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ABSTRACT 
Genetic information is becoming more readily available and is increasingly being used to predict patient 

cancer types as well as their subtypes. Most classification methods thus far utilize somatic mutations as 

independent features for classification and are limited by study power. To address these limitations, we 

propose DeepCues, a deep learning model that utilizes convolutional neural networks to derive features 

from DNA sequencing data for disease classification and relevant gene discovery. Using whole-exome 

sequencing, germline variants and somatic mutations, including insertions and deletions, are interactively 

amalgamated as features.  In this study, we applied DeepCues to a dataset from TCGA to classify seven 

different types of major cancers and obtained an overall accuracy of 77.6%. We compared DeepCues to 

conventional methods and demonstrated a significant overall improvement (p=8.8E-25).  Using DeepCues, 

we found that the top 20 genes associated with breast cancer have a 40% overlap with the top 20 breast 

cancer genes in the COSMIC database. These data support DeepCues as a novel method to improve the 
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representational resolution of both germline variants and somatic mutations interactively and their power in 

predicting cancer types, as well the genes involved in each cancer. 

 
INTRODUCTION 

Cancer is a highly complex genetic disease (1,2). Significant mutations termed as driver mutations confer 

a proliferative advantage in cell growth (2). Advancement in DNA sequencing technologies have led to the 

systematic processing and analysis of genomes from tumors varying in both cancer type and subtype (3-

5). These datasets have resulted in the discovery of relevant functional mutations that affect genes and 

pathways important in multiple cancers (6-8).  

There are patients with unknown primary cancer, where the site of origin cannot be established in 

the examination of metastatic cancer cells (9). Accurate pathogenetically distinct tumor type classification 

and accurate site of origin prediction can help identify therapy target precisely and minimizes toxicity and 

maximizes treatment efficacy (10). In most cases, cancer classification has relied on tumor morphology and 

histology and gene expression profiling (10-13).  Classification based on morphological appearance can be 

challenging given that tumors with similar histological appearance have been found to respond differently 

to the same treatment (14). Developing systematic and unbiased approaches for recognizing tumor type 

and subtype remains essential. 

More recently, cancer classification methods have utilized mutational profiles. Somatic mutations 

were employed to distinguish 28 cancer types resulting in an overall accuracy of 49.4% suggesting somatic 

point mutations alone as individual variables may not be sufficient to classify cancer types (15) .  In particular, 

insertions and deletions as well as germline variation have also been found to be associated with cancer 

(16,17).  However, it has been difficult to integrate germline variation and non-point mutations for cancer-

type classification – especially in an interactive manner. Due to the limitation of analysis power, methods 

including Bayesian classifier (18), regression models (19),  and KNN (20) are not optimal in handling high-

dimensional features and studying features interactively. In order to circumvent these challenges, labor 

intensive feature engineering must be done prior to classification that still often lead to poor results (21). 

Conventional learning algorithms rely heavily on data representations and are typically designed by domain 

experts. The complexity of the human genome and the amount of required human effort  makes it difficult 

to scale cancer classification studies properly, whereas deep learning can automatically learn a good 

feature representation (22). Deep learning has recently emerged with the advances in big data, the power 

of parallel computing and sophisticated algorithms.  Furthermore, deep learning models are exponentially 

more efficient than conventional models in learning intricate patterns from high-dimensional raw data with 

little guidance (22-25). Typically, convolutional neural networks (CNNs) computes convolution on small 

regions by sharing parameters between regions (26), which allows training models on large DNA 

sequences.  

Recent work has explored the application of CNNs using raw DNA sequence without defining 

customized features. DeepBind (27) was proposed to predict specificities of DNA and RNA binding proteins 
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using raw sequence reads, and was reported to outperform the state-of-the-art methods at the time. 

DeepSEA (28) is a CNN-based tool to learn a regulatory sequence code from chromatin-profiling data, and 

to predict noncoding variants’ functional effects. DanQ (29) is a hybrid convolutional and bi-directional long 

short-term memory recurrent neural network for non-coding function prediction; the study reported that 

there is a 50% precision-recall relative improvement compared with the related models in the area. 

