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Abstract	11	

Summary	12	

Standard	 bioinformatics	 pipelines	 for	 the	 analysis	 of	 bacterial	 transcriptomic	13	

data	commonly	ignore	non-coding	but	functional	elements	e.g.	small	RNAs,	long	14	

antisense	RNAs	or	untranslated	regions	(UTRs)	of	mRNA	transcripts.	The	root	of	15	

this	problem	is	the	use	of	incomplete	genome	annotation	files.	Here,	we	present	16	

baerhunter,	 a	 method	 implemented	 in	 R,	 that	 automates	 the	 discovery	 of	17	

expressed	 non-coding	 RNAs	 and	 UTRs	 from	 RNA-seq	 reads	 mapped	 to	 a	18	

reference	 genome.	 The	 core	 algorithm	 is	 part	 of	 a	 pipeline	 that	 facilitates	19	

downstream	 analysis	 of	 both	 coding	 and	 non-coding	 features.	 The	 method	 is	20	

simple,	 easy	 to	 extend	 and	 customize	 and,	 in	 limited	 tests	with	 simulated	 and	21	

real	data,	compares	favourably	against	the	currently	most	popular	alternative.	22	

Availability	23	

The	baerhunter	R	package	is	available	from:	24	
https://github.com/irilenia/baerhunter		25	

Contact	26	

i.nobeli@bbk.ac.uk	27	
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Introduction	28	

	29	

Next-generation	sequencing	has	 facilitated	global	surveys	of	 the	 transcriptome,	30	

largely	 focused	 on	 studying	 differential	 expression	 of	 genes	 across	 different	31	

conditions.	Studies	of	eukaryotic	transcriptomes	are	increasingly	embracing	the	32	

analysis	 of	 non-coding	 transcript	 expression	 but	 in	 bacteria,	 where	 intergenic	33	

regions	 tend	 to	 be	 a	 lot	 shorter	 (Thorpe	 et	al.,	 2017)	 and	 less	well	 annotated,	34	

automated	 differential	 gene	 expression	 is	 still	 largely	 synonymous	 with	35	

differential	expression	of	the	coding	regions	(CDS).	As	the	functional	importance	36	

of	 bacterial	 non-coding	 RNAs	 (ncRNAs	 -	 the	 term	 used	 here	 to	 cover	 long	37	

antisense	RNA,	small	regulatory	RNA	(sRNA),	and	untranslated	parts	of	mRNAs)	38	

is	becoming	evident	(Michaux	et	al.,	2014),	so	is	the	need	for	including	them	in	39	

differential	expression	studies.	40	

	41	

A	 major	 obstacle	 in	 studying	 non-coding	 RNA	 expression	 in	 bacteria	 is	 that	42	

relatively	 few	 ncRNAs	 are	 reliably	 annotated	 and,	 with	 the	 exception	 of	 well-43	

known	cases	(such	as	tRNAs,	ribosomal	RNAs	and,	more	recently,	some	members	44	

of	the	RFAM	(Kalvari	et	al.,	2018)	families),	the	majority	are	not	included	in	the	45	

standard	 annotation	 files	 required	 by	 computational	 pipelines.	 Requiring	 the	46	

non-coding	RNAs	to	be	included	in	the	annotation	is	prohibiting	their	analysis	by	47	

methods	such	as	TrBorderEx	(Wang	et	al.,	2015),	which	identifies	the	transcript	48	

boundaries	but	does	not	find	new	non-coding	RNAs.	An	alternative	to	waiting	for	49	

annotations	 to	 improve	 is	 to	 identify	ncRNAs	using	 the	 expression	data	 signal.	50	

Early	efforts	in	this	direction	relied	on	a	combination	of	manual	inspection	and	51	

in-house	written	scripts	 to	 identify	clusters	of	reads	 falling	outside	known	CDS	52	

regions	 (Arnvig	 et	 al.,	 2011)(Wilms	 et	 al.,	 2012)(Pfeifer-Sancar	 et	 al.,	 2013).	53	

These	 studies	 offered	 great	 insights	 into	 the	 non-coding	 transcriptome	 but	54	

applying	 their	 approach	 in	 a	 different	 context	 is	 time-consuming	 and	prone	 to	55	

errors	due	to	the	need	for	recreating	the	pipelines	from	scratch.	Selected	studies	56	

have	 led	 to	 publicly	 available	 software	 for	 the	 study	 of	 ncRNAs	 in	 bacteria.	57	

