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Abstract 
Cigarette smoke first interacts with the lung through the cellularly diverse airway 
epithelium and goes on to drive development of most chronic lung diseases. Here, 
through single cell RNA-sequencing analysis of the tracheal epithelium from smokers 
and nonsmokers, we generated a comprehensive atlas of epithelial cell types and 
states, connected these into lineages, and defined cell-specific responses to smoking. 
Our analysis inferred multi-state lineages that develop into surface mucus secretory and 
ciliated cells and contrasted these to the unique lineage and specialization of 
submucosal gland (SMG) cells. Our analysis also suggests a lineage relationship 
between tuft, pulmonary neuroendocrine, and the newly discovered CFTR-rich ionocyte 
cells. Our smoking analysis found that all cell types, including protected stem and SMG 
populations, are affected by smoking, through both pan-epithelial smoking response 
networks and hundreds of cell type-specific response genes, redefining the penetrance 
and cellular specificity of smoking effects on the human airway epithelium. 
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Introduction 
The human airway epithelium is a complex, cellularly diverse tissue that plays a critical 
role in respiratory health by facilitating air transport, barrier function, mucociliary 
clearance, and the regulation of lung immune responses. These airway functions are 
accomplished through interactions among a functionally diverse set of both common 
(ciliated, mucus secretory, basal stem) and rare cell types (pulmonary neuroendocrine, 
tuft, ionocyte) which compose the airway surface epithelium. This remarkable cell 
diversity derives from the basal airway stem cell by way of multiple branching 
lineages1,2, yet, the nature of these lineages, their transcriptional regulation and the 
functional heterogeneity to which they lead, remain incompletely defined in humans. 
Equally important to airway function, if even more poorly understood on both a 
molecular and cellular level, is the epithelium of the airway submucosal glands (SMG), a 
network that is contiguous with the surface epithelium and a critical source of airway 
mucus and defensive secretions. 
 
Gene expression and histological studies of the airway epithelium have demonstrated 
that both molecular dysfunction and cellular imbalance due to shifting cell composition 
in the epithelium are common features of most chronic lung diseases, including asthma3 
and chronic obstructive pulmonary disease4 (COPD). This cellular remodeling is largely 
mediated by interaction of the epithelium with inhaled agents such as air pollution, 
allergens, and cigarette smoke, which are risk factors for these diseases. Among these 
exposures, cigarette smoke is the most detrimental and, as the primary driver of COPD5 
and a common trigger of asthma exacerbations6, constitutes the leading cause of 
preventable death in the U.S.7 Smoking is known to induce mucus metaplasia8 and 
gene expression studies based on bulk RNA-sequencing have established the dramatic 
influence of this exposure on airway epithelial gene expression9-12. However, these bulk 
expression changes are a composite of all cell type expression changes, frequency 
shifts, and emergent metaplastic cell states, making it impossible to determine the 
precise cellular and molecular changes induced by smoke exposure using this type of 
expression data.    
 
Here, we use single cell RNA-sequencing (scRNA-seq) to define the transcriptional cell 
types and states of the tracheal airway epithelium in smokers and nonsmokers, infer the 
lineage relationship among these cells, and determine the influence of cigarette smoke 
on individual surface and SMG airway epithelial cell types with single cell resolution. 
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Results 
Smoking induces both shared and unique gene expression responses across 
diverse airway epithelial cell types 
 
To interrogate the cellular diversity of the human tracheal epithelium, we enzymatically 
dissociated tracheal specimens from seven donors and subjected these cells to scRNA-
seq (Figure 1a). These donors included never-smokers, light smokers and heavy 
smokers (Supplementary Table S1), allowing us to evaluate the transcriptional effects of 
smoking habit on each epithelial cell type. Shared nearest neighbor (SNN) clustering of 
expression profiles from 13,840 epithelial cells identified eight broad cell clusters, each 
containing the full range of donors and smoking habits (Figure 1b, Supplementary 
Figure S1ab). Between 200-1500 differentially expressed genes (DEGs) distinguished 
these clusters from one another (Figure 1c, Supplementary Figure S1c). 
 
Assignment of clusters to cell types or states was accomplished by examining 
expression of known epithelial cell type markers13,14 (Figure 1c). High KRT5 expression 
identified two basal cell populations, distinguished by the presence/absence of 
proliferation markers (e.g. MKI67, Supplementary Figure S1c). Proliferative 
heterogeneity within KRT5high basal cells was confirmed by immunofluorescence (IF) 
labeling in tracheal tissue sections (Figure 1d). Expression of the two major airway gel-
forming mucins15, MUC5AC and MUC5B, identified the mucus secretory population via 
fluorescence in situ hybridization (FISH) (Figure 1ce). The ciliated cell population was 
identified through expression of ciliogenesis and ciliary function markers, including 
FOXJ116 and DNAH1117 (Figure 1ce). We also identified a cluster characterized by high 
KRT8 expression. Consistent with KRT8 being a differentiating epithelial cell marker18, 
KRT8high cells localized to the mid-to-upper epithelium, above KRT5high basal cells and 
often reaching the airway surface by IF (Figure 1f). Gene expression across KRT8high 
cells was highly heterogeneous, with a wide range of expression for both basal (KRT5, 
TP63) and early secretory cell (SCGB1A1, WFDC2) markers. The smallest cluster 
contained cells expressing markers diagnostic for pulmonary neuroendocrine cells or 
PNECs19 (CHGA, ASCL1), ionocytes20,21 (FOXI1, CFTR) and tuft cells22 (POU2F3). 
Although these cells comprised less than 1% of the total epithelium, FISH of tracheal 
tissue identified cells expressing each of these markers (Figure 1g). 
 
In addition to surface epithelial populations, two clusters highly expressed known 
glandular genes23 (Figure 1c, Supplementary Figure S1d), suggesting our digest 
isolated SMG epithelial cells. One of these SMG clusters highly expressed basal 
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markers (e.g. KRT5, KRT14), while the other exhibited a mucus secretory cell 
character, including high MUC5B expression. IF labeling of tracheal tissue using these 
markers allowed visualization of SMG secretory and basal cells (Figure 1h, 
Supplementary Figure S1e).  
 
Each identified population contained cells from all three smoking groups 
(Supplementary Figure S1b) and thus, we investigated the transcriptomic effects of 
smoking habit in each of the cell populations independently. We first examined smoking 
effects of genes previously reported to be differentially expressed between current and 
never-smokers using bulk RNA-seq data from bronchial airway epithelial brushings9. For 
both the upregulated and downregulated gene lists reported, a significant shift in mean 
expression between heavy smokers and nonsmokers was observed in six of seven 
populations that matched the direction of effect in the bulk data (Figure 1i, 
Supplementary Figure S1f). These effects, however, were not consistently observed in 
light smokers (Supplementary Figure S1f), leading us to focus further investigation of 
smoking effects on heavy smoker vs. nonsmoker cells.  
 
Transcriptome-wide single-gene differential expression analysis identified over 150 
DEGs between heavy and nonsmokers in each cell population (Supplementary Figure 
S1g, Supplementary Table S2). Importantly, 7%-87% of the smoking DEGs for each 
population were unique to that population, revealing a previously unappreciated cell 
type-specific aspect to the smoking response, discussed below (Figure 1j, 
Supplementary Figure S1g). Additionally, we identified a “core” response to heavy 
smoking, encompassing genes consistently up- or downregulated in at least four 
populations. Among these, MUC5AC was notably upregulated in six of seven (non-rare) 
cell types, while protein-protein interaction (PPI) network analysis of upregulated core 
genes revealed a pan-epithelial induction of nine interacting secretion-related genes 
with heavy smoking (Figure 1k). The upregulated core response also included genes 
enriched for xenobiotic metabolism and chemokine signaling (Figure 1k), suggesting 
that known airway responses to smoking, like toxin metabolism and macrophage 
recruitment10,24, are a joint effort conducted across epithelial cell types. The 
downregulated core response largely involved deactivation of immune function, such as 
the complement system, which helps clear microbes and damaged cells, and 
secretoglobin 1A1 (SCGB1A1) production, important for airway defense25 
(Supplementary Figure S1i). Notably, the downregulated core response contained 
multiple HLA type I and II genes (Supplementary Figure S1i), possibly signaling an 
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underappreciated role for antigen presentation in the epithelium, which is suppressed by 
smoking.  
 