DeepCpG (30) is another tool based on CNNs to predict methylation states from low-coverage single-cell 

methylation data; the study reported that methylation states and sequence motifs associated with changes 

in methylation levels were accurately identified.  

Inspired by the successful applications of deep learning models in genomics data, we propose a 

model to utilize deep learning for disease classification using exome sequencings (DeepCues). Specifically, 

a CNNs model to study DNA sequences for cancer type prediction is investigated. In addition to tumor 

sequence, we also investigated whether germline DNA sequence is informative for cancer classification. 

Furthermore, we are also interested in identifying a subset of genes that are most relevant for each cancer 

type. In a pilot study utilizing 4,174 samples across seven major cancer types from the Cancer Genome 

Atlas (TCGA), we were able to achieve an accuracy of 77.6% in predicting seven cancer types. As germline 

variants dominant somatic mutations number-wise, using only germline information from the same genes, 

we were able to achieve an accuracy of 73.9%.  

 
MATERIALS AND METHODS 

Data sources and data processing 

Germline and somatic mutations from 4,174 samples across seven major cancer types were obtained from 

the TCGA (3). The following cancers were analyzed: brain cancer, breast cancer, colorectal cancer, kidney 

cancer, lung cancer, prostate cancer, and uterus cancer. To obtain germline variants, aligned sequencing 

data from blood or adjacent normal tissues were recalibrated, and variants were called using 

HaplotypeCaller in GATK package using assembly hg19 (33).  SnpEFF was used for functional annotation 

(34). Variants annotated with moderate effects were defined as missense mutations and in-frame shifts and 

variants annotated as high effects were defined as nonsense mutations. Somatic mutations from matched 

samples were obtained directly from TCGA. In total, 4,600 virtual machines were utilized for 119,000 CPU 

hours to complete these tasks.  In total, we identified 45,119,052 germline mutations and 957,115 somatic 

mutations from the 4,174 matched samples (Table 1).   

 
Table 1: The number of samples of each cancer and the corresponding number of germline variants and 

somatic mutations. Variants annotated with moderate effects are defined as missense mutations and in-

frame shifts; variants annotated as high effects are defined as nonsense mutations.  

Cancer Sample 
Size 

Germline  
Moderate 

Germline 
High 

Somatic 
Moderate 

Somatic 
High 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 17, 2019. ; https://doi.org/10.1101/612762doi: bioRxiv preprint 

https://doi.org/10.1101/612762


 4 

Brain Cancer 763 9572 (55) 550 (3) 94 (30) 23 (6) 

Breast Cancer 959 10911 (71) 641 (5) 65 (10) 16 (3) 

Colorectal Cancer 420 10331 (241) 621 (15) 293 (79) 81 (18) 

Kidney Cancer 332 10882 (124) 634 (8) 51 (6) 14 (1) 

Lung Cancer 730 9717 (37) 555 (2) 217 (15) 43 (3) 

Prostate Cancer 440 9744 (53) 558 (4) 34 (22) 7 (3) 

Uterus Cancer 530 10894 (103) 650 (7) 645 (152) 160 (28) 

*Number in parenthesis is standard deviation (SD) 

 
Feature generation 

Recently, the gene coding direction has been described to be informative for mutational profiles (31). 

Sequences were annotated as positive if the gene is encoded on the reference strand and as negative if 

on the complementary strand. To account for directionality, gene sequences used for feature generation 

were obtained from the RefSeq database (32). Sequences in RefSeq database was started as references, 

with the ones without mutations in our cohort excluded (Figure 1A). We call these combined reference 

sequences as consensus matrix. This consensus matrix consists of 24,286 transcripts.  The average length 

of these sequences were 3,375 bases. For individuals, the germline variants identified in the matched 

normal were constructed into the consensus matrix, forming a germline matrix (Figure 1B). Once a germline 

