469 
ratio test). 470 
 471 

                        Fixed effects Random effects 

 Div  SE z  P Env Lin Env*Lin Env*Lab Sample 

Genus 0.055 0.013   4.33 1.49e-05 n.s. 0.08  0.15  0.085  0.054  

Family 0.148 0227 6.491 8.51e-11 n.s. 0.184   0.268 0.16  0.134  

Order 0.378 0.038 9.864   <2e-16 n.s. 0.34   0.417   0.258   0.202   
   

Class 0.398 0.05  7.973 1.54e-15 n.s. 0.369 0.46   0.326   0.262    
  

Phylum 0.319 0.088   3.614 0.0003 0.169     0.316  0.5  0.495    0.378    
  

  472 
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Table 4. Community diversity has a stronger effect than abiotic factors on focal lineage 473 
diversity (EMP dataset). Results are shown from GLMMs with community diversity, four 474 
abiotic factors (temperature, elevation, pH, and latitude), and their interactions with community 475 
diversity, as predictors of focal lineage diversity. Random effects on the intercept included 476 
environment, lineage, lab ID and sample ID. Each row reports the taxonomic ratio, the predictors 477 
used in the GLMM (fixed effects only), their estimate (Est), standard error (SE) and P-value (P) 478 
(Wald test). Interactions are denoted as ‘*’. Random effects are not shown. 479 
 480 

 Predictor Est SE P 
ASV:Genus Div 0.128      0.013 < 2e-16 
  Temperature 0.04 0.014 0.00479 
 Div*Temperature 0.043    0.014 0.00175 
 Div*Latitude 0.031     0.013    0.02119 
 Div*Elevation -0.031 0.014   0.02829 
Genus:Family Div 0.094    0.009 < 2e-16 
 Temperature 0.026    0.009    0.00268 
 pH -0.042 0.009 5.88e-06 
Family:Order Div 0.131 0.01 < 2e-16 
Order:Class Div 0.184 0.01 < 2e-16 
 Div*Temperature 0.032 0.009 0.000827 
 Div*Latitude 0.023 0.008 0.005403 
Class:Phylum Div 0.236 0.011 < 2e-16 
 Div*Temperature 0.059 0.014 2.15e-05 
 Div*Latitude 0.03 0.011 0.00884 

  481 
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Table 5. GLMMs applied to a soil dataset. Each row reports the taxonomic ratio, the predictors 482 
used in the GLMM (fixed effects only), their estimate (Est), standard error (SE) and P-value (P) 483 
(Wald test). Left columns: GLMM with community diversity (Div) and all abiotic variables 484 
considered separately, as predictors of focal lineage diversity. Right columns: GLMM with 485 
community diversity (Div) and the three first principle components (PCs) representing abiotic 486 
variables, as predictors of focal lineage diversity. n.s., non-significant (LRT test). All models 487 
provide a significantly better fit than null models without fixed effects (∆AIC > 10 and P < 0.05; 488 
Supplementary Data file 2), except for the GLMM with abiotic factors at the Family:Order level, 489 
where latitude has a significant effect on focal lineage diversity but its effect is nearly null, with a 490 
∆AIC between full and null model of 4 and a null marginal R2. 491 
 492 

 GLMMs with abiotic variables GLMMs with the 3 first PCs 
 Predictor Est SE P Predictor Est SE  P 
ASV:Genus Div n.s.    Div 0.064 0.016 9.47e-05 
  Latitude 0.294 0.025 < 2e-16 PC1 -0.065 0.007 < 2e-16 
  UV_light  -0.177 0.016 < 2e-16 PC2 -0.03 0.006 1.98e-05 
  MDR 0.028 0.006 7.12e-06         
  NPP2003_2015 -0.066   0.005 < 2e-16         
  Latitude^2 -0.3 0.029 < 2e-16         
  Clay_silt^2 -0.012 0.004 0.003         
  Soil_N^2 -0.007 0.001 1.66e-06         
  Soil_C_N_ratio

^2 

0.003 0.001 0.004         
  PSEA^2 0.01 0.002 4.84e-06         
  MDR^2 0.017 0.003 2.40e-08         
  NPP2003_2015

^2 

-0.016 0.004 0.0001         
Genus:Family Div 0.032 0.01 0.0011 Div 0.033 0.01 0.001 
  Latitude -0.035 0.006 2.04e-09 PC1 -0.016 0.006 0.02 
         PC2 0.02 0.006 0.00089 
Family:Order Div n.s.    Div n.s.     
  Latitude -0.0005 0.0002 0.0105 PC1 -0.026 0.007 0.00032 
         Div*PC1 0.04 0.006 2.14e-12 
         Div*PC3 0.023 0.005 1.68e-06 
Order:Class Null model with no predictor was significant 
Class:Phylum Div 0.032 0.01 0.00174 Div 0.032 0.01 0.003 
  pH 0.074 0.01 4.37e-13 PC1 -0.051 0.01 3.54e-07 