Secretory cells form a continuous lineage that culminates in mucus secretory 
cells  
 
Airway secretory cells canonically include club cells, which produce SCGB1A1-laden 
defensive secretions, and mucus secretory cells, which varyingly express the major gel-
forming mucins (MUC5AC and MUC5B). Although inflammatory stimuli have been 
shown to induce conversion of club cells into mucus cells in mice26, the lineage 
relationship between these cells in the homeostatic human airway is unclear. Moreover, 
while NOTCH signaling is a likely mediator of secretory cell fate in the differentiating 
airway27,28, and the transcription factor (TF), SPDEF29,30, specifically drives 
inflammation-induced mucus metaplasia, little else is known regarding regulation of 
human secretory cell development. To investigate this area, we reconstructed the 
human secretory cell lineage using pseudotime trajectory analysis31 of the mucus 
secretory cells and KRT8high populations, which contained cells with both an 
intermediate basal/secretory profile and club-like cells. This analysis aligned most cells 
along a single lineage (Supplementary Figure S2a) in which basal-like cells transitioned 
into mucus secretory cells through expression of three successive gene modules 
(Figure 2a). These modules included TFs and signaling molecules that may drive their 
expression (Figure 2b). The first of these modules (secretory preparation) was highly 
enriched for genes involved in ATP production and protein translation elongation, likely 
reflecting necessary preparation for the high energy demands of secretory protein 
production (Figure 2a). Secretory preparation genes were enriched for NOTCH 
signaling and included the NOTCH3 receptor, as well as potential novel TF regulators 
(BTF3, KLF3) (Figure 2ab).  
 
A second module followed that was characteristic of club cells32 including expression of 
SCGB1A1, WFDC2, and CYP2F1. This module was highly enriched for O-linked 
glycosylation of mucins and xenobiotic metabolism, and contained airway 
transmembrane mucin genes33 (MUC1, MUC4, MUC16). In this club secretory phase of 
pseudotime, an array of known and novel TFs increased expression, eventually 
reaching a crescendo in the mucus secretory cells, consistent with these cells 
transitioning into mucus secretory cells. The first of these to appear was the novel 
cAMP responsive TF, CREB3L1, which was followed by expression of both SPDEF and 
another novel TF, MAGED2. Expression of SCGB1A1 began later and was coincident 
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with expression of XBP1, a TF likely driving the cellular stress response to the initial 
secretion of secretoglobin and accompanying secreted proteins34,35 (Figure 2b). The 
secretory cell trajectory terminated with the mucus secretory module, containing both 
MUC5AC, MUC5B, and the TF, FOXA3, while being highly enriched for genes involved 
in O-linked glycosylation, vesicle coating, SLC-mediated membrane transport, and 
unfolded protein response, consistent with these cells actively producing and secreting 
mucus (Figure 2ab). Together, these data support a single developmental lineage of 
human secretory cells, driven by sequentially activated TFs, which transitions through 
functional intermediates (club cells) to culminate in a multi-functional mucus secretory 
cell. 
 
Heavy smoking drives mucus secretory cells to express a MUC5AC secretory 
program  
 
We investigated whether transcriptionally functional subsets of mucus secretory cells 
exist that may carry out the known mucociliary and airway defense responsibilities of 
these cells. Agnostic subclustering yielded two subpopulations (Supplementary Figure 
S2b), one of which contained only 15% of secretory cells and was surprisingly 
distinguished by its expression of many known ciliated cell markers, including critical 
regulator FOXJ116 (Supplementary Figure S2c). We speculated that this hybrid 
secretory/ciliated population was undergoing transdifferentiation, discussed later. The 
larger subpopulation, consisting of mucus secretory cells, exhibited no functionally 
distinct transcriptome-level subgroups and failed to reflect goblet cell subtypes 
previously reported36 (Supplementary Figure S2d). 
 
To further explore the heterogeneity in this mucus secretory subpopulation, we 
inspected the distribution of the canonical secretory genes, SCGB1A1, MUC5AC and 
MUC5B, and observed high co-expression of all three of genes, with 94% of cells 
expressing SCGB1A1 and 78% of cells expressing both MUC5AC and MUC5B (Figure 
2c). Pervasive co-expression was confirmed in tracheal sections at both the mRNA and 
protein level (Figures 1e, 2d). These patterns are consistent with the transcriptome-wide 
homogeneity observed and suggest these genes all reach peak expression in this 
mucus secretory state. 
 
Considering that MUC5AC was a core smoking response gene, we next examined 
whether mucin co-expression differed between nonsmokers (NS) and heavy smokers 
(HS). We found a sharp increase in the frequency of MUC5AC+ only cells (NS=1%, 
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HS=10%) with heavy smoking and a corresponding decrease in both MUC5B+ only 
(NS=17%, HS=5%) and MUC5AC-/MUC5B- double negative cells (NS=8%, HS=2%; 
Supplementary Figure S2e), consistent with published data showing that MUC5B is 
more homeostatic and defensive37, whereas MUC5AC is more inducible and 
characteristic of inflammatory disease states15,30. Moreover, we found little overlap in 
genes correlated with MUC5AC and MUC5B, suggesting these mucins are associated 
with distinct functional programs (Figure 2e). For example, MUC5B-specific correlated 
genes encoded known secretory defense proteins, including C3, CFB, SAA1, SAA2, 
and LCN2, whereas MUC5AC-specific correlated genes contained a different set of 
defensive proteins (MSMB, LYZ, TFF1, BPIFB2, CEACAM5) while also being enriched 
for pro-secretory pathways related to ER-based protein processing and glycosylation 
(Figure 2e). Notably, among genes uniquely co-expressed with MUC5AC was XBP1, a 
TF previously implicated in both mucus production and its associated unfolded protein 
responses34,38. Not only were the two mucins themselves anti-correlated with smoking, 
but mean expression of MUC5AC- or MUC5B-correlated genes also increased or 
decreased, respectively, with smoke exposure (Figure 2f). Both IL33, a master regulator 
of type 2 mucus metaplasia39-41, and NKX3-1 are potential regulators of these smoking-
induced changes in secretory cells (Supplementary Figure S2f). Together, these data 
further support the concept of a continuous secretory cell lineage and show how 
smoking may mediate an additional transition, from mucin-balanced terminal secretory 
cells into an extended endpoint where MUC5AC (and its co-expressed program) 
dominate.  
 
MUC5Bhigh SMG secretory cells shift toward MUC5AC production and away from 
specialized defensive secretions with heavy smoke exposure 
 
Human airway mucus is formed from the composite of secretions produced by both 
surface and SMG mucus secretory cells42. We thus compared expression profiles 
between these two populations to examine similarities and differences in their secretory 
products and the molecular mechanisms that underlie them. 
 
We identified over 100 DEGs defining mucus secretory cells in both SMG and surface 
populations, which were enriched for transmembrane transport and mucosal defense 
(Supplementary Figure S3a). Despite these similarities, an even larger number of genes 
were uniquely characteristic of one or the other cell type (Figure 3a, Supplementary 
Figure S3b). The SMG population specifically expressed a highly unique repertoire of 
secretory proteins with strong enrichment for bacterial defense and innate immunity 
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functions (Figure 3a). Furthermore, we found that while both populations highly 
expressed MUC5B (Figure 3b), expression of MUC5AC in SMG secretory cells was 
much lower (18.4-fold reduction) and less ubiquitous (SMG=30% vs. surface=84%). 
Reduced MUC5AC within SMG cells was accompanied by significantly reduced or 
absent expression of a host of genes involved in ER-to-Golgi vesicle-mediated 
transport, protein processing in the ER, and both O-linked and N-linked mucin 
glycosylation (Figure 3a). Distinct panels of TFs in the two groups likely govern these 
different expression states. For example, CREB3L1 and SPDEF, the canonical 
secretory cell TF, were most predominant on the surface, while SMG cells uniquely 
expressed the SMG TF, SOX9, as well as FOXC1 and BARX2, which are known to be 
involved in lacrimal gland development43-45 (Figure 3a). Together, our data suggest that 
unique TF drivers in SMG cells result in MUC5B-dominated mucus, which requires 
considerably less post-translational processing and glycosylation than surface mucus 
production, and is equipped with specialized defensive functions. This is consistent with 
recent studies detailing distinct physical properties of mucus from the SMG compared to 
epithelial surface46,47 . 
 
Examining smoking effects in SMG mucus secretory cells, we found that MUC5AC was 
induced and MUC5B was suppressed by heavy smoking (Figure 3c), echoing mucin 
responses on the surface. Heavy smoking also increased levels of inflammatory 
cytokine interleukin-6 (IL6) uniquely in these cells, which has been implicated in lung 
disease48 (Supplementary Figure S3c). However, most notable was the unique 
downregulation of 48 genes in SMG cells with smoking, which were related to multiple 
functions, including calcium ion binding (S100A6, S100A16) and secretion (e.g., 
DMBT1, TF, and GNAS) (Supplementary Figure S3c). Heavy smoking thus appears to 
induce inflammation, shift the balance of mucins, and diminish the diversity of 
specialized proteins produced by SMG mucus cells, likely compromising barrier and 
defense functions of the airway. 
 
Human SMG basal cell states include myoepithelial cells and are modified by 
heavy smoking 
 
Recent work in mice has established the myoepithelial cell population as the SMG stem 
cell, which can differentiate into luminal cells through a basal cell intermediate. These 
cells were also shown to regenerate the surface epithelium in settings of severe injury. 
How these observations translate to the human airway is unclear. Investigating this, we 
identified a cell population with high glandular gene expression which highly expressed 
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KRT14, a marker of murine SMG basal cells2,49,50. Also upregulated in this population 
were several other genes associated with glandular basal cells, including CAV1, CAV2, 
IFITM3, ACTN1, and VIM51-53 (Figure 3d, Supplementary Figure 3d).  
 
