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Abstract

Estimating infectious disease parameters such as the serial interval (time between symptom onset in
primary and secondary cases) and reproductive number (average number of secondary cases produced
by a primary case) are important to understand infectious disease dynamics. Many estimation methods
require linking cases by direct transmission, a difficult task for most diseases. Using a subset of cases with
detailed genetic or contact investigation data to develop a training set of probable transmission events,
we build a model to estimate the relative transmission probability for all case pairs from demographic,
spatial and clinical data. Our method is based on naive Bayes, a machine learning classification algorithm
which uses the observed frequencies in the training dataset to estimate the probability that a pair is linked
given a set of covariates. In simulations we find that the probabilities estimated using genetic distance
between cases to define training transmission events are able to distinguish between truly linked and
non-linked pairs with high accuracy (area under the receiver operating curve value of 95%). Additionally
only a small subset of the cases, 10% - 40% depending on sample size, need to have detailed genetic data
for our method to perform well. We show how these probabilities can be used to estimate the average
effective reproductive number and apply our method to a tuberculosis outbreak in Hamburg, Germany.
Our method is a novel way to infer transmission dynamics in any dataset when only a subset of cases
have rich contact investigation and/or genetic data.

Introduction

Infectious disease parameters such as the serial interval, defined as the time between symptom onset from
primary to secondary case, and the reproductive number, defined as the average number of secondary cases
produced by a primary case over the course of their infection, are instrumental in managing outbreaks [1].
These parameters are used to determine how fast an infection is spreading, how well it is controlled, and if
public health interventions are working.

For some diseases such as influenza A (H1N1) [1, 2], Severe Acute Respiratory Syndrome (SARS) [3, 4],
and Ebola [5, 6], in which disease progression happens shortly after infection, these parameters have been
studied extensively. For other diseases such as tuberculosis (TB), the estimates for the serial interval and
reproductive number are few and inconsistent [7–9]. Methods to estimate both the serial interval and
reproductive number rely on determining which cases are linked by direct transmission. In recent years,
pathogen whole genome sequence (WGS) data has been established as a powerful tool to link cases for many
diseases [10–22].

Didelot et al. [23] developed a method that infers transmission networks, estimates transmission proba-
bilities, and estimates the serial interval and reproductive number. This method requires a phylogenetic tree
as input, which is derived from pathogen WGS data from the observed cases and performs well at inferring
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transmission events even when when a proportion of cases were unsampled. However, it has been shown
that for some diseases, pathogen WGS data is less informative of transmission links for various reasons such
as low mutation rates, short time intervals between infections, and within host diversity [24, 25].

Another way to effectively link cases by direct transmission is contact investigations. Contact investiga-
tions are often a component of the public health response to an infectious disease outbreak [24, 24, 26–31].
Campbell et al. [24] developed a method to that successfully infers transmission chains using contact inves-
tigation data alone and combined with WGS data. However, even contact investigations cannot perfectly
determine linked cases as some diseases can be transmitted through casual contact in public locations that
would not be captured in typical contact investigations [32, 33]. Additionally, the effectiveness of contact
investigations can depend upon characteristics of the disease such as the length of the latency period, the
clustering of infections [29], and the willingness of cases to share information about their contacts [31, 34].

The methods outlined by Didelot et al. [23] and Campbell et al. [24] are powerful tools for understanding
transmission dynamics using the most discriminating pieces of information currently available: pathogen
WGS and contact investigation. However, even these data sources cannot perfectly capture outbreak dy-
namics, due to the complexity of pathogen genetics and human interactions. Furthermore, WGS data is
expensive to obtain and requires bioinformatics expertise and contact investigations are time consuming and
require significant human resources. Therefore, these data sources are not universally available for many es-
tablished infectious disease study samples. We propose a method that uses whatever genetic and/or contact
investigation information is available, even if it only available for a small subset of cases, to estimate the
probability of direct transmission for all case pairs.