matrix was formed for individuals, somatic mutations were then constructed in the germline matrix, forming 

a germline and somatic matrix (Figure 1C). 
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Figure 1: Feature generation for proposed models (A) The transcript sequences were retrieved from RefSeq 

and were formed as a consensus matrix (B) Each patient’s germline variants were embedded in the 

consensus matrix, forming a germline matrix for each sample. The brown dots are the germline variants 

including polymorphisms, deletions, and insertions. As an illustration, single nucleotide polymorphisms 

were identified and embedded in transcript A, E, and H. An in-frame shift deletion was embedded in 

transcript B and an in-frame shift insertion was embedded in transcript C. A frame shift deletion and frame 

shift insertion is embedded in transcripts D and E, respectively. Transcript F and G remained the same. (C) 

Each patient’s somatic mutations were embedded in the germline matrix (from B), forming a germline and 

somatic matrix. The green dots are the somatic mutations including SNVs, insertions, and deletions. As an 

illustration, the tissue gained somatic mutations in transcript A and E; gained a stop loss in transcript F; and 

gained a deletion that shifted the frame in transcript G. 

 

It has been suggested that mutations prefer certain codons and the distance between amino acid 

changes have been described (33). Moreover, the position within the codon where the mutation occurs will 

determine if the expressed mutation is nonsynonymous or potentially synonymous. To incorporate codon 
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information into our model features, one hot encoding was applied with every three nucleotides and was 

encoded as a binary unit.  The combination of four nucleotides (A, C, T, and G) results in a vector with 64 

dimensions to represent each codon combination. 

 
Model structure 

A convolutional framework that consists of multiple layers was used in our study (Figure 2). The framework 

has three components: input layer (Figure 2A), encoder layer (Figure 2B) (multiple convolutional and dense 

layers), and fully connected layer (Figure 2C). Due to the nature of 64 codons in human genetics, the input 

layer in component (A) uses one hot encoding to represent each input sequence as a N*64 binary matrix, 

where N equals the number of codons. Therefore, the input can be considered as a 1-D sequence with 64 

channels. Component (B) is an encoder layer to encode the input to a lower dimensional vector. The 

encoder component contains a sequence of convolutional layers with six output channels and a fully 

connected layer for each output channel. Therefore, a vector of six outputs is generated by the encoder for 

each input sequence. In theory, the output channel can be set as any positive integer. The more output 

channel, the more expressive capacity and more complexity of the model. To make a trade-off between the 

complexity and the expressive capacity, we set the output channel as six. In fact, if the precision of each 

channel is 0.01 (i.e., can store 100 numbers), 6 channels can express 1006  different samples. One 

convolutional layer is composed of one 1-D convolutional layer followed by a Leaky Rectified Linear Unit 

(LeakyReLU) (34) as the activation function and an average pooling layer. The number of convolution layers 

is determined by the transcript length N and the kernel size for average pooling layer. A Kernel size of six 

was used for the average pooling. Therefore, we will have log6 N convolution layers for each transcript. 

Component (C) is a fully connected layer with k outputs for k diseases. The inputs of component (C) are 

the combinations of products from the component (B) generated under the sequence of transcripts. With 

the average of 3,375 bases in the transcripts, the encoder layer would have an average of 3~4 convolution 

layers. To note, we set the following parameters for our model: the number of input channels for the encoder 

layer: 64; the convolution kernel size: 3, the output channel size of the encoder layer: 3; learning rate: 0.001; 

batch size: 32; number of learning epochs: 30. We used cross entropy loss as the loss function and Adam 

algorithm (35) as the optimizer. 
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Figure 2: The architecture of the convolutional neural network. Component (A) is the input layer with one 

hot encoding with the column number equals 64 (number of total possible codons) and the row number 

equals the number of codons in the transcript. Component (B) is the encoder component containing a 

sequence of layers, each consisting of a convolutional layer, followed by a Leaky Rectified Linear Unit and 

average pooling layer. The number of convolution layers is determined by the gene length. Component (C) 

is a fully connected layer that combined all the outputs from the component (B) and has k outputs for k 

diseases 

 