Subclustering of this group revealed additional heterogeneity, with three major states 
identified (Supplementary Figure S3defg). The smallest of these expressed over 200 
genes related to muscle function absent from the other two subpopulations 
(Supplementary Figure S3dg), a profile highly similar to murine SMG myoepithelial 
(ACTA2+) cells54,55. This population was not proliferating (MKI67-) and poorly expressed 
KRT5, suggesting it represents a quiescent human myoepithelial population. Compared 
to myoepithelial cells, the other two major SMG basal states exhibited expression more 
typical of surface basal cells, including high KRT5 expression. One of these KRT5high 
populations was proliferating (MKI67+) and in fact clustered with surface proliferating 
basal cells upon epithelium-wide clustering (Figure 1b). The second state was non-
proliferative and appeared to be differentiating in that it highly expressed, IL33, a marker 
of surface differentiating basal cells in our dataset (Figure 3d).  
 
A pseudotime trajectory31 of all (except proliferating) SMG populations proceeded from 
myoepithelial cells into differentiating basal, and then SMG mucus secretory cells 
(Figure 3e, Supplementary Figure S3h). Transitioning out of the myoepithelial state 
involved losing expression of ACTA2 and muscle-related genes while simultaneously 
gaining expression of basal cell genes (KRT5, IL33). TFs distinctively characteristic of 
SMG (compared to surface) mucus cells (SOX9, FOXC1, and BARX2) initiated high 
expression in the differentiating basal population, consistent with this state being the 
precursor to mucus SMG cells (Figure 3e). IF labeling of tracheal sections further 
supported these transitions as well as the presence of these populations at the protein 
level (Figure 3f).  
 
Even these SMG basal cells at the base of glands were affected by prolonged smoking, 
exhibiting a total of 174 DEGs (Supplementary Figure S3ij). Notably, smoker SMG basal 
cells uniquely upregulated TSLP, a major driver of type 2 airway inflammation56,57, 
which we confirmed with IF labeling (Figure 3g), suggesting a potentially unrecognized 
role for these cells in the onset of chronic inflammatory airway disease. 
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Sequential transcriptional programs drive motile ciliogenesis 
 
Upon cell fate acquisition, nascent ciliated cells activate expression of a large ciliary 
program, precipitating the generation of hundreds of cytoplasmic basal bodies which 
traffic to and dock with the apical membrane where they then elongate motile 
axonemes58. As our in vivo scRNA-seq data did not wholly capture the heterogeneity 
reflective of this progression, we studied the process by culturing basal tracheal 
epithelial cells from a subset of the donors at air-liquid interface (ALI) and harvesting 
replicate cultures at 20 timepoints across mucociliary differentiation for scRNA-seq 
sequencing analysis (Supplementary Figure S4abc). Clustering of 5,976 cells yielded 
three in vitro populations distinguished by their high expression of ciliary genes (Figure 
4a, Supplementary Figure S5a). Trajectory reconstruction59 identified two major 
lineages, one of which transitioned from basal through early secretory cells, culminating 
in the three ciliated cell populations (Supplementary Figure S4d), whose ordering 
matched the real-time appearance of states across ALI differentiation (Supplementary 
Figure S5b). The first state to appear was highly enriched for genes involved in basal 
body assembly60,61 (DEUP1, STIL, PLK4) (Figure 4a) and also contained known early 
transcriptional drivers of ciliogenesis62-64 (MCIDAS, MYB, and TP73) (Figure 4b). We 
also found that TF, E2F7, was highly expressed in this state. Since E2F4 and E2F5 act 
at the top of the ciliogenesis program62, other family members may also be involved in 
this initial early ciliating stage. 
 
The two subsequent states were both highly enriched for mature ciliated cell genes, but 
the first of these in pseudotime was distinguished by the presence of basal body 
docking (CEP290, TTBK2)65 and axoneme assembly (IFT52) genes (Figure 4a), as well 
as peak expression of known ciliogenesis TFs (GRHL2, RFX2 and RFX3) 17,66,67. These 
TFs were downregulated in the third and final state, which displayed the highest 
expression of another canonical ciliogenesis and ciliary maintenance TF, FOXJ116 
(Figure 4b). This state also showed high expression of mitochondrial formation and ATP 
synthesis genes, consistent with the significant energy requirements of axonemal 
motility68 (Supplementary Figure S5c). Finally, 233 known ciliary genes displayed higher 
unspliced-to-spliced ratios69 in the second compared to the third state, while only 10 
genes showed the inverse pattern (Supplementary Figure S5de), supporting the 
trajectory’s ordering of states and illustrating a putative role of mRNA processing during 
the final completion of ciliogenesis.  
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Interestingly, forkhead box N4 (FOXN4), a known regulator of ciliogenesis in Xenopus70, 
was highly and nearly exclusively expressed in the early state, and may thus be a novel 
driver of this population. Consistent with its early expression, we detected nuclear 
FOXN4 at ALI Day 9 but no signal in mature ciliated cells at ALI Day 21 (Figure 4c). 
CRISPR-Cas9 knockout (KO) of FOXN4 carried out in basal cells resulted in a partially 
penetrant block to ciliogenesis upon differentiation. At Day 21, 76% of ciliated cells had 
no or only short, sparse cilia compared to only 2% in the control (Figure 4d, left; 
Supplementary Figure S5f). The abnormal KO cells retained basal bodies and 
deuterosomes60 in the cytoplasm (Figure 4d, right), indicating that the basal body 
generation machinery was intact, but basal body docking and deuterosome disassembly 
was blocked. Thus, our data are consistent with FOXN4 regulating this later step in 
early ciliogenesis. 
 
In vivo, most ciliated cells were mature and the only cluster resembling the early ciliating 
state (Figure 4e, top), including high FOXN4 expression, was the hybrid 
secretory/ciliated cell population that subclustered out of mature mucus secretory cells 
(Supplementary Figure S2cd). These hybrid cells expressed SPDEF, MUC5AC, and 
mature mucus secretory genes (Figure 4e, bottom), in contrast to the non-mucus 
producing early secretory cells that gave rise to the FOXN4+ early ciliating state in vitro 
(Supplementary Figure S4d). Together these data suggest that during de novo 
epithelization, ciliated cells derive from early secretory cells, but in the homeostatic 
airway, mature mucus cells transdifferentiate into ciliated cells, possibly in response to 
stimulus.  
 
Mature ciliated cells exhibited 42 genes uniquely upregulated in heavy smokers which 
included the TF, XBP1, and genes involved in ER processing and unfolded protein and 
heat shock responses (Figure 4f). As heat shock family chaperonins were recently 
shown to be required for axonemal protein complex assembly71, prolonged smoking 
may enhance the ciliated cell-specific protein-folding program to counteract smoking-
related protein damage and misfolding.  
 
Smoking leads to decreased ciliary function and ciliated cell loss72-75, yet we found that 
genes downregulated by heavy smoking in mature ciliated cells were not related to 
ciliogenesis or ciliary function (Supplementary Table S2). However, these genes were 
strongly downregulated in the hybrid secretory/ciliated cells (Figure 4g), suggesting that 
the ciliogenesis program in this hybrid population is uniquely vulnerable to prolonged 
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smoking. Thus, smoking may hinder the regeneration of ciliated cells rather than 
impairing their function once fully developed. 
 
Decoupled FOXI1 and CFTR expression and a potential lineage relationship 
among rare epithelial cell types 
 
Subclustering of the rare cell population identified three distinct groups, each expressing 
canonical markers of highly disease-relevant epithelial cell types: PNECs19 (CALCA), 
tuft cells22,76,77 (POU2F3), or ionocytes21,36,78 (CFTR) (Figure 5a). We transcriptionally 
defined the function of these cells in humans using differential expression analyses, 
which confirmed highly enriched expression of Achaete-Scute family BHLH TFs, 
ASCL1, ASCL2 or ASCL3, in PNECs, tuft cells or ionocytes, respectively36,76,79 (Figure 
5b, Supplementary Figure S6a). These data confirm that ionocytes populate the human 
tracheal epithelium and highly express CFTR, as recently recognized36,78. On a per cell 
basis, ionocyte CFTR expression was between 17- and 467-fold higher than in other 
cell types, yet low frequency of these cells (average 0.2%) means only 11% of the total 
CFTR expressed by the epithelium was derived from ionocytes, whereas other more 
abundant cells contribute more, such as the KRT8high population which supplied 56% of 
epithelial CFTR (Figure 5c). Exploring whether this result was due to a scRNA-seq 
sampling bias, we examined bulk RNA-seq data from our ALI differentiation time 
course, finding that CFTR expression began and peaked much earlier than ionocyte 
marker genes (Figure 5d), further supporting a significant CFTR contribution from other 
epithelial cell types.  
 