      PC2 -0.028 0.01 0.006 
 493 
 494 
 495 
 496 
  497 
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Supplementary Figure Legends 498 
 499 
Figure 2 supplement 1. Distributions of diversity slope estimates across different 500 
random effects, from the GLMMs predicting focal lineage diversity as a function of 501 
community diversity. (A) Class:Phylum, (B) Order:Class, (C) Family:Order, (D) 502 
Genus:Family, and (E) ASV:Genus. Estimation of random effect coefficients from the 503 
GLMMs (Table S1), shows that the effect of diversity on focal lineage diversity (slope 504 
estimates) are generally positive but could be negative in some lineages or combinations 505 
of environment, lineage (Environment*Lineage), and the laboratory that submitted the 506 
dataset (Environment*Lab). 507 
 508 
Figure 2 supplement 2. Focal lineage diversity as a function of community diversity 509 
across biomes in the three most prevalent phyla. (A) Proteobacteria, (B) Bacteroidetes, 510 
(C) Actinobacteria. Linear models are shown for the number of classes per phylum (y-511 
axis) as a function of community diversity (number of non-focal phyla, x-axis) in each of 512 
the 17 environments (EMPO3 biomes). Only environments containing the focal lineage 513 
are shown. P-values are Bonferroni corrected for 17 tests. Significant (P <0.05) models 514 
are shown with red trend lines, non-significant (P > 0.05) trends are shown in blue. 515 
 516 
Figure 2 supplement 3. Focal lineage diversity as a function of community diversity 517 
across biomes in the three most prevalent classes. Linear models are shown for the 518 
number of orders per class (y-axis) as a function of community diversity (non-focal 519 
classes, x-axis) in each of the 17 environments (EMPO3 biomes). Only environments 520 
containing the focal lineage are shown. Significant positive diversity slopes are shown in 521 
red, negative in blue (linear models, P <0.05, Bonferroni corrected for 17 tests), and non-522 
significant in grey.  523 
 524 
Figure 2 supplement 4. Focal lineage diversity as a function of community diversity 525 
across biomes in the three most prevalent orders. Linear models are shown for the 526 
number of families per order (y-axis) as a function of community diversity (non-focal 527 
orders, x-axis) in each of the 17 environments (EMPO3 biomes). Only environments 528 
containing the focal lineage are shown. Significant positive diversity slopes are shown in 529 
red, negative in blue (linear models, P <0.05, Bonferroni corrected for 17 tests), and non-530 
significant in grey.  531 
 532 
Figure 2 supplement 5. Focal lineage diversity as a function of community diversity 533 
across biomes in the three most prevalent families. Linear models are shown for 534 
genera per family (y-axis) as a function of community diversity (non-focal families, x-535 
axis) in each of the 17 environments (EMPO3 biomes). Only environments containing the 536 
focal lineage are shown. Significant positive diversity slopes are shown in red, negative 537 
in blue (linear models, P <0.05, Bonferroni corrected for 17 tests), and non-significant in 538 
grey.  539 
 540 
Figure 2 supplement 6. Focal lineage diversity as a function of community diversity 541 
across biomes in the three most prevalent genera. Linear models are shown for ASVs 542 
per genus (y-axis) as a function of community diversity (non-focal genera, x-axis) in each 543 
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of the 17 environments (EMPO3 biomes). Only environments containing the focal 544 
lineage are shown. Significant positive diversity slopes are shown in red, negative in blue 545 
(linear models, P <0.05, Bonferroni corrected for 17 tests), and non-significant in grey.  546 
 547 
Figure 2 supplement 7. Null models based on Neutral Theory. Results are shown from 548 
data simulated under (A) neutral Model 1, (B) neutral Model 2, or (C) neutral Model 3. 549 
Model 1 is sampled from the zero-sum multinomial distribution with a single distribution 550 
for the whole dataset, while Model 2 includes a separate distribution for each of the 17 551 
different environments (EMPO 3 biomes). In Model 3 (C), the effect of DBD (top rows) 552 
or EC (bottom rows) are “spiked in” at different levels, ranging from 0 to 100% of ASVs 553 
in a sample. Blue lines show a linear fit, with slopes (m) estimated by GLMM in selected 554 
