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Abstract:Dynamic contrast-enhanced (DCE)magnetic resonance imaging (MRI)
provides a quantitativemeasureof pharmacokinetic (PK) parameters in body tis-
sues; it entails collection of a series of T1-weighted images following the admin-
istration of a paramagnetic contrast agent (CA). Current state-of-the-artmodels
for estimating thePKparameters donot account for intervoxelmovement of the
contrast agent. We introduce anoptimalmass transport (OMT) formulation that
naturally handles intervoxelCAmovement anddistinguishes betweenadvective
and diffusive flows. Ten patients with head and neck squamous cell carcinoma
(HNSCC) were enrolled in the study between June 2014 andOctober 2015 and
underwent DCEMRI imaging prior to beginning treatment. Converting DCE im-
age intensity to CA tissue concentration, this informationwas taken as the input
in theOMTmodel, generating estimates of forward flux (ΦF ) and backward flux
(ΦB ). We decompose computed flux into advective and diffusive flows which
are known to occur due to the typical pressure gradients on the tumor boundary.
Weadditionally showthatwecancapture the refluxwithourbackwardflux (ΦB ).
We extensively test our approach on HNSCC data and provide additional quan-
titative information such asΦF ,ΦB , advective and diffusiveflows. The approach
given in the present paper is essentially data driven in which a novel optical flow
scheme is applied to the imagery in order to analyze the flow.
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2 ELKIN ET AL.

1 | INTRODUCTION

Head and neck (HN) tumors are heterogeneous with complex anatomy [1]. Accurate detection and delineation of tumor
extent is critical to optimize treatment planning; patients therefore routinely undergo non-invasive imaging for careful
assessment of this complex anatomy. Non-invasive magnetic resonance imaging (MRI) has served an important role as a
diagnostic test for initial staging and follow-up tumors in the HN region [2, 3, 4].

Dynamic contrast-enhanced (DCE)MRI involves the acquisition of successive T1-weighted images with administra-
tion of a T1-shortening Gadolinium-based contrast agent (CA) [5]. DCE imaging has been considered to be a promising
tool for clinical diagnostics, including head and neck cancers [6, 7]. DCE data can be evaluated by semi-quantitative
analysis and model based quantitative analysis [5, 8]. Semi-quantitative analyses (ie, time to peak (TTP), maximum
contrast enhancement) provide only limited information about tumor physiology [9].

The Tofts and Extended Tofts (ETM) pharmacokinetic models are themost commonly usedmodels for quantitative
DCE-MRI analysis [5]. In DCE-MRI, CA concentration is derived from changes in signal intensity over time, then fitted
to a tracer model to estimate pharmacokinetic (PK) parameters related to tumor vascular permeability and tissue
perfusion [5]. The volume transfer constant for CA (Kt r ans ) represents the contrast agent transport from the blood
plasma into the extravascular extracellular space (EES), and has been shown to be a prognostic factor in head and neck
cancer [6, 7].

The accuracy and precision of this quantitative parameter can be influenced by arterial input function (AIF) quan-
tification, temporal resolution in data acquisition, signal-to-noise ratio (SNR), and model selection [10, 11, 12, 13].
Moreover, these quantitativemetrics aremacroscopic, representing averages over highly heterogeneousmicroscopic
processes, and requires an appropriate model to analyze the data.

TheproblemofOMTwasposed forfinding theminimal transportation cost formoving a pile of soil fromone location
to another. OMTwas given a modern and relaxed formulation with theMonge–Kantorovich problem. Applications
include image processing and computer vision, econometrics, fluid flows, statistical physics, machine learning, expert
systems, and meteorology [14, 15]. Benamou and Brenier [16] presented a dynamical version of OMT which has
receivedmuch deserved attention. Their approach considers theminimization of kinetic energy subject to a continuity
equation that enforces mass preservation.

It has been demonstrated that the differences in elevated tumor pressure lead to exudate convective flowout of the
tumor such that any flow into the tumormay be ascribed to diffusion [17]. In the present work, we propose to employ
methods from optimal mass transport (OMT) theory to study the problem of estimating CA flow from tumor DCE-MRI
data. For the approach here, we add a diffusion term to the continuity equation. The resulting advection/diffusion
equation regularizes the flow andmoreover, as wewill argue, gives a better physical picture of the underlying dynamics.
This type of approachwas exploited in our previous work [18] for the study of the glymphatic system.

We note that if one integrates the advection/diffusion equation over a given “compartment” and applies OMT
theory, one derives an equation very similar to the ETMmodel [19]. In contrast to the conventional methods, the OMT
framework provides dynamic information, formative of the time-varying directional nature of the flow. Other than using
the advection/diffusion flow from computational fluid dynamics, we do not impose any prior constraints or assumptions
of the underlying physics of themodel; for example, we do not require AIF as an input. It is important to emphasize that
our analysis is data driven, and all of our conclusions are based on the imagery.
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ELKIN ET AL. 3

2 | METHODS
2.1 | OptimalMass Transport
Themain tool wewill be employing is based on the theory of optimal mass transport (OMT).We provide the theoretical
details relevant to this work and simply refer the interested reader to [14, 15] for more details.