Model evaluation and relevant gene discovery 

A training set, validation set, and test set were created by randomly splitting the samples using a 7:1:2 ratio, 

respectively. Parameters were trained using the training set and tuned using the validation set.  Precision, 

recall, and F-measure were calculated for each cancer type using the testing set. To compare the 

performance of our models to other conventional methods for cancer classification, we applied penalized 
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logistic regression and linear support vector machine (SVM) (19,36). The performance was also compared 

between the germline matrix alone and the germline/somatic matrix. For the DeepCues, evaluations were 

repeated ten times with different initial seeds. 

To reduce computational load, we selected genes that have been implicated in cancer using a list 

of 719 consensus genes (Table S1) from the Catalogue of Somatic Mutations in Cancer (COSMIC).  

COSMIC is a mutation catalogue with comprehensive mutation information curated from about 542,000 

tumor samples (37). In our dataset, we found these consensus genes corresponded to 985 transcripts 

(Table S2) and used these transcripts to train and evaluate classifiers.  The baseline model was also trained 

using germline variants and somatic mutations found in these selected transcripts. To discover potentially 

relevant genes not known to be implicated in cancer, we also applied a multinomial logistic regression 

model to the remaining transcripts using disease type as an output, and the number of mutations in each 

transcript as inputs to identify the 985 top ranked transcripts based on p-value (Table S3).  Classifiers were 

trained, and evaluation was measured using only known pathogenic transcripts and also using a 

combination of the known and unknown pathogenic transcripts. It has been demonstrated that features 

frequently ranked high in different training sets yields a robust set of predictive features with stability (38). 

To obtain a gene list with reasonable stability, we repeated training the classifiers with random seeds and 

reported the top 20 most frequent transcripts in each replication. 

 
Results  

Classifier performance using known pathogenic transcripts  

We first trained convolutional neural networks (CNNs) using the 985 known pathogenetic transcripts and 

calculated overall accuracy for all seven cancer types. Using only the germline matrix as an input, we 

achieved an overall accuracy of 73.9% (SE=0.7%) (SE is standard error).  Using the germline/somatic 

matrix as an input, we achieved an overall accuracy of 77.6% (SE=0.9%). To compare our method with 

other conventional cancer classification methods, we calculated baseline accuracies using logistic 

penalized linear regression and linear SVM.  Logistic penalized linear regression resulted in an overall 

accuracy of 51.5% (SE=0.5%) and 65.5% (SE=0.3%) using the germline matrix and germline/somatic 

matrix, respectively. Linear SVM resulted in an overall accuracy of 49.4% (SE=0.4%) and 58.6% (SE=0.3%) 

using the germline matrix and germline/somatic matrix, respectively (Figure 3). We found that our method 

significantly (p=4.5E-25) outperforms these methods.   
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Figure 3: Comparing Prediction accuracy between DeepCues and baseline models, including penalized 

logistic regression (LR) and support vector machine (SVM) with linear kernel. 

  

We performed classification for seven types of cancer: brain cancer, breast cancer, colorectal 

cancer, kidney cancer, lung cancer, prostate cancer, and uterus cancer.  For each type of cancer, we 

calculated precision, recall, and f-measure using either the germline matrix or the germline/somatic matrix 

(Table 1). Using only germline data, we found breast cancer and colorectal cancer had the highest F-

measure scores.  Using both germline and somatic mutation data, we found breast cancer, colorectal 

cancer, and brain cancer had the highest F-measure scores. Adding the somatic mutation data, F-measures 

for breast cancer, brain cancer, and uterus cancer increased significantly (p=6.7E-03, 3.8E-06, and 1.9E-

02 respectively). 

 
Table 2:Precision and recall for our proposed model. The experiment is replicated for 10 times and the 

number in parenthesis is standard error. The bolded number are those that significantly improved after 

adding somatic mutation information.  