However,	 some	methods	 are	 limited	 to	 specific	 species	 (Pellin	 et	al.,	 2012)	 or	58	

rely	 on	 specialized	 sequencing	 protocols	 (Peña-Castillo	 et	al.,	 2015;	 Amman	 et	59	

al.,	 2014).	 Two	notable	 exceptions	 have	 appeared	 in	 recent	 years.	DETR'PROK	60	
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(Toffano-Nioche	et	al.,	2013)		employs	the	Galaxy	platform	(Afgan	et	al.,	2018)		to	61	

classify	 clusters	 of	 RNA-seq	 reads	 not	 overlapping	 with	 annotated	 genes	 as	62	

sRNAs,	 antisense	RNAs,	 and	UTRs.	 The	 updated	 annotation	 file	 can	 be	 used	 to	63	

carry	 out	 differential	 gene	 expression.	 However,	 the	 DETR'PROK	 workflow	 is	64	

composed	 of	 a	 large	 number	 of	 steps,	 requires	 an	 active	 user	 input	 at	 several	65	

stages	and	depends	on	access	to	a	Galaxy	instance.		Rockhopper	(McClure	et	al.,	66	

2013),	 a	 standalone,	 Java-based	 program	 that	 allows	 both	 identification	 of	67	

features	 in	 a	 bacterial	 transcriptome	 and	 differential	 expression	 between	68	

conditions,	 is	 primarily	 aimed	 at	 non-bioinformaticians.	 A	 user-friendly	69	

graphical	 interface	 masks	 a	 fairly	 sophisticated	 set	 of	 algorithms	 that	 are	70	

presented	 as	 a	 black	 box	 with	 only	 a	 handful	 of	 parameters	 accessible	 to	 the	71	

user.	Although	straightforward	to	use,	the	set	up	is	inflexible	with	little	scope	for	72	

extending	or	altering	the	pipeline	without	expert	interfering	with	the	code.		73	

	74	

Here,	we	present	baerhunter	 (“baer”	 stands	 for	bacterial	expressed	regions),	 a	75	

new	 method	 implemented	 in	 R	 (R	 Core	 Team,	 2018),	 for	 automating	 the	76	

detection	and	quantification	of	 expressed	putative	non-coding	RNAs	 (including	77	

UTRs)	 in	 bacterial	 strand-specific	 RNA-seq	 data.	 At	 the	 core	 of	 the	baerhunter	78	

pipeline	 is	 a	 simple	 but	 effective	 method	 of	 capturing	 expressed	 intergenic	79	

regions	across	sets	of	RNA-seq	data	samples.	The	method	is	designed	to	provide	80	

predictions	 of	 approximate	 locations	 of	 non-coding	 elements,	 reflecting	 our	81	

belief	 that	accurate	definitions	of	 transcript	ends	are	best	achieved	by	targeted	82	

experimental	methods	 rather	 than	 computational	 predictions	 from	 noisy	 data.	83	

The	 pipeline	 built	 around	 this	 method	 facilitates	 the	 analysis	 of	 differential	84	

expression	of	these	regions	in	parallel	with	the	more	traditional	protein-coding-85	

focused	 analysis.	 Below,	 we	 describe	 our	 method	 and	 present	 the	 results	 of	86	

testing	 its	 performance	 both	 on	 simulated	 and	 real	 data	 from	Mycobacterium	87	

tuberculosis	(Mtb).	In	addition,	we	compare	baerhunter	to	Rockhopper,	chosen	as	88	

the	most	widely	used	alternative	method.	89	
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Methods	90	

The	core	algorithm	of	baerhunter	carries	out	a	search	for	intergenic	features	on	91	

each	 strand,	 displaying	 a	minimum	 length	 and	 coverage	 depth	 in	 the	RNA-seq	92	

signal	 (see	 Supplementary	 Methods	 for	 details).	 The	 algorithm	 is	 wrapped	93	

within	a	“driver”	R	script	that	can	be	easily	edited	to	include,	exclude	or	modify	94	

steps,	depending	on	the	user’s	requirements.	Individual	functions	of	baerhunter	95	

can	 also	 be	 used	 in	 isolation	 or	 incorporated	within	 different	 pipelines.	 In	 the	96	

default	 mode,	 baerhunter	 reads	 in	 a	 set	 of	 Binary	 Alignment	 Map	 (BAM)	 files	97	

with	RNA-seq	reads	mapped	to	a	reference	genome	and	an	annotation	file	in	the	98	

Generic	 Feature	 Format	 (GFF3)	 for	 the	 same	 genome.	 It	 will	 then	 identify	99	

expressed	 intergenic	 regions	 on	 each	 strand	 (“features”)	 and	 combine	100	

overlapping	 features	 across	 multiple	 BAM	 files	 to	 create	 a	 full	 set	 of	 non-101	