The expression signature in our human PNECs revealed neurotransmitter processing 
pathway genes employed by these cells as well as a host of secreted neurotransmitters 
(Figure 5b). Despite characteristic POU2F3 and ASCL2 expression in our human tuft 
cell population, expression signatures in these cells were distinct from those reported in 
murine tuft cells36 (Figure 5b, Supplementary Figure S6a). For example, many 
diagnostic markers in mice (GNAT3, TRPM5, GNG13, HMX2, etc.) were not well-
represented in our human scRNA-seq dataset, while other murine markers were 
present (HOXA5, HCK, and LRMP). Therefore, we classified our POU2F3+/ASCL2+ 
cells as “tuft-like” to signal the uniqueness of their transcriptional profile compared to 
previously described tuft cells.  
 
Along with murine lineage tracing results36, the appearance of all these populations in 
ALI cultures (Supplementary Figure S6bcd) demonstrates that rare cells all ultimately 
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derive from basal airway epithelial cells. Yet, little is known about the paths a basal cell 
takes to differentiate into these cell types. That these three rare populations clustered 
together when the entire epithelium was analyzed (in vitro and in vivo, and by others78) 
potentially indicates a shared origin as well as phenotype. Supporting this, differential 
expression analysis identified 67 genes highly expressed across only these three 
populations, as well as hundreds of genes uniquely shared between pairs of rare cell 
types (Supplementary Table S3). Interestingly, HES6 was one of the 67 genes uniting 
rare cells, suggesting a possible role for NOTCH competition80 during fate determination 
of these cell types, and also potentially reflecting a shared neuronal character81 
(Supplementary Figure S6e).  
 
Most intriguing of the rare cell pair relationships was that observed between ionocytes 
and tuft-like cells, which uniquely shared expression of 114 genes, including the 
reported ionocyte TF, ASCL336,78 (Supplementary Table S3). Moreover, we found that 
ionocyte marker, FOXI120, whose expression has been reported to be sufficient to 
produce CFTRhigh ionocytes36,78, was expressed by roughly half of POU2F3+ tuft-like 
cells (Figure 5e). Despite FOXI1 expression levels comparable to ionocytes, these tuft-
like cells lacked detectable CFTR expression. Confirming this, FOXI1 was present by 
FISH in nearly all CFTRhigh cells and about half of POU2F3+ cells (Figure 5f). 
Quantifying the FISH data, on average 48% of FOXI1+ cells exhibited an ionocyte 
expression pattern (CFTR+/POU2F3-), while 38% of FOXI1+ cells exhibited a tuft-like 
pattern (CFTR-/POU2F3+) (Figure 5g, Supplementary Figure S6f). Consistent with this, 
bulk RNA-seq data from the ALI differentiation time course shows that the tuft-like 
expression signature begins and peaks early in differentiation, whereas signatures of 
both ionocytes and PNECs appear much later, continuing to increase after much of the 
epithelium has matured (Day 21) (Figure 5h). Tuft-like cell expression was also most 
similar to that in basal cells (Supplementary Figure S6g), further supporting the 
possibility that they could serve as precursor cells. Together, these data suggest that 
tuft-like cells may be a precursor to ionocytes, and possibly PNECs. 
    
We observed fewer tuft-like cells and more ionocytes in heavy smokers (Supplementary 
Figure S6h), suggesting that smoking may alter fate choice in favor of ionocytes over 
tuft-like cells and lending further evidence for a possible lineal relationship among these 
populations. In ionocytes, we observed 307 genes downregulated in heavy smokers, 
which included many genes highly specific to this cell type (Supplementary Figure S6ij), 
suggesting that ionocytes present in smokers, while not decreasing in number, may 
exhibit compromised function. 
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Discussion 
In this study, we have generated an agnostic atlas of the human in vivo tracheal airway 
epithelium, identifying and characterizing cell types, cell states, and lineage 
relationships among them. As such our study expands on the mouse in vivo and human 
in vitro airway epithelial atlases published recently36,78, and we also provide a much 
more densely sampled in vitro time course of human airway epithelial differentiation. 
Our data reveal that during both in vitro differentiation and in vivo homeostasis, ciliated 
cells derive from a secretory progenitor through multiple, discrete, transcriptional states, 
regulated by a suite of TFs that include FOXN4, which we identify as a novel regulator 
of the earliest ciliating state. Similarly, we show that the heterogeneity in secretory cells 
(club, mucus secretory cells expressing one or both of MUC5B and MUC5AC) is likely 
all part of a continuous secretory lineage that culminates in a multi-mucin producing 
mucus secretory cell.  
 
Our atlas also produces the first transcriptional picture of human airway SMG cells, 
allowing us to identify a human equivalent to the recently described murine 
myoepithelial stem cell54,55. Our analysis suggests this human counterpart also exhibits 
stem function, as it silences its muscle expression program to assume both surface 
basal (KRT5, TP63) and unique glandular expression (SOX9), as well as engage in 
proliferation. This basal cell state can then differentiate into a mucus secretory cell, as 
orchestrated by TFs distinct from those involved in surface mucus secretory cell 
differentiation. The uniqueness of this program produces a vastly different secretory 
cell, with distinct mucin expression and processing and a specialized repertoire of 
protein secretions. It remains unclear whether these SMG stem cells can repopulate the 
surface epithelium in humans as in mice54,55. We confirm that the homeostatic human 
airway epithelium does contain ionocytes and that they highly express CFTR. However, 
the large proportion of CFTR expression deriving from other epithelial cell types and our 
observation of FOXI1/CFTR decoupling, cautions against the simple FOXI1 -> CFTR -> 
cystic fibrosis model. Lastly, our data suggest an unrecognized lineage relationship 
between at least tuft cells and ionocytes, if not also PNECs, which may relate to 
recently reported tuft-like variants of small cell lung cancer, generally thought to be a 
PNEC-derived tumor76. 
 
Importantly, we use scRNA-seq to deconstruct smoking effects on the epithelium to the 
cell type level, which we can then reassemble into a comprehensive model of how 
smoking modifies epithelial function as a whole (Figure 6). To summarize, pan-epithelial 
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effects of smoking reach the basal stem cells and include induction of chemokine 
signaling and xenobiotic metabolism at the expense of antigen presentation and innate 
immune signaling. Surface and SMG secretory cells shift their mucin programs toward a 
MUC5AC-dominated inflammatory state while SMG secretory cells lose many of their 
distinctive defensive secretions and SMG basal cells upregulate the type 2 inflammatory 
cytokine, TSLP. Early ciliating cells preferentially lose ciliary function, potentially 
hindering regeneration of ciliated cells upon injury, and tuft-like cells are being depleted 
in conjunction with an increase in functionally-impaired ionocytes. Taken together, these 
data paint a smoker epithelium that has been rendered more functionally 
monochromatic, carrying out a MUC5AC inflammatory program at the expense of 
performing its normal defensive, interactive and reparative roles essential to lung health 
and homeostasis. 
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Figure legends  
Figure 1: Shared and cell type-specific gene expression responses to smoking  
across diverse airway epithelial cell types 

a. Schematic for studying human tracheal epithelium by scRNA-seq. 
b. tSNE visualization of cells in the human trachea depicts unsupervised clusters 

defining broad cell types present. 
c. Dot plots highlight known and novel markers distinguishing broad cell categories 

based on average expression level (color) and ubiquity (size). Colored bar 
corresponds to the cell types/states in b. 

d. Immunofluorescence (IF) labeling of human tracheal sections shows MKI67 (red) 
and TP63 (green) in a subset of KRT5high (white) basal cells. Dotted line denotes 
the approximate apical surface of epithelium. Scale bar = 25 μm. DAPI labeling 
of nuclei (blue). 

e. Fluorescence in situ hybridization (FISH) co-localizes MUC5B (white) and 
MUC5AC (red) mRNA to non-ciliated cells. FOXJ1 (ciliated marker, green). 

f. IF labeling localizes KRT8 (green) to mid-upper epithelium, MUC5AC (red), 
KRT5 (white). 

g. FISH distinguishes rare cell mRNA markers: Left, PNECs (CHGA, white) and 
ionocytes (CFTR, red); Right, ionocytes and tuft-like cells (POU2F3, green).  

h. IF labeling localizes MUC5B (white) and KRT14 (green) to distinct cells in the 
SMGs.  

i. Published bulk RNA-seq upregulated smoking genes9 are upregulated in most 
heavy smoker cell populations. Box plots show distributions of mean normalized 
expression, p-values are based on one-sided t-tests comparing means for heavy 
and non-smokers. Rare cells were excluded due to small cell numbers. Box plots 
for downregulated genes from the same published study are in Supplementary 
Figure S1f. 

j. Venn diagram summarizes core and unique smoking responses across seven 
broad cell populations (colors match those in b), with number of up and 
downregulated genes unique to populations given in the tips and number of core 
genes affected in ≥ four populations in the center. Note degree of overlap in the 
diagram is not proportional to gene overlap for readability. Detailed percentages 
in Supplementary Figure S1g. 