Since it is essentially impossible to know for sure the true infector of a given case, the probability
that two cases are linked could be a more informative quantity. We developed a method to predict the
relative probability of direct transmission between infectious disease patients using pathogen WGS data
and/or contact investigations when these data are only available on a small proportion of cases, paired with
demographic, spatial, clinical, and social risk factor data. These probabilities can be used to understand
the transmission dynamics of an outbreak and estimate the reproductive number in the absence of a reliable
serial interval estimate. We then applied our method to a TB outbreak in Hamburg, Germany that had
extensive clinical and epidemiological data.

Methods

Data Structure

Our method starts with a dataset of individuals with the infectious disease of interest for whom various
covariate values such as geographic location, clinical information, age, and time of sampling have been
observed. Furthermore, additional information such as detailed contact investigation data and/or whole
genome sequencing of the pathogen genome is available for at least some of the cases. This subset of
individuals serves as the training set to generate the model.

We then transform this dataset of individuals into a dataset of ordered case pairs (i, j), where case
i was observed before case j. We convert the individual-level covariates (X1, X2, . . . Xp) into pair-level
covariates (Z1, Z2, . . . Zp) by computing the “distances” between the covariate values for the two cases.
These “distances” identify how well the individuals match on the various covariates.

These distances can be dichotomous where a value of 1 indicates that the covariate values match and 0
indicates that they do not match as in Equation 1 for covariate Zk (where k ∈ 1, 2, . . . , p):

Zkij = d(Xki, Xkj) =

{
1 if Xki = Xkj

0 if Xki 6= Xkj .
(1)

Or the distances could be categorical where different combinations of individual-level values result in r
different pair-level values such as:
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Zkij = d(Xki, Xkj) =



1 if Xki = Xkj = v1

2 if Xki = Xkj = v2

3 if Xki = v1, Xkj = v2

. . .

r if Xki = Xkj = vw

(2)

where v1, v2, . . . , vw are the different values of Xk. For example if the individual-level covariate X1 is town
of residence, then the pair-level covariate Z1 could indicate if the individuals live in the same town, if they
live in neighboring towns, or if they live in towns that are not neighboring.

Naive Bayes

In order to estimate the probability that cases i and j are linked by direct transmission, p(i −→ j), we used
a classification technique called naive Bayes. Naive Bayes has been used in many applications in machine
learning and public health including text classification [35], software defect testing [36], and creation of
genetic risk scores [37]. The method utilizes Bayes rule to estimate the probability of an outcome given a
set of covariates from the observed frequencies in the training set.

For our method, the outcome variable is whether or not the pair is linked by direct transmission. We
call the outcome variable Lij , which takes the value 1 if case i infected case j and 0 otherwise. We know
the probable value of this variable for case pairs in the training set based on pathogen WGS or contact
investigation data and our method predicts the probability that Lij = 1 for the rest of the case pairs.

We first use the training set to calculate, P (Zk = zk|L = l), the probability that covariate Zk is equal to
zk given link status, l, (l = 1 for linked pairs and l = 0 for non-linked pairs) for each covariate k ∈ {1, 2, . . . , p}
using:

P (Zk = zk|L = l) =

∑
i,j 1{Lij = l, Zkij = zk}+ 1∑

i,j 1{Lij = l}+ nk
. (3)

Here the function, 1, is the indicator function which takes the value 1, if the input is true and 0 if it is false and
nk is the number of levels of Zk for k ∈ {1, 2, . . . , p}. Therefore, the numerator,

∑
i,j 1{Lij = l, Zkij = zk},

counts the number of instances that a pair, i, j has linked status, l, and covariate value zk for covariate Zk,
k ∈ {1, 2, . . . , p}. Because sparse data can result in zero probabilities, we also apply a common technique of
adding 1 to each cell called Laplace smoothing [35]. Then we use the training set to calculate P (L = l), the
prior probability of link status for l ∈ {1, 0}.

P (L = l) =

∑
i,j 1{Lij = l}+ 1

N + 2
. (4)

We now use Bayes rule to calculate the predicted probability that case i infected case j, p(i −→ j) for all
pairs in the prediction set as:

p(i −→ j) = P (Lij = 1|Z1ij = z1, . . . , Zpij = zp) (5)

=
P (Z1 = z1, . . . , Zp = zp|L = 1)P (L = 1)

P (Z1 = z1, . . . , Zp = zp)

=

∏p
k=1 P (Zk = zk|L = 1)P (L = 1)∏p

k=1 P (Zk = zk|L = 1)P (L = 1) +
∏p

k=1 P (Zk = zk|L = 0)P (L = 0)
.