panels. See Methods for model details, and Table 2 and Supplementary Data file 3, 555 
Section 1.2 for full GLMM results. 556 
 557 
Figure 2 supplement 8. Lineage diversity (mean ASV:Genus ratio among all 558 
lineages) as a function of community diversity (number of genera) in the EMP data. 559 
Samples from different environments (EMPO level 3) are shown in different colors, each 560 
with their corresponding linear model fit. 561 
 562 
Figure 2 supplement 9. Taxonomic ratios estimated from simulated rarefied 563 
sequence data. Each panel simulates a set of microbiome samples that differ in their 564 
diversity (number of genera in left panels A and B, number of phyla in right panels C and 565 
D) while maintaining a set true taxonomic ratio (horizontal black line). (A) True ratio set 566 
to 2 ASVs/genus, close to the per-sample mean and median in the real EMP data, in a 567 
range of samples between 1 and 1128 named genera, as observed in the real EMP data. 568 
(B) True ratio set to 20 ASVs/genus, equal to the overall mean of 22,014 named ASVs in 569 
1128 named genera, and close to the maximum ratios observed in individual samples 570 
(Fig. 2 supplement 6). Insets show the ranges of 1-50 and 51-150 genera, approximating 571 
observations from lower- or higher-diversity samples such as gut and soil, respectively 572 
(Fig. 2 supplement 6). The insets only show the rarefaction to 5,000 sequences, as used in 573 
the real EMP dataset. (C) True ratio set to 3 classes/phylum, close to the per-sample 574 
mean and median in the real EMP data, in a range of samples between 1 and 84 named 575 
phyla, as observed in the real EMP data. (D) True ratio set to 10 classes/phylum, close to 576 
the maximum ratios observed in individual samples (Fig. S2). Different rarefaction levels 577 
are shown as different colored lines. 578 
 579 
Figure 2 supplement 10. Linear, quadratic and cubic models for the relationship 580 
between focal lineage diversity and community diversity for varying levels of % 581 
nucleotide identity. Community diversity was estimated as the number of clusters at a 582 
focal level (di) and focal lineage diversity as the mean of the clusters at the rank above 583 
(di+1/di). All P-values are < 0.001. Linear fit (grey); quadratic fit (blue), cubic fit (red); 584 
same colors for the associated adjusted R2. The x-axis (diversity) shows the number of 585 
clusters at the focal percent-identity level (di), and the y-axis (diversification) is the mean 586 
of the clusters at the rank above (di+1/di). 587 
 588 
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Figure 2 supplement 11. Linear, quadratic and cubic models for each environment 589 
type for varying levels of % nucleotide identity. Community diversity was estimated as 590 
the number of clusters at a focal level (di) and focal lineage diversity as the mean of the 591 
clusters at the rank above (di+1/di). Linear (grey), quadratic (blue) and cubic (red), with 592 
corresponding adjusted R-squared values in the same colour. P-values are Bonferroni 593 
corrected for 17 tests. Significant, P < 0.05 (solid lines), non-significant (dashed lines). 594 
The x-axis shows the number of clusters at the focal percent-identity level (di), and the y-595 
axis is the mean of the clusters at the rank above (di+1/di). 596 
 597 
Figure 4 supplement 1. Resident genera of environment clusters. Results from 598 
indicator species analysis illustrated as a heatmap. Only the 25 resident genera with the 599 
highest indval indices and P<0.05 (permutation test) are shown for every environment 600 
cluster (animal-associated, non-saline and saline free). For the full results see 601 
Supplementary Data file 5.  602 
 603 
 604 
 605 
Supplementary File legends 606 
 607 
File 1. Full GLMM outputs for the EMP data. 608 
 609 
File 2. Goodness of fit for the GLMMs.  610 
 611 
File 3. Full GLMM output for simulated data under Neutral Theory models 612 
 613 
File 4. Full GLMM output for soil data (Delgado et al.) 614 
 615 
File 5. Indicator species analysis. The table shows the assignment of each genus to one 616 
of three environment types. 617 
 618 
File 6. Genome size assignment. The table shows genome sizes assigned to each genus. 619 
  620 
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Materials and Methods 621 