k. Protein-protein interaction (PPI) networks show shared function across core 
smoking upregulated genes. Redness indicates number of cell populations where 
a gene was significantly upregulated (FDR < 0.05). See also Supplementary 
Figure S1, Supplementary Tables S1-S2. 
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Figure 2: In vivo secretory cells form a continuous lineage and exhibit MUC5AC-
correlated smoking effects  

a. Heat map of smoothed expression across a Monocle-inferred lineage trajectory 
shows transitions in transcriptional programs that underlie differentiation in the in 
vivo human airway epithelium, from basal-like pre-secretory (KRT8high) cells into 
mucus secretory cells. Select genes that represent these programs are shown, 
all significantly correlated with pseudotime. Key enrichment pathways and genes 
belonging to each block are indicated at right. Subcluster colors are the same as 
those in the pseudotime trajectory shown in Supplementary Figure S2a. 

b. Scaled, smoothed expression of select transcriptional regulators (colored lines) 
and canonical markers (black dashed/solid lines) across pseudotime 
differentiation of human tracheal secretory cells in vivo. The x-axis corresponds 
to the x-axis in a. 

c. Pie chart depicts proportions of all mucus secretory cells exhibiting different 
MUC5AC and MUC5B mucin co-expression profiles.  

d. Co-expression of common secretory markers at the mRNA level (Left, FISH with 
SCGB1A1 in red, MUC5B in green) and protein level (Right, IF labeling with 
MUC5AC in red, MUC5B in green and KRT5 in white). Scale bar 25 μm. 

e. Smoking-independent correlation coefficients of MUC5B-correlated and 
MUC5AC-correlated genes. Genes are colored based on whether they were 
significantly correlated with only MUC5B (green), only MUC5AC (blue), or both 
(orange). Select genes are labeled. 

f. Box plots illustrate the converse effects of smoking on the mean expression of 
MUC5B and MUC5AC-correlated genes. P-values are from one-sided Wilcoxon 
tests.  
See also Supplementary Figure S2. 
 

Figure 3: SMG mucus secretory cells are predicted to derive from a myoepithelial 
cell and exhibit specialized functions which are modified by smoking  

a. Heat map depicts select genes, functional terms and TFs that distinguish surface 
and SMG secretory cells. Detailed heat map in Supplementary Figure S3a. 

b. Box plots of normalized mucin expression across surface secretory (orange), 
SMG secretory (brown) and non-secretory cells (grey). Median fold change 
between surface and SMG secretory cells is indicated. 

c. Top, Pie chart depicts proportions of SMG secretory cells exhibiting different 
MUC5AC and MUC5B mucin co-expression profiles. Bottom, bar plot showing 
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how proportions of cells belonging to each mucin co-expression class differ 
between nonsmokers (black; n = 3) and heavy smokers (red; n = 2). 

d. Dot plot showing the expression of markers that unite and distinguish SMG basal 
cell substates, relative to surface populations and each other. 

e. Scaled, smoothed expression of key genes and regulators across a pseudotime 
trajectory that models the differentiation process of SMG cells. MEC, 
myoepithelial cells. A minimum spanning tree of the trajectory can be found in 
Supplementary Figure S3h. 

f. IF labeling illustrates myoepithelial cells (ACTA2+, green) transitioning to SMG 
basal cells (KRT5+, red). Example myoepithelial (green arrows), SMG basal (red 
arrow) and transitioning (yellow arrow) cells are highlighted. DMBT1 is in white 
and scale bar is 50 μm. 

g. IF labeling illustrates presence of TSLP (red) in SMG basal cells of heavy 
smokers. ACTA2, green; MUC5B, white. Scale bar, 25 μm. 
See also Supplementary Figure S3. 
 

Figure 4: Sequential transcriptional programs drive motile ciliogenesis and 
smoking inhibits the early ciliating cell state 

a. Heat map depicts gene signatures of three ciliated cell states (function 
summarized in schematic above) in human airway epithelial ALI cultures 
sampled across differentiation. Select genes from each state are indicated. 

b. Dot plots reveal TFs exhibiting expression associated with ciliated states in vitro. 
c. Wholemount IF labeling of FOXN4 knockout in human tracheal epithelial ALI 

cultures is consistent with early expression of FOXN4 (green). Acetylated α-
Tubulin (ACT), red, identifies immature (white arrows) and mature ciliated cells 
(yellow arrows) in control cultures at ALI timepoints indicated. Scale bar = 25 μm. 

d. Left, Quantification of mature and immature ciliated cells on Day 21 as 
determined by ACT labeling morphology (see Methods). Right, Wholemount IF 
labeling of FOXN4 knockout illustrates aberrant ciliogenesis where basal bodies 
are generated (γ-Tubulin, green), but fail to dock (white arrows) and 
deuterosomes are assembled (DEUP1, red), but retained (yellow arrows). Scale 
bar = 25 μm. 

e. Average expression of markers from two in vitro ciliogenesis states (top and 
middle) and in vivo mature mucus secretory cells (bottom) reveals that the hybrid 
secretory/ciliated state contains both early ciliating and mature secretory 
character. Marker expression for the later ciliating in vitro state in Supplementary 
Figure S5e. 
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f. Left, box plots summarize expression of genes uniquely upregulated in mature 
ciliated cells with heavy smoking, Right, functional gene network (FGN) of non-
core upregulated genes in mature ciliated cells. Colored edges indicate shared 
enrichment annotations between genes that belong to functional categories 
summarized by the exemplar terms listed, grey edges indicate shared 
annotations across different functional categories. Edge thickness corresponds to 
the number of shared terms. Genes in bold are those uniquely upregulated in 
mature ciliated cells. 

g. Smoking downregulates ciliogenesis in hybrid secretory/ciliating cells but not 
mature ciliated cells. Left, box plots summarize expression of genes uniquely 
downregulated in hybrid ciliating cells, Right, FGN summarizes functional 
relatedness among these genes and is as described for f except that genes in 
bold are those annotated as cilia-related by CiliaCarta82. 
See Supplementary Figures S4-S5. 

 
Figure 5: Rare cell types are highly related and CFTR and FOXI1 expression is 
decoupled in the human airway epithelium 

a. Left, tSNE depicts subclustering of rare cells found in the human tracheal 
epithelium, Right, violin plots show expression of rare cell markers identify the 
three subclusters. 

b. Heat map of unique gene signatures across rare cell types. Select genes in each 
block are indicated at left and select gene ontology terms enriched by the genes 
in each block are indicated at right. 

c. Left, Level of CFTR expression is shown across the tSNE plot of cells in the in 
vivo human tracheal epithelium. Grey points indicate cells with zero expression. 
Rare cell cluster is circled. Right, Table details the distribution of CFTR UMIs 
across major cell populations in the in vivo human tracheal epithelium.  

d. Geometric mean of scaled bulk RNA-seq expression for in vivo marker genes of 
non-rare cells, ionocytes, and CFTR across samples from 20 timepoints of 
human epithelial ALI differentiation indicate that bulk CFTR appears days before 
ionocytes in culture.  

e. Violin plots show that FOXI1 is expressed in both tuft-like cells and ionocytes in 
vivo. Point color indicates co-expression of FOXI1 with CFTR (red), POU2F3 
(green) or neither (white). 

f. FISH of FOXI1 (white), CFTR (red) and POU2F3 (green) illustrates overlap of 
FOXI1 in ionocytes (FOXI1+/CFTR+, pink arrows) and tuft-like cells 
(FOXI1+/POU2F3+, yellow arrows) in the human tracheal epithelium in vivo. 
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Green arrow, FOXI1-/POU2F3+ tuft-like cell. Representative images from more 
than 8.4 cm of basolateral membrane across four donors are shown. 

g. Average co-expression quantification of FISH for the three markers in f across 
561 total ionocytes and tuft-like cells imaged in 4 donors. Number of cells is 
indicated in each pie. Break down of each donor’s profile can be found in 
Supplementary Figure S6f. 

h. Tuft-like cell markers appear days before ionocyte or PNEC markers in vitro. The 
geometric mean of scaled bulk RNA-seq expression from the top 25 in vivo 
markers for each rare cell type are shown. 
See also Supplementary Figure S6. 
 

Figure 6: Whole epithelium smoking responses reconstructed from cell specific 
scRNA-seq analyses 

a. Functional Gene Network (FGN) based on all genes upregulated with heavy 
smoking shows how genes that respond to smoking in distinct cell types of the 
airway epithelium may collaborate in carrying out dysregulated function. Node 
(i.e. gene) colors in Node Key refer to the cell type in which a gene was 
differentially expressed if “unique”; nodes for “semi-unique” and “core” DEGs are 
white and black, respectively. Edges connect genes annotated for the same 
enriched term. Exemplar enriched functions are given next to each functional 
metagroup (or category), which are indicated by the underlay colors that 
encompass all genes annotated only for the terms within the metagroup. Nodes 
without colored underlay represent genes in multiple metagroups. Other 
properties of the network, including node size, connecting edge thickness, and 
label size/redness are defined in the Network key. 

b. FGN as in a, but for all genes downregulated with heavy smoking in the airway 
epithelium. Legend serves for both a and b. 

c. Schematic summarizes the smoking response of the whole epithelium. 
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Methods 
MATERIALS AND CORRESPONDENCE 
Further information and requests for resources and reagents should be directed to and  
will be fulfilled by Max A. Seibold (seiboldm@njhealth.org) 
 
EXPERIMENTAL METHODS 
Key Resources 
All reagents and resources referred to below are summarized with vendors and 
identifiers in Supplementary Table S4. 
 