overlapping	genomic	features.	Features	are	classified	as	either	“UTR”,	if	they	are	102	

thought	 to	be	 the	untranslated	part	 of	 a	 coding	mRNA	or	 “sRNA”	 (used	 in	 this	103	

context	 to	 encompass	 all	 other	 types	 of	 non-coding	RNA	 in	 bacteria,	 including	104	

long	 antisense	RNAs).	 In	 addition,	baerhunter	 allows	 for	 new	 transcripts	 to	 be	105	

filtered	 by	 their	 expression	 level	 (normalised	 to	 transcripts	 per	million	 (TPM)	106	

values),	 as	 many	 very	 low-expression	 features	 are	 likely	 to	 be	 the	 result	 of	107	

transcriptional	noise	or	ambiguous	read	mapping.	Finally,	differential	expression	108	

analysis,	 including	 all	 newly	 annotated	 putative	 features,	 is	 facilitated	 by	 a	109	

wrapper	script	that	utilizes	the	DESeq2	method	(Love	et	al.,	2014).		110	

	111	

To	test	baerhunter,	a	simulated	RNA-seq	dataset	was	created	using	the	package	112	

polyester	 (Frazee	 et	 al.,	 2015).	 In	 addition,	 RNA-seq	 data	 from	 the	 study	 of	113	

(Cortes	 et	 al.,	 2013),	 six	 samples	 from	 exponentially	 growing	 and	 starved	114	

cultures	 of	 Mtb,	 were	 downloaded	 from	 Array	 Express	 (E-MTAB-1616)	 and	115	

processed	 as	 detailed	 in	 Supplementary	 Methods.	 Following	 analysis	 with	116	

baerhunter,	the	sRNA/UTR	predictions	were	compared	to	a	set	of	experimentally	117	

confirmed	and	predicted	mycobacterial	 sRNAs	 from	the	comprehensive	review	118	

of	(Haning	et	al.,	2014).	Transcription	start	sites	reported	by	(Cortes	et	al.,	2013)	119	

for	 the	same	samples	were	also	used	to	assess	 the	accuracy	of	our	predictions.	120	

The	genome	browser	Artemis	(version	17.0.1)	(Carver	et	al.,	2012)	was	used	for	121	

visualization.		122	
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	 	123	

Rockhopper	 was	 used	 with	 default	 parameters,	 except	 for	 the	 minimum	124	

transcript	length	that	was	set	to	40	nucleotides	to	match	the	baerhunter	settings.	125	

Two	minimum	 expression	 thresholds	were	 tested	 (0.5,	 the	 default,	 and	 0.2,	 to	126	

increase	sensitivity).		127	

	128	

All	 code	 and	 data	 required	 to	 reproduce	 this	 analysis	 are	 available	 from	 the	129	

github	repository:	130	

https://github.com/irilenia/baerhunter_paper		131	

The	latest	version	of	baerhunter	is	available	from:	132	

https://github.com/irilenia/baerhunter	133	
	134	
	135	

Results		136	

Simulated	dataset	137	

We	tested	the	ability	of	baerhunter	to	recover	expressed	intergenic	regions	and	138	

UTRs	using	simulated	data.	1000	genomic	features	were	randomly	selected	from	139	

the	 Mtb	 genome,	 including	 twenty-four	 short	 RNAs	 included	 in	 the	 original	140	

annotation	(see	Supplemental	Methods).	As	the	genome	annotation	file	does	not	141	

include	UTR	information	for	Mtb,	artificial	UTRs	were	added	to	a	random	subset	142	

of	 200	 genes.	 These	1000	 features	were	 simulated	 in	 10	 samples	 belonging	 to	143	

two	groups	(with	fold	changes	between	1	and	5	applied	to	20%	of	the	features).	144	

Our	 pipeline	 applied	 to	 paired-end	 read	 simulations	 recovered	 all	 short	 RNAs	145	

and	all	UTRs,	with	exact	predictions	 for	 the	start	and	end	coordinates	of	all	24	146	

sRNAs	 and	 over	 half	 of	 the	 UTRs	 (the	 remaining	 being	 in	 their	 vast	 majority	147	

within	 5	 nucleotides	 of	 the	 true	 range).	 Results	 were	 relatively	 insensitive	 to	148	

small	 changes	 in	 the	 program	 parameters	 (Supp	 Table	 1).	 Rockhopper	149	

performed	 similarly	 on	 sRNAs,	 recovering	 23	 of	 24	 when	 run	 at	 default	150	

sensitivity	(22	of	the	23	sRNAs	had	their	coordinates	exactly	predicted)	but	was	151	