Earth Microbiome Project dataset. We used the EMP ‘2000 subset’ of 16S rRNA gene 622 

sequences, rarefied to 5000 sequences per sample. This subset contains 155,002 ASVs 623 

from 2,000 samples with an even distribution across 17 natural environments (EMP 624 

Ontology level 3). Data were downloaded from the EMP FTP server (ftp.microbio.me), 625 

on February 9, 2018.  626 

 627 

Specifically, 16S rRNA-V4 region reads (90 bp, GreenGenes 13.8 taxonomy) along with 628 

environmental data and EMPO3 designations 629 

(http://press.igsb.anl.gov/earthmicrobiome/protocols-and-standards/empo/) were 630 

downloaded from the EMP FTP server (ftp.microbio.me), on February 9, 2018. Sequence 631 

summaries were downloaded from :  632 

ftp://ftp.microbio.me/emp/release1/otu_distributions/otu_summary.emp_deblur_90bp.sub633 

set_2k.rare_5000.tsv, environmental data from: 634 

ftp://ftp.microbio.me/emp/release1/mapping_files/emp_qiime_mapping_release1.tsv, and 635 

EMPO3 designations from : 636 

ftp://ftp.microbio.me/emp/release1/mapping_files/emp_qiime_mapping_subset_2k.tsv. 637 

The list of the associated 97 studies and 61 corresponding principal investigator identities 638 

were downloaded from https://www.nature.com/articles/nature24621#s1.  639 

Based on the ASV annotations across samples, we estimated the taxonomic ratio for each 640 

focal lineage (ASV:Genus, Genus:Family, Family:Order, Order:Class and Class:Phylum), 641 

along with the number of non-focal lineages (dbd_analys_input.py, 642 
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glmm_analys_input.py, Python Version 2.7). Unclassified ASVs were removed from the 643 

analyses. 644 

 645 

Generalized linear mixed model (GLMM) analyses. We used GLMMs to determine 646 

how focal lineage diversity (e.g. its ASV:Genus ratio) is affected by community diversity 647 

(e.g. non-focal genera). The effects of environment (as defined by the EMP Ontology 648 

‘level 3 biomes’) and the focal lineage identity were included as random effects on the 649 

slope and intercept. We also controlled for the submitting laboratory (identified by the 650 

principal investigator) and the EMP unique sample identifier (i.e. if two taxa were part of 651 

the same sample). 652 

All models were fitted in Rstudio (Version 1.1.442, R Version 3.5.2) using the 653 

glmer function of the lme4 package (Bates et al., 2015). Data standardization 654 

(transformation to a mean of zero and a standard deviation of one) was applied to all 655 

predictors to get comparable estimates. In models with only one predictor, applying 656 

standardization resolved convergence warnings and considerably sped up the 657 

optimization. We first tested the significance of random effects, by using likelihood-ratio 658 

tests (LRTs, implemented in the anova function in the R stats package) on nested models 659 

where each random effect was dropped one at a time. We then assessed the significance 660 

of fixed effects using drop1 function from stats package with the likelihood-ratio test 661 

option (this function drops individual terms from the full model and compares models 662 

based on the AIC). We calculated the Akaike information criterion (AIC) of each 663 

significant model and a null model including all random effects but no fixed effects other 664 

than the intercept. We then report the difference in AIC between the full and null models 665 
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(∆AIC), along with a likelihood ratio test p-value to assess the significance of the full 666 

model relative to the null. Only significant models (P<0.05) are reported.  667 

 As an additional test of the goodness of fit for the significant models, we 668 

estimated the coefficient of determination (R2) using the r.squaredGLMM function from 669 

the MuMIn R package. This function implements a method developed by Nakagawa and 670 

Schielzeth and its extension for random slopes (Johnson, 2014; Nakagawa & Schielzeth, 671 

2013). Two values were estimated: the marginal R2, as a measure of the variance 672 

explained only by fixed effects, and the conditional R2 as a measure of the variance 673 

explained by the entire model (both fixed effects and random effects). Only results from 674 

R2 estimation based on lognormal and trigamma methods were reported because they are 675 

specific to the logarithmic link function used in all GLMMs.  676 

Diagnostic plots (plot and qqnorm R functions in base and stats packages) were 677 

checked for each model to ensure that residual homoscedasticity (homogeneity of 678 

variance) was fulfilled: no increase of the variance with fitted values and residuals were 679 

symmetrically distributed tending to cluster around the 0 of the ordinate, but with an 680 

expected pattern due to count data. Normality plots were imperfect, but they generally 681 

showed that the residuals were close to being normally distributed. The assumption of 682 

normality is often difficult to fulfill with high numbers of observations, as is the case in 683 

our models (https://www.statisticshowto.datasciencecentral.com/shapiro-wilk-test/), and 684 

non-normality is less of concern than heteroscedastic for the validity of GLMMs 685 