We can calculate the conditional probability of all covariate values given link status, P (Z1 = z1, . . . , Zp =
zp|L = l), as the product of the conditional probabilities of each covariate, P (Zk = zk|L = l) for k ∈
{1, 2, . . . , p} in equation 5, under the assumption that covariates are conditionally independent. Note that
the ordered nature of the pair dataset implies that if case j was observed before case i, then p(i −→ j) = 0.
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Scaling Probabilities

In order to compare probabilities obtained with different datasets, covariates, and ways of defining trans-
mission events in the training set, the estimated probabilities are scaled so that they represent the relative
likelihood that case j has been infected by case i as opposed to any other sampled case as:

p(i −→ j)
S

=
p(i −→ j)∑

m6=j p(m −→ j)
. (6)

This scaled probability, p(i −→ j)
S

, will henceforward be referred to as the relative transmission probability.

Training Dataset Construction

The implementation of naive Bayes involves using a training set in which the outcome is known to train
the model and a prediction set in which the probabilities are estimated. In many applications these are two
separate datasets. In the infectious disease applications we are considering though, we never know the true
infector. Therefore in our training set the outcome, direct transmission between case pairs, is not known
with certainty. However, many studies have more detailed information on a subset of cases, such as pathogen
WGS and/or detailed contact investigation data which allow for the identification of probable linked and
un-linked case pairs. We can use one or both of these sources of information to create a training set of
probable transmission events. The rest of the cases which do not have these sources of information, are only
included in the prediction set.

Because the outcomes in our training set represent probable and not certain transmission events, we
want to estimate the transmission probability of these case pairs as well as the other pairs which do not
have pathogen WGS or contact investigation data. Therefore, we use an iterative estimation procedure to
ensure that each pair has a turn in the prediction set. We split our training set into n subsets called folds
where n - 1 folds are used to train the model and the remaining fold is included in the prediction set. In our
situation, this procedure is complicated by the fact that we assume that each case has only one true infector
which presents two problems: 1) since the method of defining transmission events in the training set is not
perfect, there could be multiple possible links for each infectee, and 2) once we denote a case pair as linked
in the training set, all pairs that share that infectee have a zero-probability of being linked.

To solve the first problem, we create the links in the training set by randomly choosing one of the possible
infectors to be designated the linked case pair and then repeated this selection multiple times to capture the
uncertainty around the true infector. To solve the second problem, when a pair is designated as a link in the
training set, all pairs that shared the infectee with the link are also included in the training set as non-links.
Then when that linked pair is in the prediction dataset so are all of the other pairs involving the infectee,
so the probability of all pairs involving that infectee can be estimated.

In order to capture the valuable information provided by the pathogen WGS or contact investigation
data used to define probable transmission events in the training set, when a pair is included in the training
set, the predicted probability for that run is set to 1 if the pair is linked and 0 if the pair is not linked.
The following algorithm describes the creation of the training dataset and the iterative estimation procedure
which can be visualized in Figure 1.

1. Create a dataset of possible training case pairs by subsetting the dataset to only the pairs involving
individuals that have information on the variables used to define probable links in the training set.

2. Randomly select one infector for each infectee and designate those pairs as “linked” (Lij = 1).

3. Temporarily remove all pairs that share an infectee with the linked pairs defined in step 2 from the
dataset.

4. Designate all remaining un-linked pairs as not linked (Lij = 0).

5. Split this dataset of possible training pairs into n folds (we used 10): n-1 for training and 1 for
prediction.

(a) Reserve 1 fold for prediction and combine with all of the pairs not in the training set.
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(b) For all linked pairs in the n-1 training folds, move all other pairs involving the infectee from the
prediction set to the training set as non-links (Lij = 0). This is the final training set for this
iteration.

(c) Set the predicted probabilities for training set pairs to 1 for links and 0 for non-links.

(d) Use the training set to train the model and calculate predicted probabilities in the prediction set.

(e) Repeat (a)-(d) n times so that each fold has a turn in the prediction set.