 Germline Matrix  Germline + Somatic Matrix 

 Precision Recall F-measure  Precision Recall F-measure 

Breast  81.9%(2.7%) 83.4%(4.2%) 81.4%(1.8%)  85.6%(2.0%) 90.7%(1.8%) 87.8%(1.1%) 

Colorectal 85.9%(1.9%) 83.9%(2.1%) 84.6%(0.8%)  84.7%(4.5%) 87.1%(2.6%) 84.7%(2.1%) 

Brain 73.0%(1.5%) 66.5%(4.3%) 68.5%(1.9%)  87.5%(2.7%
) 

78.4%(2.0%) 82.2%(0.9%) 

Uterus 76.3%(4.9%) 62.7%(6.9%) 64.2%(3.9%)  85.3%(1.8%) 68.2%(3.3%) 75.1%(1.7%) 

Lung 64.8%(3.2%) 75.5%(4.7%) 67.7%(1.5%)  70.3%(4.9%) 78.4%(5.5%) 71.2%(2.0%) 

Kidney 76.9%(2.5%) 71.5%(2.8%) 73.4%(1.1%)  77.6%(4.7%) 68.7%(5.9%) 69.5%(2.3%) 

Prostate 70.8%(4.2%) 55.7%(6.0%) 58.9%(3.2%)  65.6%(5.5%) 50.5%(9.7%) 49.1%(5.9%) 

 
Classifier performance using known and unknown pathogenic transcripts 

Similarly, to the prior analysis, we applied the same model and integrated both the 985 known and the 985 

unknown pathogenic transcripts. Using only the germline matrix as an input, we achieved an overall 

accuracy of 82.68% (SE=0.6%).  Using the germline/somatic matrix as an input, we achieved an overall 

accuracy of 80.0% (SE=0.9%).     
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We performed classification for the seven types of cancer. For each type of cancer, we calculated precision, 

recall, and F-measure using either the germline matrix or the germline/somatic matrix (Table 3). Using only 

germline data, we found breast cancer and colorectal cancer had the highest F-measure scores.  Using 

both germline and somatic mutation data, we found breast cancer, colorectal, and uterus cancer had the 

highest F-measure scores.  

 
Table 3:Precision and recall for our proposed model. The experiment is replicated for 10 times and the 

number in parenthesis standard error. The bolded number are those that significantly improved after adding 

somatic mutation information.   

 Germline Matrix  Germline + Somatic Matrix 

 Precision Recall F-measure  Precision Recall F-measure 

Breast  87.1%(2.8%) 91.9%(1.6%) 89.0%(1.2%)  89.1%(1.6%) 87.2%(2.2%) 87.8%(0.7%) 

Colorectal 87.8%(1.7%) 94.0%(1.6%) 90.6%(0.8%)  86.1%(3.8%) 90.8%(2.9%) 87.5%(2.2%) 

Uterus 90.0%(1.8%) 72.8%(6.8%) 78.0%(5.5%)  84.9%(3.1%) 71.4%(2.8%) 76.6%(1.0%) 

Brain 88.3%(4.4%) 58.6%(5.2%) 67.9%(2.2%)  77.3%(2.5%) 75.9%(3.5%) 75.6%(1.5%) 

Lung 69.1%(4.9%) 79.9%(7.2%) 69.8%(2.7%)  73.7%(3.1%) 75.6%(4.0%) 73.4%(1.8%) 

Kidney 81.9%(2.7%) 81.3%(2.0%) 81.3%(1.5%)  70.0%(3.8%) 76.0%(5.0%) 71.2%(3.3%) 

Prostate 76.4%(6.1%) 67.3%(7.2%) 66.0%(3.7%)  72.2%(2.7%) 65.5%(3.5%) 68.1%(2.3%) 

 
Relevant genes discovery 

Using the coefficients derived from the fully connected layer, the model can be extended to prioritize genes 

that are relevant for each cancer type. The analysis was repeated 10 times with different initial seeds and 

the top 20 genes were selected in each replicate. The genes were then ranked by appearance frequency 

in all the replicates. We performed relevant gene discovery for breast cancer and reported the top 10 for 

each study.  We identified genes using the germline matrix alone and the germline/somatic matrix using 

the known pathogenic transcripts (Table 4) and also the known/unknown pathogenic transcripts (Table 3).  