(https://bbolker.github.io/mixedmodels-misc/ecostats_chap.html#diagnostics). 686 

We tested for overdispersion using the overdisp_fun R function available at 687 

https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html, and found that all the 688 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2020. ; https://doi.org/10.1101/612739doi: bioRxiv preprint 

https://doi.org/10.1101/612739
http://creativecommons.org/licenses/by-nc/4.0/


35 

models were not overdispersed, but rather were underdispersed : the ratio of the sum of 689 

squared Pearson residuals to residual degrees of freedom was < 1 and non-significant 690 

when tested with a chi-squared test. The only exception was Shannon diversity-based 691 

GLMMs. In case of underdispersion and given that underdispersion leads to more 692 

conservative results, we retained the GLMMs with Poisson error distribution, despite the 693 

underdispersion. (GLMM FAQ; Ben Bolker and others; 25 September 2018; 694 

https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html#underdispersion). For 695 

Shannon diversity-based GLMMs, we accounted for overdispersion by adding an 696 

observation-level random effect to the GLMMs (Elston et al., 2001). 697 

 698 

Taxonomy-based GLMMs 699 

To test how focal lineage diversity (e.g. its ASV:Genus ratio) is affected by community 700 

diversity (e.g. non-focal genera richness), for different environment types and lineages 701 

across all taxonomic ratios, we used generalized linear mixed models (GLMMs) fitted on 702 

the EMP dataset. As the dependent variable (focal lineage diversity, defined as taxonomic 703 

ratios, ASV:Genus, Genus:Family, Family:Order, Order:Class, and Class:Phylum) was a 704 

count response, we used a Poisson error distribution with a log link function. Community 705 

diversity (number of non-focal lineages: non-focal Genera, Families, Orders, Classes, and 706 

Phyla), standardized to a mean of zero and a standard deviation of one, was specified as 707 

the predictor (fixed effect). We included the following random effects on the slope and 708 

intercept: lineage (Lin), environment (Env), environment nested within lineage (a lineage 709 

may be present in different environments) and lab (the principal investigator who 710 

conducted the EMP study) nested within environment (different labs sampled and 711 
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sequenced a given environment) (as suggested in http://bbolker.github.io/mixedmodels-712 

misc/glmmFAQ.html). Defining random effects on the slope enabled us to test slope 713 

variation across groups of each categorical variable (e.g. slope variation between different 714 

environments or different lineages). We included the EMP unique sample ID as a random 715 

effect to control for dependencies between observations (if two taxa were part of the 716 

same sample) (Table 1, Supplementary file 1 section 1). 717 

 718 

Shannon diversity-based GLMMs 719 

We also tested whether ASV diversity in a focal taxon is dependent on the diversity of all 720 

other ASVs in that sample (rather than the diversity at only the focal taxonomic level, as 721 

in the taxonomy-based GLMMs above). We used the Shannon diversity index, which is 722 

robust to differences in sampling effort, and generally reaches a plateau at 5,000 723 

sequences or fewer (48, 49). To do so, we fitted a GLMM with the number of ASVs per 724 

focal taxon as the response variable, and the Shannon diversity based on ASVs across all 725 

non-focal taxa (z-standardized) as the predictor (fixed effect), the random effects were 726 

kept as in the taxonomy-based GLMMs, but we added an observation-level random effect 727 

to account for overdispersion (Table 3, Supplementary file 1 section 2). To avoid 728 

dependence between the response and predictor variables, we used the rarefied ASV 729 

dataset (5,000 ASVs/sample as above) as the response variable, and the Shannon 730 

diversity calculated on unrarefied data from the same samples as the predictor. 731 

 732 

Null models. We considered three null models, all of which randomize the associations 733 

between ASVs within a sample, thus breaking any true biotic interactions. These null 734 
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models were randomly generated matrices of the same size as the real EMP dataset, but 735 

based on a distribution that arises from the Neutral Theory of Biodiversity. Neutral 736 

Theory postulates that the biodiversity of a metacommunity is governed by independent 737 

random population dynamics across species. The aggregate behaviour is quantified by the 738 

fundamental biodiversity number θ, such that 𝜃 = 2	𝐽! 	𝜐, where JM is the size of the 739 

metacommunity and ν is the speciation rate. Parametrized by θ, the metacommunity zero-740 

sum multinomial distribution (mZSM) was developed to obtain random samples of size J 741 