Human trachea samples 
Human tracheal airway epithelia were isolated from de-identified donors whose lungs 
were not suitable for transplantation. Lung specimens were obtained from the 
International Institute for the Advancement of Medicine (Edison, NJ) and the Donor 
Alliance of Colorado. The National Jewish Health Institutional Review Board (IRB) 
approved the research under IRB protocols HS-3209 and HS-2240. Smokers with at 
least 15 pack years were classified as “heavy”, while smokers with fewer than 5 pack 
years were classified as “light”. See table in Supplementary Table S1 for donor details. 
 
In vivo harvest for scRNA-seq (10X Genomics) 
Human tracheas were wet in Stock solution (DMEM-F + 1X PSA) and fat and 
connective tissue were removed, before cutting into small sections. Sections were 
rinsed in Stock solution to remove mucus before proteolytic digest (0.2% Protease in 
Stock solution) overnight at 4°C, with rocking. Protease was neutralized with FBS, the 
supernatant was saved (tube 1), and tracheal sections washed (5 mM HEPES, 5 mM 
EDTA, 150 mM NaCl) for 20 min at 37°C. The supernatant was also saved (tube 2) and 
the loosened epithelium was then manually scraped off into stock solution with 10% 
FBS (tube 3), and all cells were collected by centrifugation for 10 min at 1000 rpm, 4°C 
(tubes 1, 2, and 3). Cell pellets resuspended in BEGM+0.5X PSA were filtered using a 
70um cell strainer, collected by centrifugation (5 min, 1000 rpm, 4°C) and cryopreserved 
in freeze media (F-media, 30% FBS, 10% DMSO). On the day of capture, cells were 
quick thawed, washed twice in 1X PBS/BSA (0.04%) and resuspended at 1200 cells/μL 
for capture on the 10X Genomics platform. 
 
Primary cell culture 
Primary human basal airway epithelial cells from tracheal digests were expanded at 
37°C on NIH 3T3 fibroblast feeders in F-media (67.5% DMEM-F, 25% Ham’s F-12, 
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7.5% FBS, 1.5 mM L-glutamine, 25 ng/mL hydrocortisone, 12 5ng/mL EGF, 8.6 ng/mL 
cholera toxin, 24 μg/mL Adenine, 0.1% insulin, 75 U/mL pen/strep) with ROCK1 
Inhibitor (RI, 16 μg/mL) and antibiotics (1.25 μg/mL amphotericin B, 2 μg/mL 
fluconazole, 50 μg/mL gentamicin)83 and cryopreserved in freeze media upon initial 
passaging (P1).  
 
In vitro ALI culture 
Tracheal cells (P1) were expanded a second time on feeders in F-media/RI and 
harvested by differential trypsinization with FBS neutralization. After washing in 1X PBS, 
cells were resuspended in 1X HBSS and subjected to DNase digest for 5 min at 37°C. 
DNase was diluted 2-fold with HBSS, cells were centrifuged 1000 rpm, 5 min, 4°C and 
seeded onto bovine collagen-coated 6.5mm transwell inserts (2 x104 cells/insert) in ALI 
Expansion medium (50% BEBM, 50% DMEM-C, 0.5 mg/mL BSA, 80 μM ethanolamine, 
10 ng/mL hEGF, 0.4 μM MgSO4, 0.3 μM MgCl2, 1 μM CaCl2, 30 ng/mL retinoic acid, 
0.8X insulin*, 0.5X transferrin*, 1X hydrocortisone*, 1X epinephrine*, 1X bovine pituitary 
extract*, 1X gentamicin/amphotericin*, *relative to BEGM Bullet Kit aliquot) with RI (Day 
-5). RI was removed after 24 h, and ALI expansion medium was changed 48 hlater (Day 
-2). After another 48 h(Day 0), apical medium was removed and basolateral medium 
was replaced with PneumaCult (PC)-ALI media. Basolateral medium was exchanged for 
fresh PC-ALI every 48 or 72 h for the subsequent 11 days, and then daily for the 
following 22 days along with an apical wash of 20 μL PC-ALI. 
 
In vitro harvest for scRNA-seq (WaferGen) 
For each timepoint, medium was removed from endpoint ALI cultures, and the apical 
chamber was washed with warm PBS/DTT (10mM) for 5 min at 37°C, followed by a 
warm PBS wash of both chambers. Cultures were dislodged from the insert with 200 μL 
apical dissociation solution (Accutase with 5mM EDTA and 5mM EGTA) for 30 min at 
37°C with occasional manual agitation84. Single cell suspensions were diluted, 
centrifuged, washed once with PBS/DTT and twice with PBS, before cryopreservation 
(F-media, 40% FBS, 10% DMSO). On the day of capture, cells were quick thawed, 
washed with 1X PBS (no BSA) and counted before proceeding with WaferGen capture 
according to the manufacturer’s instructions with the following modifications: 5 or 10 x 
104 cells were stained per sample, single cell candidates were confirmed by manual 
visual triage.  
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FOXN4 KO in human tracheal basal cells 
Two CRISPR RNA (crRNA) guides targeting human FOXN4 annealed with universal 
tracrRNA and complexed with Alt-R HiFi Cas9 nuclease (1:1.2 duplex:nuclease), were 
electroporated (3.1uM RNP) into expanded human tracheal basal cells (5 x 105 
cells/transfection) with the Amaxa Nucleofector II (pulse code W-001). RNP-containing 
basal cells were then expanded on rat collagen-coated dishes and seeded onto 
transwell inserts (1 x 105 cells/insert) in PC-Ex Plus expansion media with RI. RI was 
removed after 24 h, and 48 h later apical medium was removed and basolateral medium 
was replaced with PC-ALI medium. Basolateral media was replaced with fresh PC-ALI 
every 48 or 72 h until harvest for wholemount IF labeling on the day indicated. 
 
Immunofluorescence microscopy 
Tissue and ALI section histology 
Adjacent cross-sections of human trachea were fixed in 10% neutral buffered formalin 
for >48 h at 4°C. ALI cultures were washed with warm 1X PBS (5 min, 37°C), fixed in 
PFA (1X PBS, 3.2% PFA, 3% sucrose) for 20 min on ice and washed twice with ice cold 
PBS. Tissue or ALI cultures were cut out of plastic supports, paraffin-embedded and 
sectioned onto microscope slides. Rehydration was performed with two 3 min washes in 
HistoChoice, followed by a standard ethanol dilution series, and antigen retrieval in 
Antigen Unmasking Solution for three 4-min boiling intervals. Slides were then cooled to 
room temperature on ice and washed three times with TBST (1X TBS, 0.5% TritonX-
100) before blocking in Block buffer (1X TBS, 3% BSA, 0.1% TritonX-100) for 30 min at 
room temperature. Double or triple primary antibody applications were performed in 
Block buffer overnight at 4°C with dilutions as follows: KRT5 (1:500), TP63 (1:200), 
MKI67 (1:100), KRT8 (1:100), MUC5AC (1:500), MUC5B (1:200), KRT14 (1:200), 
DMBT1 (1:50), SCGB3A1 (1:20), ACTA2 (1:100), TSLP (1:30). Slides were washed 
three times in TBST before concurrent secondary application (1:500) in Block buffer 
with DAPI for 30 min and room temperature. Slides were again washed three times in 
TBST, mounted with ProLong Diamond Mount and imaged on an Echo Revolve R4 
microscope. 
 
ALI wholemount 
ALI cultures inserts were rinsed with 1X PBS, fixed for 15 min in 3.2% PFA (no sucrose) 
at room temperature or 10 min in methanol at -20°C, rinsed twice more with 1X PBS 
and stored at 4°C. Membranes were cut out of plastic supports and placed cell-side up 
on parafilm in a humid chamber. After three brief washes in TBST, cells were blocked in 
Block buffer for 30 min at room temperature and primary antibodies were applied in 
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Block buffer for 2 h at room temperature at the following dilutions: FOXN4 (1:50), 
Acetlyated α-Tubulin (1:1000), γ-Tubulin (1:500), DEUP1 (1:500). Membranes were 
washed 3 times in TBST before concurrent secondary application (1:500) with DAPI for 
30 min at room temperature. Membranes were again washed three times in TBST, 
mounted with ProLong Diamond and imaged on a Leica TCS SP8 confocal microscope. 
Ciliated cells were quantitated based on anti-acetylated α-Tubulin antibody labeling in 
maximum projections of confocal image stacks of scramble (584) or FOXN4 KO (854) 
cells. “Mature” ciliated cells display numerous well-formed cilia, and “immature” cells 
display one of the indicated phenotypes: short, sparse or bulging. 
 