For our purposes, wewill review the fluid dynamical version of OMT for given initial and final densities associated
with the same total mass, µ0 and µ1, defined on some domainA ⊂ Òd over the normalized time interval t ∈ [0, 1] [16]:

inf
µ,ν

∫ 1

0

∫
A

1

2
µ(t , x ) ‖ν(t , x ) ‖2 dx d t (1)

subject to : ∂t µ + + · (µν) = 0 (2)
µ(0, ·) = µ0(·), µ(1, ·) = µ1(·), (3)

where µ = µ(t , x ) ∈ Ò is the density, ν = ν(t , x ) ∈ Òd is the velocity, and the spatial dimension is taken to be d = 2

or d = 3. Here, the objective is to find the density µ and velocity ν characterizing the mass-preserving flow (2) with
fixed temporal endpoints (3) that requires minimal expended kinetic energy (1). In simple terms, this approach seeks a
flow over some time-space interval that minimizes themass weighted kinetic energy of the flow and existence of the
arguments µopt and νopt at which the infimum is obtained has been proven [16].

2.1.1 | OptimalMass Transport with diffusion
Wemodify the original Benamou and Brenier OMT formulation by adding a diffusion term in the continuity equation (2).
This allows for both advection and diffusion of the contrast agent and has the added benefit of regularizing the flow.
Various aspects of regularized OMT have been studied in a number of recent works including [20, 21, 22, 23] which
have extensive lists of references.
Accordingly, we substitute constraint (2) with the advection/diffusion equation

∂t µ + + · (µν) = + · (D+µ), (4)

whereD , encapsulating spatially-varying diffusion, is a positive definite symmetric matrix modelling the diffusion. We
now formulate the regularized OMT problem as the infimumof the action given by (1) subject to the advection/diffusion
constraint (4) with the given initial and final conditions (3).

2.1.2 | Hamiton-Jacobi equation
Using calculus of variations [15], one can show the optimal velocity for the regularizedOMT problem is of the form

νopt = −+λ,

where λ satisfies the following diffused version of a Hamilton-Jacobi equation:

∂tλ −
1

2
‖+λ ‖2 = + · D+λ. (5)
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4 ELKIN ET AL.

The latter equation derived fromOMT (minimizing kinetic energy of the flow subject to an advection/diffusion
constraint) is very revealing regarding the proposedmodel. Indeed, we note that the optimal velocity is the gradient of a
function, and via (5), the bulk flow (advection) is clearly influenced as well by the diffusion. This will be described further
in Section 2.1.3 below.

2.1.3 | OMT relation to Tracer KineticModel
Webriefly sketch the relation to the very popular Tofts-Kermodemodel [5]. For simplicity, we indicate details in 2D.
The basic idea is to integrate the advection/diffusion equation (4) over a given compartmentV and use the divergence
theorem. Accordingly, we let S denote the boundary ofV . We first note that∫

V
+ · D+µdV =

∫
S
D+µ · ®ndS =: Dµ , (6)

where ®n denotes the outward normal to the surface S .
Remark: In [24],+µ · ®n is interpreted as the difference between the concentrations of the contrast agent in the plasma
and EESweighted by the permeability, defined as Kt r ans [5], divided by the total surface area of the vasculature within
the voxel multiplied by the volume of tissue within the voxel. This instantiation of Fick’s law serves to relate diffusive
flux to differences in concentration.
Next we note that ∫

V
+ · (µν) dV =

∫
S
µν · ®n dS (7)

= −
∫
S
µ+λ · ®n dS =: Pµ . (8)

This part, derived from advection, may be interpreted as arising from Darcy’s law (difference in pressure) but
because of (5), there is also the influence of diffusion. We should emphasize that OMT theory gives a unique solution of
(4) with optimal velocity given as the gradient of a function via (5).

Finally, setting ∫
V
µdV =: ρ(t ), (9)

we see that at the optimal solution of theOMT problem, (4) becomes an ordinary differential equation of the form
dρ(t )
d t

+ Pµ = Dµ , (10)

which leads to pharmacokinetic modelling.
Combining Pµ and Dµ (10), the rate of change of CA density over the compartment can bewritten as

dρ(t )
d t

=

∫
S
(D+µ − µν) · ®n dS , (11)

where®j = D+µ − µν is the total flux. Although the direction of the flux,®j, is influenced by both the density gradient
+µ and the velocity ν, we chose to focus our attention on the velocity since it is affected by time-varying changes in
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ELKIN ET AL. 5

the given images as well as diffusion, as seen from the Hamilton-Jacobi equation (5). Interestingly, we find that the
velocity alone yields information that aligns well with the current understanding of the contrast behavior which wewill
elaborate on below.

2.2 | Full OMTmodel for flow of contrast agent
In this section, we summarize our overall model based on the regularizedOMTmodel. In what follows, wewill take the
diffusionmatrixD = σ2I , that is, a constant times the identity. In other words, diffusion is not a tensor quantity, and
there are no preferred directions.