6. Repeat steps 2-5 multiple times (we used 10) to allow for different possible infectors to be designated
the true infector.

7. Average over all the predicted probabilities for each pair.

8. Scale the resulting probabilities using equation 6 to obtain the relative transmission probabilities for
all case pairs.

Reproductive Number Estimation

To estimate the reproductive number we use the approach described by Wallinga and Teunis [4]. These
authors calculated the relative likelihood that each case had been infected by all other cases based on the
serial interval distribution. They then calculated the effective reproductive number (Ri) for each case by
summing up the scaled probabilities for all possible infectees as:

Ri =
∑
m6=i

p(i −→ m)
S
. (7)

We use the same equation, but instead of deriving the probabilities based on the serial interval, we use the
probabilities derived from our naive Bayes approach. This method assumes that all cases are sampled and
that the outbreak is completed.

By averaging the individual reproductive numbers for all cases infected each month, we obtain estimates
of the monthly effective reproductive number (Rt). Finally, we average the monthly reproductive numbers
for the stable portion of the outbreak to estimate the average effective reproductive number over the study
period (R̄t).

We can estimate confidence intervals for Rt and R̄t using parametric bootstrapping. The Ri values are
re-sampled 100 times using the estimated probabilities, p(i −→ k)

S
, for all k according to their distribution:

Ri ∼
∑
m6=i

Bernoulli(p(i −→ m)
S

) (8)

as detailed in Wallinga and Teunis [4]. For each re-sampling we calculate the Rt values at each month and
average them to estimate R̄t. We then use the distributions of the estimated values of Rt and R̄t to derive
95% bootstrap confidence intervals:

LowerBound = R̂−QR̃(1− α/2)− R̂ (9)

UpperBound = R̂−QR̃(α/2)− R̂ (10)

where R can be either R̄t or Rt and QR̃ is the quantile function of the bootstrap estimates of R.

Simulation Study

We assess our method by applying it to simulated outbreaks. We simulate 1000 outbreaks using the simula-
teOutbreak function and generate the phylogenetic trees for those outbreaks using the phlyoFromPTree,
function both from TransPhylo v1.0 [23]. Then we use the simSeq function in phagnorn v2.5.3 [38] to
generate genetic sequences corresponding to the phylogenetic tree. This method was used in Stimson et al.
[39] for a similar purpose, though we extend it to include multiple transmission chains.

Each outbreak is composed of numerous transmission chains of at least two cases which are simulated
iteratively until the total sample size exceeded 500. The different transmission chains last for 20 years but
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have start and end points that vary in time. We simulate each transmission chain with the same outbreak
parameters: a mean reproductive number (R̄t) of 1.2, a serial interval distribution of gamma(shape = 1.05,
scale = 2.0), and an effective population size times generation time (Neg) of 0.25. We also include a delay
between infection and sampling using the same distribution as the serial interval. The serial interval we use
was estimated from a TB household contact story in Brazil (Ma et al, under review). We then simulate
representative pathogen genomes for each case. For each case we also simulated four different covariates
representing clinical and demographic variables to inform the model. We also included the time between
infection dates for each case pair into the model categorized as follows: less than 1 year, 1 to 2 years, 2 to 3
years, 3 to 4 years, 4 to 5 years, and more than 5 years.

Although pathogen genomes are thousands to millions of base-pairs long, we simulate a 300 base pair
genome where each transmission chain starts with a unique set of base pairs to allow for genetic diversity
across different strains. We aim to replicate a slow mutating pathogen such as TB which mutates at a rate
of around 0.5 single-nucleotide polymorphisms (SNPs) per genome per year [11]. With this mutation rate,
over the course of one 20 year transmission chain, very few mutations will accrue thus allowing a smaller
genome to provide a good proxy for the full genome. The shortened genome length we simulate is meant to
represent the locations that differ amongst cases sampled as part of one outbreak instead of the full genome.
We also performed a sensitivity analysis which showed that the SNP distance for a fixed mutation rate did
not notably change as genome length increased (Figure 2). It is possible that this approach underestimates
the true SNP distance distribution which makes it a conservative representation of the true SNP distance
distribution using the full pathogen genome.