Fluorescence in situ hybridization (RNAScope) 
Adjacent cross-sections of human trachea or PBS rinsed ALI cultures were fixed in 10% 
neutral buffered formalin for 24+/- 8 h at room temperature, washed with 1X PBS and 
paraffin-embedded immediately. Paraffin blocks were sectioned onto SuperFrost Plus 
slides, dried overnight and baked for 1 h at 60°C before immediately proceeding with 
the RNAScope Multiplex Fluorescent v2 assay according to the manufacturer’s 
instructions with the following modifications: Target retrieval was performed for 15 min 
in a boiling beaker, protease III was used for 30 min pre-treatment at 40°C and 
hybridized slides were left overnight in 5X SSC before proceeding with the amplification 
steps. Opal fluors were applied at 1 in 1500 dilution, and slides were image on an Echo 
Revolve R4 microscope. Ionocytes and tuft-like cells were quantified by presence of 
grouped FOXI1, POU2F3 and/or CFTR puncta on triple labeled sections. Basolateral 
membrane length was quantified with the freehand line tool and Measure functions in 
ImageJ. 
 
AmpliSeq of bulk RNA samples 
Bulk RNA was extracted with the Quick RNA MicroPrep Kit and 0.5 – 3 x 105 cells were 
harvested alongside those used for scRNA-seq. Isolated RNA was normalized to 3.5 ng 
input/sample for automated library preparation with the Ion AmpliSeq Transcriptome 
Human Gene Expression Kit, using 12 cycles of amplification. Libraries were sequenced 
with Ion Proton System (ThermoFisher Scientific). 
 
QUANTIFICATION AND STATISTICAL ANALYSIS 
Pre-processing of in vivo scRNA-seq data 
Initial pre-processing of the 10X in vivo scRNA-seq data, including demultiplexing, 
alignment to the hg38 human genome, and UMI-based gene expression quantification, 
was performed using Cell Ranger (version 2.1, 10X Genomics). 
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We next carried out donor-specific filtering of cells to ensure that high quality single cells 
were used for downstream analysis. Although samples comprising multiple cells were 
removed during the cell selection stage, we safeguarded against doublets by removing 
465 cells with either a gene count over the 99th percentile or a UMI count over the 97th 
percentile. Furthermore, 223 cells were removed that either exhibited fewer than 1500 
genes or fell within the 1st percentile of gene counts and 170 cells were removed that 
contained more than 30% of mapped reads originating from the mitochondrial genome. 
Prior to downstream analysis, select mitochondrial and ribosomal genes (genes 
beginning with MTAT, MT-, MTCO, MTCY, MTERF, MTND, MTRF, MTRN, MRPL, 
MRPS, RPL, or RPS), or very lowly expressed genes (expressed in < 0.1% of cells) 
were also removed. The final quality-controlled dataset consisted of 14,324 cells, and 
19,339 genes. After initial clustering and visualization, which allowed for identification of 
11 major cell populations (see Supplementary Figure S1a), 484 cells were removed that 
we characterized as non-epithelial (smooth muscle cells, endothelial cells, and immune 
cells), leaving 13,840 epithelial cells for further analysis.  
 
To account for differences in coverage across cells, UMI counts were normalized for 
each donor, dividing each count by the sum of its cell’s UMIs, multiplying by 10,000, and 
then taking the natural log. For input into dimensionality reduction and clustering 
analyses and for plotting relative expression in heat maps and dot plots, we also fitted 
normalized expression of each gene to the sum of the UMI counts per cell, and then 
mean centered (subtracted from each gene count the average expression of that gene) 
and scaled (divided each centered gene count by that gene’s standard deviation) the 
residuals. The Seurat R package85 was used to carry out all data normalization and 
scaling as well as downstream dimensionality reduction, clustering, tSNE plot 
overlaying, and differential expression.  
 
Pre-processing of in vitro scRNA-seq data 
We trimmed and culled raw demultiplexed cDNA reads in FASTQ files using Cutadapt86, 
trimming poly A tails and 5’ and 3’ ends with q < 20 and removing any reads shorter 
than 25 base pairs. Trimmed reads were then aligned to the hg38 human genome with 
GSNAP87, setting “max-mismatches=0.05” and accounting for both known Ensembl 
splice sites and SNPs. Gene expression was quantified using HTSeq88 with 
“stranded=yes”, “mode=intersection-nonempty”, and “t=gene” and then summed the 
number of unique molecular identifiers (UMIs) for each gene across runs for each cell to 
obtain a UMI count matrix used for all downstream analysis. 
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We carried out quality-control filtering using a similar approach to that used for the in 
vivo dataset, removing 100 cells for which the percentage of reads mapping to genes 
was <50%, 2,262 cells with > 25% of mapped reads being mitochondrial, and 384 cells 
with UMI counts outside the 3rd and 97th percentiles. We filtered genes using the 
procedure described above for the in vivo dataset. The final quality-controlled dataset 
consisted of 5,976 cells, and 23,825 genes.  
 
Pre-processing of in vitro bulk AmpliSeq data 
Reads sequenced on the Ion Torrent Proton sequencer were mapped to AmpliSeq 
transcriptome target regions with the torrent mapping alignment program (TMAP) and 
gene count tables were generated for uniquely mapped reads using the Ion Torrent 
ampliSeqRNA plugin. After removing duplicated sequences our dataset contained 
20,869 genes for 20 sampled time points. We normalized expression based on size 
factors calculated using DESeq289.  
 
Dimensionality reduction, clustering, and visualization  
Prior to clustering and visualizing each of the two scRNA-seq datasets (in vitro and in 
vivo), we reduced the dimensionality of variation in a way that accounted for batch-
based shifts in expression among donors. To do this, we used canonical correlation 
analysis (CCA) to identify the strongest components of gene correlation structure that 
were shared across donors (using Seurat’s RunMultiCCA function). For the in vivo 
dataset, this was based on the 5,009 genes contained within the union of the top 8,000 
most informative genes from each donor that involved at least five of them, where 
“informativeness” was defined by gene dispersion (i.e., the log of the ratio of expression 
variance to its mean) across cells, calculated after accounting for its relationship with 
mean expression (using the FindVariableGenes function). Correlated expression across 
donors based on the top 25 CCA dimensions was then projected into a common 
subspace using Seurat’s AlignSubspace function, allowing us to identify and visualize 
universal populations of cells, rather than those driven by technical batch or donor-
specific variation. We further reduced dimensionality of these 25 subspace-aligned CCA 
dimensions using the Barnes-Hut implementation of t-distributed neighborhood 
embedding (tSNE) and then plotted cell coordinates based on the first two dimensions 
(perplexity = 100). We further carried out unsupervised clustering by first constructing a 
shared nearest neighbor (SNN) graph based on k-nearest neighbors (k = 30) calculated 
from the aligned CCA dimensions. The number and composition of clusters were then 
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determined using a modularity function optimizer based on the Louvain algorithm 
(resolution = 0.3). 
 
A similar approach was followed for the in vitro dataset, except that the union of the top 
10,000 most informative genes involving two or more of the three donors was used for 
CCA (9,542 genes total), while SNN clustering (resolution = 0.4, k = 15) based on an 
SLM optimizer and tSNE visualization (perplexity = 80) were performed using the top 20 
subspace-aligned CCA dimensions. Specifications for additional subclustering and 
visualization performed in the study are summarized in Supplementary Table S5.  
 
Plotting expression across cells  
For overlaying expression onto the tSNE plot or dot plots for single genes or for the 
average across a panel of genes, we plotted normalized expression along a continuous 
color scale. All heat maps showing gene expression across cells (except Figure 2a and 
Supplementary Figure S3h, which were created using Monocle) were produced using 
Heatmap390 and also show scaled normalized expression along a continuous color 
scale, with break scales set as indicated. 
 
Differential expression analysis  
Differential expression for each gene between various groups specified in the text was 
tested using a non-parametric Wilcoxon rank sum test carried out with Seurat. We 
limited each comparison to genes exhibiting both an estimated log fold change > +0.25 
and detectable expression in > 10% of cells in one of the two clusters being compared. 
We corrected for multiple hypothesis testing by calculating FDR-adjusted p-values. 
Genes were considered to be differentially expressed when FDR < 0.05.  
 
Functional enrichment analysis  
We tested for gene overrepresentation of all target lists within a panel of annotated 
gene databases (Gene Ontology [GO] Biological Process [BP] 2017, GO Molecular 
Function [MF] 2017, GO Cellular Component [CC] 2017, Kyoto Encyclopedia of Genes 
and Genomes [KEGG] 2016, and Reactome 2016) using hypergeometric tests 
implemented with Enrichr91, as automated using the python script, EnrichrAPI 
(https://github.com/russell-stewart/enrichrAPI). We report only terms and pathways that 
were enriched with FDR < 0.05. 
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Identification and plotting of cell type-specific markers 
To identify cell type-specific markers for both the in vitro and in vivo datasets, we first 
carried out pairwise differential expression analysis between each of the major clusters, 
downsampling large clusters to the median cluster size. Markers for each cluster were 
those genes exhibiting significant upregulation (FDR < 0.05) when compared against all 
other clusters. Markers for each cluster were sorted by FDR as calculated based on 
largest p-value observed for each gene across comparisons.  
 