In consideration of the data, wemake the following assumptions tomotivate the proposed regularizedmodel:

(i) A given sequence of N + 1 images taken at times t = Ti for i = 0, ...,N are considered to be noisy observations of
the CA’s truemass density at the respective times in which the images were captured:

µ(Ti , x ) + γ = µγTi (x ), (12)

where γ is independent and identically distributed Gaussian noise with covariance Γ, µγ
Ti
denotes the given noisy

observed density and µTi denotes the desired ’true’ density.
(ii) The flow is described by the advection/diffusion equation,

∂t µ + + · (µν) = σ2∆µ, (13)

where σ2 ∈ Ò is the diffusivity of themedium. We take d = 3 in what follows. Further, in our treatment abovewe
tookT = 1. Here we take a general final timeT . Themathematical treatment is identical.

We propose to find the desired ’true’ CA density interpolant µ : [0,T ] × Òd → Ò between two given noisy
observations µγ0 and µγT at times t = 0 and t = T respectively and the velocity field ν : [0,T ] ×Òd → Òd characterizing
the evolution as theminimum arguments of the following action with a free endpoint term∫ T

0

∫
A

1

2
µ ‖ν ‖2 dxd t + ε2 ‖µ(T , x ) − µγ

T
(x ) ‖2Γ, (14)

subject to the advection/diffusion constraint (13). The notation indicates that the variance operation is inversely scaled
by the covariance. In this way, the low noise signals are more heavily weighted in the fitting to the observed values.
The parameter ε2 is used to weight how harshly this data term should be penalized relative to the kinetic energy of the
transport. We refer to (14) (with constraint (13) and fixed initial condition µ(0, ·) = µγ0 (·)) as the generalized regularized
OMT problem (GR-OMT).

2.3 | Patient Studies
The institutional review board approved and granted a waiver of informed consent for this retrospective clinical study,
which was compliant with the Health Insurance Portability and Accountability Act. A total of 10 patients with neck
nodal metastases and histologically-proven squamous cell carcinomawere enrolled into the study between June 2014
andOctober 2015.
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6 ELKIN ET AL.

2.4 | DCE-MRI data acquisition
MRI studies were performed on a 3-Tesla (T) scanner (Ingenia; Philips Healthcare; Netherlands) using a neurovascular
phased-array coil [25]. The standard MR acquisition parameters were as follows: multiplanar (axial, coronal, and
sagittal) T2-weighted (T2w), fat-suppressed, fast spin-echo images (repetition time [TR]=4000ms; echo time [TE]=80
ms; numberof averages (NA)=2;matrix=256x256; slice thickness=5mm;fieldof view [FOV]=20–24cm), andmultiplanar
T1-weighted (T1w) images (TR=600ms; TE=8ms; NA=2; slice thickness=5mm; matrix=256x256; slice thickness=5
mm; FOV=20–24 cm). Multiple flip angle pre-contrast T1w images were subsequently acquired for T10 measurement
andDCE-MRI. Pre-contrast T1w images were acquired using a fast-multiphase spoiled gradient recalled (SPGR) echo
sequence and the acquisition parameters were as follows: TR = 7ms, TE = 2.7ms, flip angles θ = 5◦ , 15◦ , 30◦, single-
excitation, NA = 1, pixel bandwidth = 250 Hz/pixel, 256 x 128matrix that was zero filled to 256 x 256 during image
reconstruction and FOV = 20-24 cm2.

The dynamic imaging sequencewas acquired using the parameters for pre-contrast T1wwith a flip angle of 15◦ .
After acquisition of the first 5-6 images, antecubital vein catheters delivered a bolus of 0.1 mmol/kg gadolinium-based
clinically-approved contrast at 2mL/s, followed by saline flush using anMR-compatible programmable power injector
(Spectris; Medrad, Indianola, PA). The entire nodewas coveredwith 5-mm thick slices, zero gap, resulting in collection of
8-10 slices with 7.46-8.1 second temporal resolution, for 40-60 time course data points. The time duration of dynamic
imaging ranged 5-6minutes.

2.5 | DCE-MRI Theory
The T1-weighted (T1w) DCE signal for the spoiled gradient-echo recalled sequence is given by [26]:

S (t ) = M0 sin(θ)e−TER∗2(t )(1 − e−TRR1(t ))
(1 − cos(θ)e−TRR1(t )) (15)

where S (t ) is the voxel signal intensity at time t ,M0 is the equilibriummagnetization of the protons, θ is the flip angle,
TR is repetition time, and TE is echo time. R1(t ) is the time course of longitudinal relaxation rate (R1 = 1/T1) and R ∗2(t ) is
time course of transverse relaxation rate (R ∗2=1/T ∗2 ). For TE� T ∗2 , e−TRR

∗
2
(t )2 ≈ 1.

The time course of measured signal is converted to the T1 relaxation rate. Under the fast exchange limit, the change
in R1 (∆R1 = R1 − R10) is linearly proportional to the tissue CA concentrationCt (mM).