(Alonso & McKane, 2004). We used this mZSM distribution (implemented with the sads 742 

package in R; http://search.r-project.org/library/sads/html/dmzsm.html) to generate the 743 

counts of the ASVs for each dataset in models 1 and 2. Model 1 assumes that the whole 744 

dataset follows the same species abundance distribution (SAD), characterized by a 745 

mZSM with θ = 50. Model 2 assumes that each environment has its own SAD and thus 746 

all the samples of a single environment are assigned the same θ but are distinct across 747 

environments (θ was chosen uniformly between 1 and 100). The number of samples per 748 

environment were the same as the EMP dataset. To obtain similar mean counts as the real 749 

dataset, we set J = 1000 for both models 1 and 2, in order to vary θ from 1 to 100. These 750 

values are reasonable based on previous studies that estimated these parameters from 751 

microbiome data (Li & Ma, 2016). We included a down-sampling step to replicate the 752 

zero-inflated nature of the real dataset (on average there were only 96 ASVs per sample 753 

while there was a total of 22,014 ASVs in the entire EMP dataset). To replicate the 754 

sampling effect due to rarefaction, we first created a vector of all individuals from a 755 

single sample. We then selected 5000 individuals at random whose identities determined 756 

which ASVs were found in that sample. These neutrally-derived random matrices, null 757 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2020. ; https://doi.org/10.1101/612739doi: bioRxiv preprint 

https://doi.org/10.1101/612739
http://creativecommons.org/licenses/by-nc/4.0/


38 

models 1 and 2, were plotted using the same plots (ASV:Genus vs number of genera) as 758 

the real EMP dataset and were then analyzed using GLMMs with community diversity as 759 

a predictor of focal lineage diversity (fixed effect), with lineage identity and EMP sample 760 

ID as random effects. For Model 1, the slope was significantly negative (GLMM, Wald 761 

test, z=-9.807, P<2e-16). For Model 2, the null GLMM (including the intercept only) was 762 

significant, meaning that the community diversity has no significant effect on focal 763 

lineages diversity (Likelihood-ratio test between the model with the predictor and the 764 

intercept-only model, P=0.9399).  765 

 To generate a null model for a metacommunity assembled by niche processes, 766 

null model 3 was made by sampling from a single Poisson distribution (λ = 0.01) for each 767 

element of the data matrix. We used the Poisson distribution as a sensitivity analysis 768 

compared to the ZSM, and found the two behave quite similarly (i.e. Model 1 and 3 769 

produce qualitatively similar results). The probability of size zero was sufficiently large 770 

that the down-sampling step was not needed for this model. Next, DBD and EC effects 771 

were added to null model 3 according to the following procedure. An element was chosen 772 

at random in a sample and tested if it is empty or full (i.e. checks the presence/absence of 773 

a particular ASV). If the element is full then the DBD algorithm fills an empty element 774 

chosen at random in the same sample, while the EC algorithm empties a filled element in 775 

the same sample. This is to mimic the effect of DBD creating a niche for a new ASV, or 776 

EC removing a niche based on the existing diversity. The strength of DBD or EC effects 777 

were determined by the percent of elements tested. These data were analyzed with 778 

GLMMs to test the power of our models to detect DBD or EC (Table 2, Supplementary 779 

Data file 3 Section 2.1). 780 
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Rarefaction simulation 781 

We constructed a simple simulation in which each microbiome sample may differ in total 782 

diversity (e.g. in the observed range of genera) while maintaining a constant taxonomic 783 

ratio (e.g. ASV:genus ratio = 2). To mimic rarefaction, we then sampled a set number of 784 

sequencing reads from each synthetic community, assuming ASVs are sampled with 785 

equal probability and plotted the observed taxonomic ratio (Fig. 2 supplement 9). This 786 

simple simulation is implemented in permute_ASVs_synthetic.pl. 787 

 788 

Nucleotide sequence-based analysis. We clustered ASVs at decreasing levels of 789 

nucleotide identity, from 100% identical ASVs down to 75% identity (roughly equivalent 790 

to phyla (Konstantinidis & Tiedje, 2005)). We estimated focal cluster diversity as the 791 

mean number of descendants per cluster (e.g. number of 100% clusters per 97% cluster) 792 

and plotted this against the total number of clusters (97% identity in this example). This 793 

approach has the advantage of including sequences even if they come from unnamed 794 

taxa. For each of the six nucleotide divergence ratios tested, the relationship between total 795 

number of clusters and focal cluster diversity was positive (Fig. 2 supplement 10), 796 

consistent with DBD and suggesting that the taxonomic analyses were qualitatively 797 

unbiased.  798 

 Fasta files with all ASVs per sample were produced by a python script 799 

(Construct_fasta_per_sample.py, Python Version 2.7) from the sequences summary file 800 