We also performed relevant gene discovery for the other cancers using only the germline matrix (Table 

S3;S5) and the germline/somatic matrix (Table S4;S6).  Using Germline/Somatic genes, 8 of the top 20 

genes overlap with the COSMIC top 20 genes for breast cancer. The high consensus rate (40%) validated 

that our method is effective in identifying the relevant genes. We have also identified relevant genes that 

are unknown for breast cancer (bold genes under the panel of 1970 transcripts; Table 4).  

 
Table 4: The top 20 genes relevant genes with breast cancer derived from the 985 pathogenetic 

transcripts and the 1970 transcripts.  

985 transcripts  1970 transcripts 

Germline  Germline/Somatic   Germline  Germline/Somatic  

TCF3 GATA3 
 

FOXP1 CASP8 

FOXP1 APC 
 

TCF3 PALB2 
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LEF1 RNF213 
 

SPATA31A3 RXFP3 

PAFAH1B2 PIK3CA 
 

PAFAH1B2 DOCK2 

BLM PPP2R1A 
 

CCNE1 ANK1 

PPFIBP1 CDH1 
 

ADAM23 ADAM23 

PALB2 CHD2 
 

NCOA4 ITK 

MUC4 RUNX1 
 

KC6 TCF3 

CCDC6 MSH6 
 

PALB2 CCNE1 

LIFR CNBD1 
 

AMOT FOXP1 

MITF KMT2C 
 

LEF1 ABHD13 

CCNE1 ARID1A 
 

CPEB2 SPATA31A3 

ZCCHC8 TBX3 
 

SPATA31D1 XPO6 

TP53 KRAS 
 

IL21 FRYL 

FOXO4 CHD4 
 

BLM RFC5 

EBF1 KMT2D 
 

ITK SDHAF2 

TERT NRAS 
 

ZNF507 POU4F1 

GMPS MAP3K1 
 

CCDC6 PICALM 

CCNC HLA-A 
 

TERT LEF1 
* The bold genes in the 985 transcripts are the ones found in 
COSMIC top 20 genes. The bold genes in the 1970 transcripts are 
the ones in the unknown transcripts 

 
DISCUSSION 

The development of high throughput sequencing technology has enabled the cataloging of large-scale 

genetic information. To help improve cancer diagnosis and targeted therapies, cancer type classification 

methods are continually being upgraded.  Traditionally, the majority of classification methods based on 

DNA sequencing data has relied on studying single point somatic mutations with various regression models 

(15,39,40). Mutations involving insertions and deletions as well as germline mutations have been largely 

ignored due to the high dimensionality problem. Given that many methods are already limited in their ability 

to study so many variables, it has been even more challenging to integrate these variables and study them 

interactively.  To deal with these challenges, groups have proposed aggregating mutations on a gene level 

to be studied as a feature (39,41,42). Mutations within genes have also been proposed to be studied within 

a matrix as inputs for machine learning methods (40,43).  In our study, we have proposed a novel method, 

DeepCues. DeepCues integrated all somatic mutations and germline variants, including INDELs, to be 

studied as inputs in an joint manner. Convolutional Neural Networks (CNNs) were then applied to train 

classifiers for cancer type classification. Furthermore, we have included a fully connected layer to allow for 

relevant gene discovery to help characterize genes and pathways important for multiple cancers.  
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As a use case, we retrieved germline and somatic DNA sequencing data from matched samples 

across seven types of cancer and used DeepCues to perform cancer type classification.  Using 985 known 

pathogenic transcripts as an input, we obtained 73.9% and 77.6% accuracy when using germline data 

alone and germline/somatic data, respectively.  Following the integration of additional 985 unknown 