R1(t ) = R10 + r1Ct (t ) → ∆R1(t ) = r1Ct (t ) (16)

where R10 is the pre-contrast relaxation rate R1, and r1 is the longitudinal relaxivity of CA.

2.6 | DCE-MRI Analysis
TheCt (t )was fitted to extended Tofts model (ETM) to estimate the physiological parameters. TheCt for ETM is given
by [5]:

Ct (t ) = Kt r ans
∫ t

0
e−kep (t−τ)Cp (t )dτ + Cpvp (17)
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ELKIN ET AL. 7

whereCp (t ) is the time course of the plasma concentration of the CA (i.e., called arterial input function [AIF]), Kt r ans
(min−1) is the volume transfer constant (vascular space to the EES), and kep = Kt r ans/ve (min−1) is the rate constant for
CA transport from the EES to vascular space. AIF for each patient was selected from a location at the carotid artery
[27]. Regions of interest (ROI’s) on tumors were identified and contouredmanually by an experienced neuroradiologist
based on T2w images and late phases of the T1wDCE images. Tumor volumewas calculated from the T2w images.

Pre-contrast T1 values (ie, T10) were calculated from the precontrast T1w variable flip angle images [28]. The
time course of tissue concentration dataset,Ct (t ), was fitted to Equation (17) using a nonlinear fitting technique that
minimizes the sum of squared errors (SSE) between themodel fit and data. Parameter estimation values were bounded
in thefitting routine as follows: Kt r ans ∈ [0, 5] (min−1),ve , andvp ∈ [0, 1]. The ETMparametricmapswere generated using
in-houseMRI-QAMPER software (Quantitative AnalysisMulti-Parametric Evaluation Routines) written inMATLAB.

2.7 | OMTNumerical Simulation
Wenow outline our numerical implementation of the regularizedOMT problem based on the work of [29].

We consider a cell-centered grid where cells are determined by voxels with volume hd . Linearized variables are
denoted in bold and subscripts are used to indicate the time step (e.g. µn ). As proposed in [29], we employ operator
splitting to get the discretized advection/diffusion equation (D-ADE)

(I − δtL)µn+1 = P(νn )µn , n = 0, . . . ,K . (18)

Here,K is the number of time steps, δt is the spatial discretization,P is a (tri)linear interpolationmatrix that redistributes
advectedmass to the cell centers, I is the identity matrix and L is a discretized diffusion operator+ · D+. Even though
we take the diffusion operator in the present paper to be of the form σ2∆, we point out that themethodology works the
same for amore general operator+ · D+whereD is a symmetric, positive definite matrix.

Given an initial density µ0 and velocity ν, the D-ADE (18) gives the density for any time step. Recalling that we fixed
the initial density to be equal to the given image (µ0 = µγ0 ), we see that the density can bewritten as a function of the
velocity.

T (ν) = µ(t , x ), t ∈ [0,T ]. (19)

This allows us to solve the GR-OMT problem (14) as an unconstrained optimization problem for ν alone.
As shown in [29], the energy functional is discretized as∫ T

0

∫
A

1

2
µ ‖ν ‖2dx d t ≈ hd δtµ>(IK ⊗ Aν )(ν � ν), (20)

whereµ and ν are block vectors comprised of the respective linearized variablesµn and νn−1 for n = 1, ...,K , Ik is the
k × k identity matrix,Aν is a 1 × d blockmatrix of Is , s is the number of voxels, ⊗ denotes the Kronecker product and �
denotes the Hadamard product. Following [29], we solve the following discrete GR-OMT optimization problem:

min Ξ(ν) = hd δt 1
2
µ>(IK ⊗ Aν )(ν � ν) + ε2 ‖µK+1 −µγK+1 ‖

2

subject to

(I − δtL)µn+1 − P(νn )µn = 0
µ0 = µ

γ
0 .
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8 ELKIN ET AL.

The constraint is linear with respect to ν and the objective function Ξ is quadratic with respect to ν and the
interpolation matrix P is linear with respect to ν . Thus one can employ a Gauss-Newton like method to solve the
problem. Full details may be found in [29].

Recall that the GR-OMT algorithm yields the velocity characterizing the evolution between two given images,
subject to the advection-diffusion equation (13). As described above, this velocity is influenced by both advective and
diffusive behavior of the CA and looking at the average speed, (i.e. themagnitude of the velocity), turns out to be quite
revealing. In particular, we define forward flux (ΦF , min−1) to be the average speed of the velocity at some initial time
interval (CA delivery phase) and backward flux (ΦB , min−1) to be the average speed of the velocity for the remaining time
interval; we investigated the selection of the specific time intervals for themost accurate assessment of ΦF and ΦB .
The flowchart diagram for the data processing steps in the GR-OMT pipeline is illustrated in Figure 1.

A significant advantage of OMT framework is that we also get directional information from the velocity which
cannot be inferred from imaging alone. In accordance with the finding that contrast is advectively driven out of the
tumor and enters the tumor via diffusion due to differences in concentration gradient; a voxel is considered to be
advective if the time-varying velocity vector at the corresponding location points out of the tumor for amajority of the
time steps and diffusive if the velocity vector points outward for amajority of the time steps. The diffusive percentage is
then defined to be the number of diffusive voxels divided by the tumor volume.