less	successful	in	the	prediction	of	UTRs,	missing	4	of	the	200	and	estimating	the	152	
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lengths	 of	 approximately	 a	 quarter	 of	 the	 ones	 it	 predicted	 to	 be	 at	 least	 20	153	

nucleotides	shorter	than	expected	(Supp	Figure	4).		154	

	155	

Real	dataset	156	

In	addition	to	using	simulated	data,	we	applied	baerhunter	to	the	RNA-seq	data	157	

from	 starved	 and	 exponentially	 grown	 cultures	 of	Mtb	 (Cortes	 et	al.,	 2013).	 In	158	

this	 case,	 the	 true	number	of	non-coding	RNAs	 is	unknown,	 so	baerhunter	was	159	

benchmarked	 against	 transcription	 start-site	 data	 from	 the	 same	 samples,	 as	160	

well	 as	 lists	 of	 known	and	predicted	non-coding	RNAs	 (Haning	et	al.,	 2014)	 in	161	

order	to	assess	the	likely	accuracy	of	our	predictions.		162	

	163	

At	 the	more	 stringent	parameter	values	 (5-20),	74-83%	of	 the	predicted	 sRNA	164	

features	 in	 samples	 from	 either	 condition	 are	 supported	 by	 the	 presence	 of	 a	165	

TSS,	 even	 at	 one-nucleotide	 resolution	 (Supp	 Figure	 5A	 &	 Supp	 Table	 2).	166	

Relaxation	 of	 the	 cut-off	 (to	 5-10)	 increases	 false	 positives	 but,	 importantly	 it	167	

also	increases	true	predictions,	thus	allowing	more	transcripts	to	be	discovered	168	

at	the	cost	of	a	more	noisy	output	(Supp	Fig.	5B	&	Supp	Table	2).		Although	more	169	

than	half	of	the	baerhunter-predicted	sRNAs	do	not	correspond	to	sRNAs	in	the	170	

published	list	of	(Haning	et	al.,	2014),	visual	examination	of	the	RNA-seq	signal	171	

confirms	expression	at	these	loci	(Supp	Figure	6),	usually	from	a	very	weak	TSS	172	

that	has	not	passed	 the	 inclusion	 cut-off	 in	 the	original	 study	by	 (Cortes	et	al.,	173	

2013).	These	transcripts	are	often	expressed	at	very	low	levels	and	can	be	easily	174	

filtered	 out	 using	 expression	 strength.	 Rockhopper,	 run	 at	 default	 expression	175	

cut-offs,	 not	 only	 predicts	 fewer	 sRNAs	 but	 also	 a	 smaller	 percentage	 of	 these	176	

predictions	(~50-75%)	are	supported	by	TSS	evidence	(Supp	Figure	5C&D).	The	177	

prediction	 of	 UTRs	 is	 harder	 to	 assess.	 In	 the	 absence	 of	 ground	 truth	 for	 3’	178	

UTRs,	we	compared	the	start	of	the	5’	UTR	predictions	to	TSS	data.	Rockhopper	179	

retrieved	 more	 of	 the	 5’	 UTRs	 using	 default	 sensitivity	 but	 differences	 were	180	

generally	 small	 (Supp	 Figure	 7).	 Importantly,	 the	 two	 programs	 differ	 in	 their	181	

treatment	of	5’	UTRs	that	are	followed	by	a	significant	drop	near	the	start	of	the	182	

CDS.	 Rockhopper	 annotates	 these	 as	 independent	 sRNAs,	 a	 design	 that	183	

occasionally	 leads	to	the	unintended	consequence	of	predicting	a	much	shorter	184	

5’	 UTR	with	 no	 experimental	 support	 (Figure	 1A).	 In	baerhunter,	we	 prefer	 to	185	
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treat	 these	 as	 5’	 UTRs,	 acknowledging	 that	 they	 originate	 from	 mRNAs	186	

containing	 transcription-terminating	 regulatory	 elements	 ahead	 of	 the	 coding	187	

region.		188	
	189	

Conclusion		190	

Our	 new	 method,	 baerhunter,	 allows	 the	 extraction	 of	 bacterial	 putative	 non-191	

coding	 expressed	 regions	 directly	 from	 RNA-seq	 data	 and	 facilitates	 the	192	

integration	of	differential	expression	studies	of	coding	and	non-coding	elements	193	

in	 bacterial	 transcriptomes.	 Importantly,	baerhunter	compares	 favourably	with	194	

the	most	popular	alternative	method	in	tests	with	both	simulated	and	real	data.	195	
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Figure	1.	247	
Baerhunter’s	 predictions	 of	 UTRs	 and	 small	 RNAs	 are	 supported	 by	248	
experimentally	detected	transcription	start	sites	(TSS)	249	