(otu_summary.emp_deblur_90bp.subset_2k.rare_5000 from EMP ftp server). We 801 

clustered sequences from each sample using USEARCH V9.2 and estimated sample 802 

diversity as the total number of clusters at a given level (e.g. 97% identity) and focal 803 
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cluster diversity as the mean number of descendent clusters (e.g. number of 100% 804 

clusters per 97% cluster). To describe the putative DBD or EC relationships, we tested 805 

three models: linear, quadratic and cubic (lm function in R). Model comparisons were 806 

based on the adjusted R2 (Figure 2 supplement 10). 807 

We note that diversity at level i (di) and at level i+1 (di+1/di) are not independent 808 

in this analysis because di+1 must be greater than or equal to di. To assess the effects of 809 

this non-independence on the results, we conducted permutation tests by randomizing the 810 

associations between di and di+1. Using 999 permutations, P-values were calculated based 811 

on how many times we observed a correlation greater than that seen in the real data 812 

(cor.test R function with kendall method). In each permutation, we recalculated the 813 

significance test (Wald z) for the correlation in the randomized data, and then computed 814 

the P-value based on how many times we observed a z value greater than that of the 815 

original data. At all six levels of nucleotide identity, the real data always showed a 816 

significantly stronger positive correlation when compared to permuted data (P = 0.001), 817 

indicating that the DBD patterns was not an artefact of the dependence structure in the 818 

data.  819 

The effect of community diversity on focal cluster diversity was also tested across 820 

different environments analyzed separately. We modelled this relationship with linear, 821 

quadratic and cubic fits, and compared those models based on the adjusted R2 (Figure 2 822 

supplement 11). 823 

 824 

DBD variation across environments 825 
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We tested the variation of focal lineage diversity slopes across different environments by 826 

including EMPO 3 biome type as a fixed effect. We fitted a GLMM with the interaction 827 

between community diversity and environment type as a predictor of focal lineage 828 

diversity. All other random effects on intercept and slope were kept as in the previous 829 

GLMMs (Figure 3, Supplementary Data file 1 Section 3). DBD variation across 830 

environments was tested for Family:Order, Order:Class and Class:Phylum taxonomic 831 

ratios, as diversity slope variation by environment was statistically significant 832 

(likelihood-ratio test, P<0.05) for these ratios in the taxonomy based models (Table 1).  833 

 834 

Abiotic effects 835 

To test for the relative effect of biotic and abiotic environmental variables on focal 836 

lineage diversity across different taxonomic ratios, we used a separate GLMM, with 837 

Poisson error distribution and a log link function, for every ratio. We fitted the GLMM on 838 

a subset (~10%) of the whole dataset, 192 samples (from water: saline (19) and non-839 

saline (44), surface: saline (42) and non-saline (19), sediment: saline (22) and non-saline 840 

(31), soil (8) and plant rhizosphere (7)), for which measurements of four key abiotic 841 

variables (temperature, pH, latitude and elevation) were available. As predictors of focal 842 

lineage diversity (fixed effects), we included non-focal community diversity and abiotic 843 

variables, as well as their interactions. All predictors were standardized to a mean of zero 844 

and a standard deviation of one to obtain comparable estimates. The GLMM had the 845 

same random effects as in the previous analysis, but only on the intercept for simplicity 846 

(Table 4, Supplementary file 1 section 4).  847 

 848 
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Soil dataset analysis 849 

We used the Delgado-Baquerizo et al. 2018 soil microbiome survey (237 samples from 850 

18 countries) to further test the relative impacts of biotic versus abiotic drivers of 851 

diversity. Raw data and abiotic measurements were downloaded from Figshare 852 

(https://figshare.com/s/82a2d3f5d38ace925492; DOI: 10.6084/m9.figshare.5611321). 853 

16S bioinformatic processing was performed using QIIME2 and Deblur with the same 854 

protocol as in Thompson et al. 2017. Raw data 16S rRNA gene (V3-V4 region), were 855 

processed by trimming the primers (341F/805R primer set) with qiime cutadapt trim-856 

paired, then merged using qiime vsearch join-pairs. Sequences were quality filtered and 857 

denoised using Deblur with a trimming length of 400bp. The resulting 400-bp Deblur 858 

BIOM table was filtered to keep only ASVs with at least 25 reads total over all samples 859 

and rarefied to a depth of 5000. Taxonomy was assigned with a Naive Bayes classifier 860 

trained on the V4-V3 region of 99% OTU Greengenes 13.8 sequences with qiime feature-861 

classifier. We obtained a final dataset of 186 samples and 24,252 ASVs which was used 862 

as input for all statistical analysis as in the EMP dataset analysis. This data set included 863 