3 | RESULTS

Themean volume of all tumors used in the studywas 24.57 cm3 with standard deviation 9.51 cm3 . For DCE-MRI images,
we refer to the i -th image as the image taken at phase i . We selected image phases of t = 6−21, which typically represent
the first pass of CA time interval, for forward flux and t = 21 − 39 for backward flux based on the observation that the
diffusive percentage spikes at t = 21 across all our patientswhen looking at smaller time intervals/increments. As shown
in Figure 2, the spike indicates the strong reflux (characteristic of backward flux). Figure 3 shows the OMT pipeline
runwhere the corresponding forward and backward fluxes and their respective advection/diffusion components are
illustrated. The mean tumor forward flux in this case is 0.0098 and the diffusive percentage in the delivery phase
(t = 6 − 21) is 14.21% and increases to 22.66% in the remaining interval.

Figure 4 shows comparison of ETM-derived Kt r ans and OMT-derived ΦF . Abrupt changes in the neighboring
slices/voxels are observed for Kt r ans since it ignores the intervoxel movement. In contrast, theΦF shows clearer signal
strength andmaintains the integrity of the neighboring voxels. As observed, Kt r ans follows similar trends toΦF .

We show forward and backward fluxes with corresponding advection and diffusion components for two patient
datasets in Figures 5 and 6 based on the tumor size. Quantitative metrics for forward and backward flux for all the
patients (used in this study) with andwithout diffusion are given in Table 1. The corresponding diffusive percentages
for all the patients are shown in Table 2. Representative volumes for Figures 5 and 6 were 24.91cm3 and 28.80cm3,
respectively.

Finally, the sensitivity analysis of different values of σ2 is given in Figure 7. We see that the direction of the flux
changes gradually as σ2 increases but remains stable. Themovement becomesmore uniform as the value increases
with a large difference observed when σ2 = 1, as illustrated in (f). Given the stability of the low σ2 values, we used
σ2 = 0.0001 for all the HNSCC datasets in this study.
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4 | DISCUSSION
In this paper, we have described a natural fluid flowmodel applied to DCE-MRI head and neck data. Themodel, unlike
ETM, allows to take into account both advective and diffusive flows between neighboring voxels. In our framework,
we directly applied an advection/diffusion model to study the optical flow properties of the dynamic imagery with
no extraneous parameters. Thus the methodology described in the present work is data driven. We have shown
how the bulk motion is chained to the diffusion through the diffused Hamilton-Jacobi equation (5). The relation to
the compartmentalizedmodels are revealed in (11) that shows explicitly how the time course of CA concentration is
effected by a general velocity term that captures the conservation principles underlying the compartmental models.

ETM takes an input, AIF, a signal curve timecourse of CA delivery from a pre-selected arterial region and uses this as
convolution for all the voxels in the tumor ROI.We do notmake any such assumption. AIF for ETM and our analysis gave
the same timeframe for initial pass of CA delivery in all the HNSCC datasets. ETM provides estimate of Kt r ans based on
the non-linear fitting. The reliance on initial value estimates in nonlinear least squares fitting is a major difference from
the data drivenOMTmodel employed in this study.

There is another way of looking at our approach, which may illuminate some of the key ideas. Optimal mass
transport defines ametric on distributions that allows natural physically based interpolations of data. Mathematically,
it defines a geodesic path in the space of distributions in a certain precise sense [30]. However, it does not take into
account diffusion. Adding diffusion to themodel not only regularizes the OMT framework, but adds another important
interpretation to our proposedmethod. Namely, (4) may be regarded as a Fokker-Planck equation, and hence describes
the transition probabilities of the associated stochastic differential equation [31]. Thus, insteadofmoving along geodesic
paths, we are nowmoving along Brownian paths [20]. This is a very powerful point of view in problems in which there is
noise, and when one does not want to impose any a priori constraints. This is exactly the type of treatment underpinning
data drivenmethodologies, which are coming to dominatemany parts of applied science and engineering.

In the future, we plan to estimate the pressure directly from the presented approach. We will also add source
terms to our formulation that will allow us to combineOMTwith other metrics such as L2 and Fisher-Rao [32] while still
keeping the underlying advection/diffusionmodel governing the flow. Further, wewill consider more general versions
of the diffusion coefficient, e.g. taking into account spatial dependence in order to further improve our scheme for the
kinetic modeling of tumor DCE data.

ACKNOWLEDGEMENTS
This project was supported by AFOSR grant (FA9550-17-1-0435), grants from National Institutes of Health (R01-
AG048769, R01-CA198121), MSK Cancer Center Support Grant/Core Grant (P30 CA008748), and a grant from Breast
Cancer Research Foundation (grant BCRF-17-193).

CONFL ICT OF INTEREST
There are no conflicts of interest.