pathogenic transcripts into the model, we were able to increase overall accuracy to 82.7% and 80.0% for 

germline data and germline/somatic data, respectively.  DeepCues was found to significantly outperform 

conventional methods used to perform cancer type classification (p=4.5E-25).  Consistent with somatic 

mutations playing a large role in cancer (44), integration of somatic mutations together with germline data 

significantly improved overall accuracy (p=0.005) using the 719 known consensus genes. Integration of 

somatic data significantly increased accuracy for breast cancer (p=6.6E-03), brain cancer (p=3.8E-06), and 

uterine cancer (p=1.92E-02), suggesting somatic mutations play a relatively larger role in these cancers.  

Conventional methods have been limited regarding germline variation and their interactive role in cancer 

due to a large number of variables and complexity issues.  In our study, we were able to obtain reasonable 

accuracy performances using the germline matrix only as an input. This suggests that  germline variation 

may be more important than previously reported based on prior methods (15).  More specifically, we found 

that breast cancer and colorectal cancer have the best performance using only germline information, 

suggesting that these two cancers probably confers higher heritability compared to others. Studies have 

reported high familial heritability in breast cancer and colorectal cancer too (45). Using a fully connected 

layer in our framework, we identified relevant both known and unknown pathogenic genes found using both 

the germline and germline/somatic data. For the 20 genes we have identified to be relevant for breast 

cancer, 40% of the genes have been reported in the COSMIC top 20 genes for breast cancer.  

Future development to better evaluate and assess our model will involve the inclusion of gene 

expression level, copy number variation, methylation, as well as including additional transcripts to be 

studied.  Given that DeepCues is novel in its ability to utilize germline data in an informative manner, it will 

be of great interest and clinical impact to apply DeepCues to differentiate cancerous and non-cancerous 

samples. Disease classification not only allows for improved diagnosis and therapies but also allows 

research to understand a disease through identified groups of genes and related pathways.  DeepCues 

uses genetic sequencing data as inputs with little domain knowledge and feature preparation. With the 

abundance of genomic information available, we expect DeepCues can be used in a variety of disease 

settings to help profile diseases.   
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Table 1: The number of samples of each cancer and the corresponding number of germline variants and 

somatic mutations. Variants annotated with moderate effects are defined as missense mutations and in-

frame shifts; variants annotated as high effects are defined as nonsense mutations.  

Cancer Sample 
Size 

Germline  
Moderate 

Germline 
High 

Somatic 
Moderate 

Somatic 
High 

Brain Cancer 763 9572 (55) 550 (3) 94 (30) 23 (6) 

Breast Cancer 959 10911 (71) 641 (5) 65 (10) 16 (3) 

Colorectal Cancer 420 10331 (241) 621 (15) 293 (79) 81 (18) 

Kidney Cancer 332 10882 (124) 634 (8) 51 (6) 14 (1) 

Lung Cancer 730 9717 (37) 555 (2) 217 (15) 43 (3) 

Prostate Cancer 440 9744 (53) 558 (4) 34 (22) 7 (3) 

Uterus Cancer 530 10894 (103) 650 (7) 645 (152) 160 (28) 

*Number in parenthesis is standard deviation (SD) 

 
 
Table 2:Precision and recall for our proposed model. The experiment is replicated for 10 times and the 

number in parenthesis is standard error. The bolded number are those that significantly improved after 

adding somatic mutation information.  

 Germline Matrix  Germline + Somatic Matrix 
 Precision Recall F-measure  Precision Recall F-measure 

Breast  81.9%(2.7%) 83.4%(4.2%) 81.4%(1.8%)  85.6%(2.0%) 90.7%(1.8%) 87.8%(1.1%) 

Colorectal 85.9%(1.9%) 83.9%(2.1%) 84.6%(0.8%)  84.7%(4.5%) 87.1%(2.6%) 84.7%(2.1%) 

Brain 73.0%(1.5%) 66.5%(4.3%) 68.5%(1.9%)  87.5%(2.7%) 78.4%(2.0%) 82.2%(0.9%) 