We compare the performance of our method when we train the model using probable transmission events
defined by SNP distances between case pairs verses training the model with truly linked and un-linked pairs
case pairs (Table 1). When we train the model using SNP distance, case pairs with less than 2 SNPs are
considered links and those with more than 12 SNPs are considered non-links in the training set. Pairs with
between 2 and 12 SNPs are considered indeterminate and thus are not included in the training set. To
simulate real scenarios when only a fraction of the cases have the discriminating information necessary to
define probable transmission events, we randomly select a subset of 50% of all cases to make up the training
set.

Table 1: Description of simulation scenarios
Simulation Scenarios

Model trained on true links
Model trained on SNP distance links

Correct serial interval - gamma(1.05, scale = 2.0)
Wide serial interval - gamma(1.3, scale = 3.3)

Narrow serial interval - gamma(0.54, scale = 1.9)
Random probabilities

For comparison we also compute the relative transmission probabilities based on the serial interval used
to simulate the data and the time between infection dates of each pair. We also compute probabilities using
two mis-specified serial intervals, one that is too wide and one that is too narrow (Table 1). This comparison
is motivated by the Wallinga and Teunis [4] method for calculating the reproductive number in which the
transmission probabilities are estimated from the serial interval distribution. The wide and narrow serial
intervals represent the prior and posterior distributions used by Didelot et al. [23] in the analysis of the same
TB outbreak in Hamburg that we analyze below. All of these serial intervals are shifted by 90 days because
a serial interval of less than 3 months is not possible for TB, our motivating example. We also assign the
probabilities randomly from a Uniform(0, 1) distribution as a negative control.

We estimate the monthly effective reproductive number, Rt for all of the scenarios. To estimate the
average effective reproductive number, R̄t, we average the monthly values for all months excluding the first
10% and last 30% of months for each outbreak due to the unobserved infectors or infectees at the beginning
and the end of the sampling period.

In order to determine what proportion of cases need to be included in the training set to achieve good
performance, we also perform a sensitivity analysis where we simulate 300 outbreaks with sample sizes
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ranging from 50-1000 cases. For each outbreak we perform our method assuming that a random subset of
10% to 100% of the cases can be included in the training set. We assess how changing the proportion of cases
sampled affects the performance of the model performance and the estimation of the reproductive number
depending on the sample size.

Application to a TB Outbreak in Hamburg

Finally, we apply our method to a small TB outbreak in Hamburg and Schleswig-Holstein, Germany that
Roetzer et al. [10] also analyzed. The outbreak included 86 individuals from the largest strain cluster in
a long-term surveillance study conducted by the health departments in these cities. The dataset includes
pathogen WGS data for all individuals as well as clinical, demographic, and social risk factor data. Fur-
thermore a subset of these individuals were involved in contact investigations performed by the local health
authorities.

We used two different methods of defining probable links in the training set: 1) SNP distances and 2)
contact investigation. When the model was trained with SNP distances, pairs with < 2 SNPs between
them were considered linked, pairs with > 12 SNPs between them were considered non-links, and pairs
with between 2 and 12 SNPs were considered indeterminate and were not included in training set. When
the model was trained using contact investigation, pairs that had confirmed contact with each other were
considered linked, pairs without confirmed contact with each other were considered non-linked, and cases
who did not undergo contact investigation were not included in the training set. We also calculated the
relative transmission probabilities randomly and using the same serial intervals as the simulation study for
comparison.

Results

Simulation Study

We created 1000 simulated outbreaks composed of multiple transmission chains with a total of at least 500
cases. The sample sizes ranged from 500 to 1178 (median: 545) and each outbreak consisted of between 2
and 39 (median: 14) individual transmission chains with 2 to 846 (median: 9) cases each.

Figure 3 shows the distribution of relative transmission probabilities in one of the 1000 outbreaks for
the different scenarios comparing truly linked and non-linked case pairs. For both ways of defining links in
the training set, our method estimated relative transmission probabilities of less than 0.005 for most of the
non-linked pairs (92% training using true links and 87% training using SNP distance). We also found that
with either way of defining the training set, our method assigns more than 80% of truly linked case pairs
higher probabilities than the serial interval method (Figure 4).