REFERENCES
[1] King AD, Vlantis AC, Tsang RKY, Gary TMK, Au AKY, Chan CY, et al. Magnetic Resonance Imaging for the Detection

of Nasopharyngeal Carcinoma. American Journal of Neuroradiology 2006;27(6):1288–1291. http://www.ajnr.org/
content/27/6/1288.

reuse allowed without permission. 
holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No 

The copyrightthis version posted April 25, 2019. ; https://doi.org/10.1101/612770doi: bioRxiv preprint 

https://doi.org/10.1101/612770


10 ELKIN ET AL.

[2] King AD, Mo FK, Yu KH, Yeung DK, Zhou H, Bhatia KS, et al. Squamous cell carcinoma of the head and neck: diffusion-
weighted MR imaging for prediction and monitoring of treatment response. Eur Radiol 2010;20(9):2213–20. https:
//www.ncbi.nlm.nih.gov/pubmed/20309553.

[3] LenzM, Greess H, BaumU, DobritzM, Kersting-Sommerhoff B. Oropharynx, oral cavity, floor of themouth: CT andMRI.
Eur J Radiol 2000;33(3):203–15. https://www.ncbi.nlm.nih.gov/pubmed/10699737.

[4] Zima AJ, Wesolowski JR, Ibrahim M, Lassig AA, Lassig J, Mukherji SK. Magnetic resonance imaging of oropharyngeal
cancer. TopMagn Reson Imaging 2007;18(4):237–42. https://www.ncbi.nlm.nih.gov/pubmed/17893589.

[5] Tofts PS, KermodeAG. Measurement of the blood-brain barrier permeability and leakage space using dynamicMR imag-
ing. 1. Fundamental concepts. Magnetic resonance inmedicine 1991;17(2):357–367.

[6] Shukla-DaveA, LeeNY, Jansen JFA, ThalerHT, StambukHE, FuryMG, et al. DynamicContrast-EnhancedMagnetic Reso-
nance Imaging as a Predictor ofOutcome inHead-and-Neck SquamousCell CarcinomaPatientsWithNodalMetastases.
International Journal of Radiation Oncology*Biology*Physics 2012;82(5):1837 – 1844. http://www.sciencedirect.
com/science/article/pii/S0360301611004597.

[7] Kim S, Loevner LA, QuonH, Kilger A, Sherman E,Weinstein G, et al. Prediction of response to chemoradiation therapy in
squamous cell carcinomas of the head and neck using dynamic contrast-enhancedMR imaging. AJNR Am JNeuroradiol
2010;31(2):262–8. http://www.ncbi.nlm.nih.gov/pubmed/19797785.

[8] Jackson A, Li KL, Zhu X. Semi-quantitative parameter analysis of DCE-MRI revisited: monte-carlo simulation, clini-
cal comparisons, and clinical validation of measurement errors in patients with type 2 neurofibromatosis. PLoS One
2014;9(3):e90300. https://www.ncbi.nlm.nih.gov/pubmed/24594707.

[9] O’Connor JP, Jackson A, Parker GJ, Roberts C, JaysonGC. Dynamic contrast-enhancedMRI in clinical trials of antivascu-
lar therapies. Nature reviews Clinical oncology 2012;9(3):167.

[10] Huang W, Chen Y, Fedorov A, Li X, Jajamovich GH, Malyarenko DI, et al. The impact of arterial input function deter-
mination variations on prostate dynamic contrast-enhanced magnetic resonance imaging pharmacokinetic modeling: a
multicenter data analysis challenge. Tomography: a journal for imaging research 2016;2(1):56.

[11] Othman AE, Falkner F, Kessler DE, Martirosian P, Weiss J, Kruck S, et al. Comparison of different population-averaged
arterial-input-functions in dynamic contrast-enhancedMRI of the prostate: effects on pharmacokinetic parameters and
their diagnostic performance. Magnetic resonance imaging 2016;34(4):496–501.

[12] Sourbron SP, Buckley DL. On the scope and interpretation of the Tofts models for DCE-MRI. Magnetic resonance in
medicine 2011;66(3):735–745.

[13] Sourbron S, Buckley DL. Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability. Physics in
Medicine & Biology 2011;57(2):R1.

[14] Rachev S, Rüschendorf L. Mass Transportation Problems. Springer-Verlag, New York; 1998.
[15] Villani C. Topics in Optimal Transportation. No. 58, AmericanMathematical Soc.; 2003.
[16] Benamou JD, Brenier Y. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem.

NumerischeMathematik 2000;84:375–393.
[17] Ewing JR, Nagaraja TN, Aryal MP, Keenan KA, Elmghirbi R, Bagher-Ebadian H, et al. Peritumoral tissue compression is

predictive of exudate flux in a rat model of cerebral tumor: an MRI study in an embedded tumor. NMR in Biomedicine
2015;28(11):1557–1569.