Uterus 76.3%(4.9%) 62.7%(6.9%) 64.2%(3.9%)  85.3%(1.8%) 68.2%(3.3%) 75.1%(1.7%) 

Lung 64.8%(3.2%) 75.5%(4.7%) 67.7%(1.5%)  70.3%(4.9%) 78.4%(5.5%) 71.2%(2.0%) 

Kidney 76.9%(2.5%) 71.5%(2.8%) 73.4%(1.1%)  77.6%(4.7%) 68.7%(5.9%) 69.5%(2.3%) 

Prostate 70.8%(4.2%) 55.7%(6.0%) 58.9%(3.2%)  65.6%(5.5%) 50.5%(9.7%) 49.1%(5.9%) 

 
 

Table 3:Precision and recall for our proposed model. The experiment is replicated for 10 times and the 

number in parenthesis standard error. The bolded number are those that significantly improved after 

adding somatic mutation information.   

 Germline Matrix  Germline + Somatic Matrix 
 Precision Recall F-measure  Precision Recall F-measure 

Breast  87.1%(2.8%) 91.9%(1.6%) 89.0%(1.2%)  89.1%(1.6%) 87.2%(2.2%) 87.8%(0.7%) 

Colorectal 87.8%(1.7%) 94.0%(1.6%) 90.6%(0.8%)  86.1%(3.8%) 90.8%(2.9%) 87.5%(2.2%) 

Uterus 90.0%(1.8%) 72.8%(6.8%) 78.0%(5.5%)  84.9%(3.1%) 71.4%(2.8%) 76.6%(1.0%) 

Brain 88.3%(4.4%) 58.6%(5.2%) 67.9%(2.2%)  77.3%(2.5%) 75.9%(3.5%) 75.6%(1.5%) 

Lung 69.1%(4.9%) 79.9%(7.2%) 69.8%(2.7%)  73.7%(3.1%) 75.6%(4.0%) 73.4%(1.8%) 

Kidney 81.9%(2.7%) 81.3%(2.0%) 81.3%(1.5%)  70.0%(3.8%) 76.0%(5.0%) 71.2%(3.3%) 

Prostate 76.4%(6.1%) 67.3%(7.2%) 66.0%(3.7%)  72.2%(2.7%) 65.5%(3.5%) 68.1%(2.3%) 
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Table 4: The top 20 genes relevant genes with breast cancer derived from the 985 pathogenetic 

transcripts and the 1970 transcripts.  

985 transcripts  1970 transcripts 

Germline  Germline/Somatic   Germline  Germline/Somatic  

TCF3 GATA3 
 

FOXP1 CASP8 

FOXP1 APC 
 

TCF3 PALB2 

LEF1 RNF213 
 

SPATA31A3 RXFP3 

PAFAH1B2 PIK3CA 
 

PAFAH1B2 DOCK2 

BLM PPP2R1A 
 

CCNE1 ANK1 

PPFIBP1 CDH1 
 

ADAM23 ADAM23 

PALB2 CHD2 
 

NCOA4 ITK 

MUC4 RUNX1 
 

KC6 TCF3 

CCDC6 MSH6 
 

PALB2 CCNE1 

LIFR CNBD1 
 

AMOT FOXP1 

MITF KMT2C 
 

LEF1 ABHD13 

CCNE1 ARID1A 
 

CPEB2 SPATA31A3 

ZCCHC8 TBX3 
 

SPATA31D1 XPO6 

TP53 KRAS 
 

IL21 FRYL 

FOXO4 CHD4 
 

BLM RFC5 

EBF1 KMT2D 
 

ITK SDHAF2 

TERT NRAS 
 

ZNF507 POU4F1 

GMPS MAP3K1 
 

CCDC6 PICALM 

CCNC HLA-A 
 

TERT LEF1 

* The bold genes in the 985 transcripts are the ones found in COSMIC 
top 20 genes. The bold genes in the 1970 transcripts are the ones in 
the unknown transcripts 
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