	250	
In	all	three	figures	(A,	B	and	C),	the	panels	arranged	in	rows	are:	251	
(a)	experimentally	detected	TSS	(normalised	counts	per	base	from	the	Cortes	et	al.	(Cortes	et	al.,	252	
2013)dataset);		253	
(b)	and	(c),	sRNA	and	UTR	predictions	from	Rockhopper	run	with	default	sensitivity,	0.5;		254	
(d)	and	(e),	sRNA	and	UTR	predictions	from	Rockhopper	run	wih	increased	sensitivity,	0.2;		255	
(f)	 and	 (g)	 RNA-seq	 trace	 from	 Rockhopper	 mapping	 of	 reads	 for	 sample	 ERR262980	 (blue:	256	
positive	strand,	red:	negative	strand);		257	
and	(h)	the	RNA-seq	trace	corresponding	to	read	coverage	in	sample	ERR262980	mapped	by	our	258	
own	pipeline	(see	supplemental	Methods).	259	
Filled	pink	rectangles	 in	row	(h)	highlight	 the	putative	UTR	region	as	predicted	by	baerhunter.	260	
Transparent	 blue	 rectangles	 (panels	 B	 and	 C)	 highlight	 the	 two	 short	 RNAs	 predicted	 by	261	
baerhunter	on	the	negative	strand.	262	
	263	
A.	264	
The	 experimentally	 detected	 TSS	 (blue	 line	 in	 row	 a)	 supports	 a	 90	 nt	 5’	 UTR	 for	 the	265	
uncharacterized	protein	Rv1065.	 The	baerhunter’s	 prediction	 is	 84	nt	 long	 (region	highlighted	266	
with	pink	in	row	h),	closely	following	the	RNA-seq	trace.	Rockhopper’s	prediction	is	similar	when	267	
run	with	the	more	sensitive	detection	threshold	of	0.2	(dark	pink	rectangle,	row	e)	but	run	at	the	268	
default	0.5,	 it	 splits	 the	prediction	 to	a	 “non-coding	RNA”	 (green	rectangle,	 row	b)	and	a	much	269	
shorter	5’	UTR	(bright	pink,	row	c)	that	is	not	supported	by	TSS	data.		270	
B.			271	
The	 baerhunter	 program	 predicts	 a	 long	 (178	 nt)	 5’	 UTR	 ahead	 of	 the	 Rv0282	 gene	 and	 an	272	
antisense	 RNA	 (90nt)	 partially	 overlapping	 this	 UTR.	 Both	 predictions	 are	 supported	 by	273	
experimentally	detected	TSS	(blue	and	red	lines	on	the	positive	and	negative	strand	respectively;	274	
row	 a).	 Rockhopper,	 run	 with	 default	 precision	 parameters,	 predicts	 a	 non-coding	 RNA	 (light	275	
green;	panel	b)	and	no	5’	UTR	(row	c),	whereas	when	run	at	higher	sensitivity,	it	predicts	a	non-276	
coding	RNA	further	downstream	(dark	green,	row	d)	as	well	as	a	short	5’	UTR	(dark	pink,	row	e),	277	
corresponding	to	a	weaker	TSS	just	ahead	of	the	coding	region	of	the	gene	(small	blue	peak,	row	278	
a).	In	both	cases,	Rockhopper	misses	the	antisense	RNA	that	is	clearly	seen	in	the	RNA-seq	trace	279	
of	the	exponentially	growing	bacteria	(black	trace	on	the	negative	strand,	row	h	and	red-fill	trace,	280	
row	g).	281	
C.	282	
The	 baerhunter	 program	 discovers	 both	 the	 5’UTR	 ahead	 of	 the	 Rv1009	 (rpfB)	 gene	 and	 the	283	
antisense	 RNA	 overlapping	 it	 on	 the	 negative	 strand	 (both	 of	 which	 have	 experimental	 TSS	284	
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support).		Rockhopper	does	not	predict	any	ncRNA	features	in	the	same	region,	although	its	own	285	
mapping	of	reads	results	in	clear	expression	on	both	strands	(rows	f	and	g).	286	
	287	
The	similarities	between	read	coverage	as	reported	by	Rockhopper	(rows	f	and	g)	and	our	own	288	
pipeline	 (row	h)	 indicate	 that	differences	between	 the	Rockhopper	and	baerhunter	 predictions	289	
are	not	due	to	differences	in	the	way	the	reads	were	mapped	to	the	reference	genome	but	instead	290	
are	due	to	the	different	ways	the	programs	identify	expressed	regions.	291	
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