[18] Elkin R, Nadeem S, Haber E, Steklova K, Lee H, Benveniste HB, et al. GlymphVIS: Visualizing Glymphatic Transport Path-
ways Using RegularizedOptimal Transport. MICCAI 2018 2018;.

reuse allowed without permission. 
holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No 

The copyrightthis version posted April 25, 2019. ; https://doi.org/10.1101/612770doi: bioRxiv preprint 

https://doi.org/10.1101/612770


ELKIN ET AL. 11

[19] Yankeelov TE, Lepage M, Chakravarthy A, Broome EE, Niermann KJ, Kelley MC, et al. Integration of quantitative DCE-
MRI andADCmapping tomonitor treatment response in human breast cancer: initial results. Magnetic resonance imag-
ing 2007;25(1):1–13.

[20] ChenY, Georgiou TT, PavonM. On the relation between optimal transport and Schrödinger bridges: A stochastic control
viewpoint. Journal of Optimization Theory and Applications 2016;169(2):671–691.

[21] Peyré G, Cuturi M. Computational Optimal Tranport. ArXiv:1803.00567, 2018; 2018.
[22] Li W, Yin P, Osher S. Computations of optimal transport distance with Fisher information regularization. Journal of

Optimization Theory and Applications 2018;75(3):1581–1595.
[23] Liero M, Mielke A, Savare G. Optimal transport in competition with reaction: the Hellinger–Kantorovich distance and

geodesic curves. SIAM JournalMath Analysis 2016;48:2869–2911.
[24] Woodall RT, Barnes S, Hormuth DAet al . The Effects of Intravoxel Contrast Agent Diffusion on the analysis of DCE-MRI

Data in realistic tissue domains. Magnetic Resonance inMedicine 2018;80(1):330–340.
[25] Paudyal R, Oh JH, Riaz N, Venigalla P, Li J, Hatzoglou V, et al. Intravoxel incoherent motion diffusion-weighted MRI

during chemoradiation therapy to characterize andmonitor treatment response in human papillomavirus head and neck
squamous cell carcinoma. Journal ofMagnetic Resonance Imaging 2017;45(4):1013–1023.

[26] Bagher-Ebadian H, Jain R, Nejad-Davarani SP, Mikkelsen T, Lu M, Jiang Q, et al. Model selection for DCE-T1 studies in
glioblastoma. Magn ResonMed 2012;68(1):241–51. https://www.ncbi.nlm.nih.gov/pubmed/22127934.

[27] Shukla-Dave A, Lee N, Stambuk H, Wang Y, Huang W, Thaler HT, et al. Average arterial input function for quantitative
dynamic contrast enhanced magnetic resonance imaging of neck nodal metastases. BMC Med Phys 2009;9:4. http:
//www.ncbi.nlm.nih.gov/pubmed/19351382.

[28] Deoni SC, Peters TM, Rutt BK. High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with
DESPOT1 andDESPOT2. Magn ResonMed 2005;53(1):237–41. https://www.ncbi.nlm.nih.gov/pubmed/15690526.

[29] Steklova K, Haber E. Joint hydrogeophysical inversion: state estimation for seawater intrusion models in 3D. Computa-
tional Geosciences 2017;21(1):75–94.

[30] Otto F. The geometry of dissipative evolution equations: the porous medium equation. Communications in Partial Dif-
ferential Equations 2001;26.

[31] Gardiner C. StochasticMethods: A Handbook for the Natural and Social Sciences. Springer; 2008.
[32] Chen Y, Georgiou T, Tannenbaum A. Interpolation of matrices and matrix-Valued measures: The Unbalanced Case. Eu-

ropean Journal of AppliedMathematics 2018;https://doi.org/10.1017/S0956792518000219.

reuse allowed without permission. 
holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No 

The copyrightthis version posted April 25, 2019. ; https://doi.org/10.1101/612770doi: bioRxiv preprint 

https://doi.org/10.1101/612770


12 ELKIN ET AL.

TABLE 1 Meanw/o diffusion = (sum of advective speeds)/(number of advective + diffusive voxels) for the HNSCC
patients

Forward Flux (ΦF min−1) Backward Flux (ΦB min−1)
Patient ID with diffusion without diffusion with diffusion without diffusion

Mean ± Std. Dev. Mean ± Std. Dev. Mean ± Std. Dev. Mean ± Std. Dev.
1 0.0148 ± 0.0147 0.0099 ± 0.0139 0.0219 ± 0.0117 0.0102 ± 0.0134
2 0.0405 ± 0.0354 0.0330 ± 0.0357 0.0311 ± 0.0279 0.0157 ± 0.0242
3 0.0077 ± 0.0134 0.0063 ± 0.0118 0.0089 ± 0.0120 0.0061 ± 0.0113
4 0.0221 ± 0.0267 0.0165 ± 0.0263 0.0176 ± 0.0288 0.0114 ± 0.0268
5 0.0215 ± 0.0323 0.0151 ± 0.0298 0.0234 ± 0.0230 0.0131 ± 0.0214
6 0.0470 ± 0.0412 0.0372 ± 0.0452 0.0438 ± 0.0410 0.0293 ± 0.0437
7 0.0243 ± 0.0225 0.0167 ± 0.0223 0.0177 ± 0.0244 0.0089 ± 0.0215
8 0.0082 ± 0.0091 0.0052 ± 0.0086 0.0103 ± 0.0108 0.0033 ± 0.0071
9 0.0098 ± 0.0184 0.0068 ± 0.0182 0.0032 ± 0.0040 0.0014 ± 0.0026
10 0.0107 ± 0.0151 0.0079 ± 0.0146 0.0124 ± 0.0151 0.0074 ± 0.0146
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TABLE 2 Diffusive percentages (%) in forward and backward flux for the HNSCC patients.
Patient ID Forward Flux (ΦF ) Backward Flux (ΦB )