For plotting expression of in vivo rare cell types across differentiating AmpliSeq bulk 
samples in vitro, we first obtained in vivo cell type markers for each of the three rare 
cells by isolating genes that were both significantly upregulated in each rare cell type 
relative to one another (with FDR < 1e-5) and when compared to all non-rare cells (with 
FDR < 1e-5). We then plotted the geometric mean of log-normalized expression in bulk 
across the top 25 in vivo markers for each cell type (based on FDRs in the non-rare cell 
comparisons), after scaling values to be between zero and one (see Figure 5h). We 
added a small value (0.01) to expression to avoid calculating the geometric mean with 
zeros. For the expression of non-rare in vivo cluster markers shown in Figure 5d, we 
took the geometric mean of log-normalized expression across the top 25 markers for 
each of the main non-rare in vivo cell clusters.  
 
For the marker tSNE overlay plots in Supplementary Figure S4e, for each in vitro and in 
vivo cluster, we calculated average expression across the top 100 markers (or as many 
as were available, if fewer than 100) and then used these values to show characteristic 
expression of select in vitro cell types on the in vivo cells and vice versa. Because the  
Secretory cell 1 in vitro cluster was transitionary and consequently had only a single 
marker, we used the top 25 most distinct genes for this population, despite these 
markers not being significant by FDR < 0.05. Cells on the tSNE plots were identified as 
being characteristic of a given cell type if marker mean expression for that cell type was 
at least in the 85th percentile while marker mean expression for all other cell types was 
below the 95th percentile. To render the in vitro Secretory cell 1 and 2 populations more 
distinguishable, we reduced stringency for expression of Secretory cell 1 markers to the 
75th percentile and increased stringency for expression of Secretory cell 2 markers to 
the 95th percentile.  
 
Defining core and unique smoking response genes 
Core smoking response genes were defined as those significantly differentially 
expressed in heavy smokers compared to nonsmokers in four or more of the main in 
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vivo populations. For this analysis, we excluded the rare cell population, which generally 
contained too few cells to detect significant smoking DEGs, and used a mucus 
secretory population from which the small subpopulation of hybrid secretory/ciliated 
cells was removed, as the response in this small population was so distinct. Unique 
response genes were those that were significantly differentially expressed in only one 
population while exhibiting either a log fold change < 0.25 and/or an FDR > 0.2 in all 
other populations. Populations assessed for uniqueness were the two basal 
populations, KRT8high, ciliated, SMG basal and SMG secretory populations, the hybrid 
secretory/ciliated subpopulation, surface secretory cells (with the hybrid subpopulation 
removed), and ionocytes (there were too few of the other two rare cell types to assess 
smoking response). Genes responding to heavy smoking in a least one cell population 
but not considered unique or core were defined as semi-unique. 
 
Calculating correlations with MUC5AC and MUC5B 
To find genes in surface secretory cells (excluding the hybrid secretory/ciliated 
subpopulation) whose expression was correlated with that of MUC5AC or MUC5B, we 
used Spearman partial correlation analysis, which calculated gene correlations while 
controlling for differences in expression due to smoking. Light smoker cells and cells 
that did not express both MUC5AC and MUC5B were excluded from this analysis. 
 
Lineage trajectories 
For the in vivo dataset, we constructed lineage trajectories for KRT8high and mucus 
secretory cell populations combined and for SMG cells (myoepithelial, SMG 
differentiating basal, and SMG secretory populations) to better understand the genes 
and processes that regulate and transition across these two lineages. For the KRT8high-
to-secretory cell trajectory, we first aligned donors from these two populations using the 
strategy outlined above and re-clustered them (alignment and clustering specifications 
are given in Supplementary Table S5), resulting in nine clusters. One of these clusters 
corresponded to a hybrid secretory/ciliated population, which we removed prior to 
trajectory construction. Then, using Monocle v2.831, we carried out dimensionality 
reduction using the DDRTree algorithm, regressing out both donor identity and the 
number of genes per cell, and then ordered cells along a trajectory of pseudotime (using 
Monocle’s orderCells function; see Supplementary Figure S2a) based on their 
expression across the 3,000 most differentially expressed genes (sorted by q-value), as 
inferred using tests of gene differential expression as a function of cluster membership 
(using Monocle’s differentialGeneTest function). We then tested each gene for 
differential expression as a function of pseudotime, hierarchically clustered the 
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significantly correlated genes (with q-value < 0.05), and then used the 
plot_pseudotime_heatmap function to plot smoothed scaled expression of genes 
belonging to four major modules across cells sorted by pseudotime, assuming that the 
most basal-like cells occupy the initial state (see Figure 2a). To view the expression of 
key regulators across the trajectory on a shared scale, we normalized all smoothed 
expression values to be between zero and one, and then plotted these normalized 
expression curves across pseudotime (see Figure 2b). 
 
The same approach was followed for constructing the SMG cell trajectory. To order the 
subclustered cells (see Supplementary Figure S3d), we used the top 3,000 genes that 
were most differentially expressed as a function of cluster membership to one of the 
three SMG basal substates, the myoepithelial state, or the SMG secretory population 
(proliferating basal SMG cells were excluded from this analysis). Smoothed expression 
for 14 (hand-sorted) modules of genes that were significantly associated with 
pseudotime were plotted across the trajectory, assuming that the myoepithelial cells 
occupy the root state (see Supplementary Figure S3h).  
 
Additionally, we constructed lineage trajectories for the in vitro dataset, allowing us to 
capitalize on the known real-time appearance of cell states across differentiation of ALI 
cultures. Applying the previously calculated tSNE dimensions, we used Slingshot59 to 
build lineages of cells that link in vitro SNN cell clusters by fitting a minimum spanning 
tree (MST) onto the clusters. When constructing these lineages, we only used 
differentiating basal, secretory and ciliating/ciliated populations, where lineages were 
constrained to begin with the differentiating basal population and to end with either the 
mature secretory (Secretory cell 2) or mature ciliated populations. We inferred two 
major lineages, one defining the transition from differentiating basal to Secretory cell 1 
then Secretory cell 2, and the other defining the transition from differentiating basal to 
early and late ciliating cells, and then on to mature ciliated cells. Pseudotime values for 
cells were obtained for each lineage by projecting cells onto smoothed lineages 
constructed using Slingshot’s simultaneous principle curves method. For the two 
lineages, we then plotted smoothed scaled expression (as a weighted average across a 
100 cell window) of select genes that were significantly associated with pseudotime 
based on Monocle’s differential gene test (q-value < 0.05) (see Supplementary Figure 
S4d). 
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Spliced/unspliced ratios 
It has been shown that unspliced and spliced mRNA molecules capture earlier and later 
expression states, respectively, thus providing temporal information that is distinct from 
expression of combined RNA-seq data92. Thus, to further test the polarity of the later 
ciliating and mature ciliated expression states in the ALI cultured scRNA-seq dataset, 
we used the Velocyto pipeline92 (applying default options) to identify unspliced and 
spliced mRNA reads for each gene in the original in vitro BAM files. 
 
Gene networks 
We constructed functional gene networks (FGNs) in order to summarize the major 
processes being carried out by selected gene sets in a way that shows the genes 
involved and their interconnectivity. FGNs were created by finding enriched terms for 
the given gene set (based on Gene Ontology and KEGG Pathway libraries), filtering and 
consolidating these enrichments into categories (i.e. metagroups) using GeneTerm 
Linker93, and then constructing gene networks based on select metagroups using 
FGNet94, which connects genes via edges with shared annotations that fall within a 
particular metagroup. Genes (i.e., nodes) uniquely involved in distinct processes (i.e., 
metagroups; each with a different colored border) can be distinguished from those 
involved in multiple processes (nodes belonging to multiple metagroups, indicated with 
white borders). Edges indicate at least one shared annotation. 
 
Protein-protein interaction (PPI) networks were also constructed for some gene sets, 
enabling us to visualize how genes within sets may produce proteins that interact within 
the cell to carry out particular functions. We used STRNGdb95 to create PPI networks, 
where edges are drawn between gene nodes that have predicted interactions, and 
where edge thickness is proportional to the predicted interaction strength. Networks 
were split into densely connected sub-networks containing three or more genes using 
the cluster_leading_eigen or cluster_edge_betweenness functions in iGraph96. 
 
DATA AND SOFTWARE AVAILABILITY 
Gene lists associated with Figure and Supplementary Figure panels can be found in 
Supplementary Table S6. All raw and processed scRNA-seq data used in this study are 
in the process of being deposited in the National Center for Biotechnology 
Information/Gene Expression Omnibus (GEO). 
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