14 environmental factors: aridity index (Aridity_Index), minimum and maximum 864 

temperature (MINT and MAXT), precipitation seasonality (PSEA), mean diurnal 865 

temperature range (MDR), ultra-violet (UV) radiation (UV_Light), net primary 866 

productivity (NPP2003_2015), soil texture (Clay_silt), pH; total C (Soil_C), N (Soil_N) 867 

and P (Soil_P ) concentrations, C:N ratio (Soil_C_N_ratio) and Latitude. 868 

We used a separate GLMM with Poisson error distribution and a log link function to test 869 

for the effect of biotic (non-focal community diversity) and abiotic environmental 870 

variables on focal lineage diversity (e.g. the ASV:Genus ratio for a focal genus), across 871 
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different taxonomic ratios. We defined non-focal taxa diversity and abiotic variables as 872 

predictors (fixed effects) and the lineage identity as a random effect. 873 

We also fitted the same model but with the first three principal components (PCs) from the 874 

principal component analysis (PCA, rda function, vegan R package) of the abiotic variables 875 

(a matrix of 237 samples (rows) by 14 abiotic variables (columns)), as well as the 876 

interactions between diversity and each PC, and the interaction between PCs as predictors 877 

(fixed effects).  878 

Because of possible non-linear relationships between abiotic variables and diversity, 879 

GLMMs were fitted with a linear and a quadratic term for every abiotic variable. The 880 

quadratic terms were not significant, except for the ASV:genus ratio (Table 5; likelihood-881 

ratio test, P < 2.2e-16). The interaction terms were not significant except the interaction 882 

between diversity and PCs at Family:Order ratio (likelihood-ratio test, P= 2.182e-05; 883 

Table 5, Supplementary file 4). 884 

 885 

Defining residents, generalists, and migrants. We defined a genus-level community 886 

composition matrix as a matrix of 1128 genera (rows) by 17 environments (columns), 887 

with the matrix entries indicating the percentage of samples from a given environment in 888 

which each genus is present. We clustered the environmental samples based on their 889 

genus-level community composition using fuzzy k-means clustering. The clustering 890 

(cmeans function, package e1071 in R) was done on the ‘hellinger’ transformed data 891 

(decostand function, vegan R package). To identify resident genera to each cluster, we 892 

used indicator species analysis (Dufrene & Legendre, 1997) as implemented in the indval 893 
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function (labdsv R package). We defined residents as genera with indval indices between 894 

0.4 and 0.9, with permutation test P < 0.05. Genera not associated with any cluster were 895 

considered generalists. We used principal component analysis (PCA) on the community 896 

composition matrix to visualize the clustering and the indicator genera (rda function, 897 

vegan R package) (Figure 4). We then ran a separate GLMM for each environmental 898 

cluster, with resident genus-level diversity (number of non-focal genera) as a predictor of 899 

focal genus diversity (ASV:Genus ratio) for resident, migrant (residents of one cluster 900 

found in a different cluster) and generalist genera. The fixed effect was specified as the 901 

interaction between diversity and a factor defining the genus-cluster association (with 902 

three levels: resident, migrant and generalist). Random effects on intercept and slope 903 

were kept as in the GLMMs described above.  904 

 905 

Genome size analysis. We chose a subset of genera represented by one or more 906 

sequenced genomes in the NCBI microbial genomes database 907 

(https://www.ncbi.nlm.nih.gov/genome/browse#!/prokaryotes/). For these genera, a 908 

representative genome size was assigned by selecting the genome with the lowest number 909 

of scaffolds (if no closed genomes were available) (Supplementary file 6). If multiple 910 

genomes were available with the same level of completion, the largest genome size was 911 

used, as smaller genomes could be artefacts of incomplete assembly which would bias the 912 

mean and median downward. Moreover, given the deletional bias in bacterial genomes 913 

(Kuo & Ochman, 2009a), the largest genome is likely more reflective of the ancestral 914 

genome size of the genus. Only genera with two or more ASVs in at least one sample 915 

were included in the analysis. Intracellular symbionts were excluded. We fitted a GLMM 916 
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on the subset of data with known genome size (576 genera, ranging from ~1 to 15 Mbp) 917 

with the interaction between community diversity and genome size as a predictor of focal 918 

lineage diversity at the ASV:Genus level. All the other random effects on intercept and 919 

slope were kept as in the previous GLMMs (Supplementary file 1 section 6). 920 

  921 
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