1 18.76% 27.61%
2 8.67% 17.42%
3 9.77% 14.70%
4 9.96% 20.16%
5 11.38% 15.63%
6 11.83% 16.60%
7 14.21% 23.11%
8 15.20% 30.36%
9 14.21% 22.66%
10 10.78% 12.76%
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F IGURE 1 Flowchart diagram of data processing steps for OMT pipeline. DCEMRI data is acquired and image
signal intensity is converted to time-course contrast agent (CA) tissue concentration data usingmulti-flip angle T1w
images. The CA data is interpreted asmass density in the image via theOMT simulation, which produces estimated
maps of forward flux (ΦF ) and backward flux (ΦB ).

reuse allowed without permission. 
holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No 

The copyrightthis version posted April 25, 2019. ; https://doi.org/10.1101/612770doi: bioRxiv preprint 

https://doi.org/10.1101/612770


ELKIN ET AL. 15

(a) t = 6 − 13 (b) t = 13 − 21 (c) t = 21 − 33

(a) t = 33 − 42 (b) t = 42 − 51 (c) t = 51 − 60

F IGURE 2 Smaller time increments. The diffusion percentages are (a) 18.76%, (b) 20.28%, (c) 25.14%, (d) 22.10%,
(e) 23.66% and (f) 23.49%. We use the diffusion spike at (c) to divide the total time interval into t = 6 − 21 for forward
flux and t = 21 − 60 for backward flux.
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F IGURE 3 Optimal Transport pipeline. MR intensity images are converted to concentration images which are then
fed to our regularizedOMT algorithm. The resultant interpolations give ’clean’ density maps and the corresponding
velocity field is used to compute the forward flux by averaging the speed components over the delivery time points and
pressure-driven advection/diffusion flows on the boundary via the directional component (advective flows are
represented bymovement out of the tumor whereas the diffusion is represented bymovement into the tumor, i.e.
against the pressure gradient).
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Kt r ans (min−1) ΦF (min−1)

(a) 0.0416 ± 0.1119 (b) 0.0215 ± 0.0323 (with diffusion)
0.0151 ± 0.0298 (without diffusion)

(c) 0.0471 ± 0.0424 (d) 0.0405 ± 0.0354 (with diffusion)
0.0330 ± 0.0357 (without diffusion)

(e) 0.0082 ± 0.0179 (f) 0.0098 ± 0.0184 (with diffusion)
0.0068 ± 0.0182 (without diffusion)

F IGURE 4 Comparison of mean±standard deviation for Kt r ans and forward flux (ΦF ) values on 4 neighboring slices
for 3 HNSCC patients. Note the abrupt changes in Kt r ans neighboring slices/voxels since it ignores the intervoxel
movement. In contrast, forward flux shows clearer signals andmaintains the integrity of the neighboring voxels.
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(a) Forward Flux (ΦF ) (b) Backward Flux (ΦB )

(c) Advection/Diffusion (forΦF ) (d) Advection/Diffusion (forΦB )

(e) (f)

F IGURE 5 Forward and backward flux and the corresponding advection and diffusion components. The diffusion
percentage increases from 8.67% in forward flux to 17.42% in backward flux. (e)Mean advective (red) and diffusive
(blue) speeds given as the percentage of tumor voxels with nonzeromean speed (Forward Flux).
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(a) Forward Flux (ΦF ) (b) Backward Flux (ΦB )

(c) Advection/Diffusion (forΦF ) (d) Advection/Diffusion (forΦB )

(e) (f)

F IGURE 6 Forward and backward flux and the corresponding advection and diffusion components. The diffusion
percentage increases from 15.20% in forward flux to 30.36% in backward flux. (e)Mean advective (red) and diffusive
(blue) speeds given as the percentage of tumor voxels with nonzeromean speed (Forward Flux).
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(a) σ2 = 0 (b) σ2 = 0.0001 (c) σ2 = 0.0010

(d) σ2 = 0.0100 (e) σ2 = 0.1000 (f) σ2 = 1.0000

F IGURE 7 Comparison of flux j = σ2+µ − µν for increasing values of σ2 . The flux vectors are shown in green on the
tumor boundary, highlighted in purple. We see that the direction of the flux changes gradually as σ2 increases but
remains stable. Themovement becomesmore uniform as the value increases with a large difference observedwhen
σ2 = 1, as illustrated in (f). Given the stability of the low σ2 values, we used σ2 = 0.0001 for all the HNSCC datasets in
this paper.
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