In order to assess how well the relative transmission probabilities could classify case pairs as linked and
non-linked across all 1000 simulated outbreaks, we calculated the area under the receiver operating curve
(AUC) for each simulation. To determine how well our method performed in identifying the true infector,
we evaluated how the relative transmission probability of the true infector ranked compared to all possible
infectors.

Table 2: Performance metrics for relative transmission probabilities over 1000 simulations
Scenario AUC Correct Top 5% Top 10% Top 25% Top 50%

Percent (SD) Percent (SD) Percent (SD) Percent (SD) Percent (SD) Percent (SD)
Gold Std: Truth 96.2 (0.7) 34.1 (3.1) 73.2 (4.7) 83.7 (3.7) 94.4 (2.0) 98.9 (0.7)
Gold Std: SNP Distance 95.1 (1.0) 29.1 (2.7) 73.9 (4.3) 83.6 (3.6) 94.0 (2.0) 98.7 (0.8)
Correct Serial Interval 87.5 (1.9) 2.5 (1.0) 34.7 (6.4) 53.7 (7.4) 81.6 (5.5) 96.3 (1.9)
Wide Serial Interval 84.8 (2.2) 1.7 (0.8) 26.4 (6.1) 44.7 (8.2) 76.4 (5.5) 95.3 (2.5)
Narrow Serial Interval 87.2 (1.9) 2.5 (1.0) 34.7 (6.4) 53.7 (7.4) 81.6 (5.5) 96.3 (1.9)
Random Probabilities 60.6 (1.1) 0.4 (0.3) 5.2 (1.1) 10.2 (1.5) 25.2 (2.2) 50.1 (2.5)

The average AUC when the model was trained with true links was 96% (standard deviation [SD] 0.7)
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compared to 95% (SD 1.0) when the model was trained using SNP distances. The probability of the true
infector was ranked in the top 25% of all possible source cases on average 94% (SD 2.0) of the time both
when the model was trained with true links and links determined by SNP distances. These results show
that our estimated probabilities can distinguish between linked and non-linked pairs even when we train the
model with only probable instead of certain transmission events. The probabilities calculated by our method
outperformed probabilities obtained using any of the serial intervals in classification ability and especially in
finding the true infector (Figure 5, Table 2).

Figure 6 and Table 3 show the estimates R̄t for each of the different scenarios compared to the value of
1.2 used to simulate the outbreaks. Our method estimated the reproductive number accurately as did the
method using the correct serial interval. However, when incorrect serial intervals were used, the estimates
of R̄t were either too high or too low depending on whether the serial interval was too wide or too narrow
respectively.

Table 3: Average effective reproductive number for different simulation scenarios
Scenario R̄t, mean (SD)
True Transmission 1.18 (0.09)
SNP Distance 1.21 (0.11)
Correct Serial Interval 1.18 (0.09)
Wide Serial Interval 1.30 (0.15)
Narrow Serial Interval 1.11 (0.05)
Random Probabilities 1.50 (0.26)

In our sensitivity analysis of the proportion of cases needed to train the model, as expected, we found
that the performance improves and the variability in the metrics decreases as the proportion of cases in the
training set increases (Figure 7). However, if the sample size is at least 500 then only 10% of all cases are
needed to train the model to obtain good performance. If the sample size is between 200 and 500, training the
model with 20% of cases results in good performance. For smaller outbreaks, at least 40% of the cases need
to be in the training set to obtain the same performance level (Figure 8). When there is a small proportion
of cases in the dataset, our method over-estimates the average effective reproductive number slightly. The
estimates get increasingly accurate as the training dataset increases and as long as around 40% of cases are
included in the training dataset the estimates are close to the true value (Figure 9).

Application to a TB Outbreak in Hamburg

We applied our method to a small TB outbreak in Hamburg and Schleswig-Holstein, Germany that Roetzer
et al. [10] also analyzed. The outbreak included 86 individuals from the largest strain cluster in a long-term
surveillance study conducted by the health departments in these cities. The cases were sampled from 1997
to 2010 with two spikes in reporting (Figure 10). There were 62 (72%) cases from Hamburg and 24 (23%)
cases from Schleswig-Holstein. The median age was 45 (range: 2-85) and 70 (81%) of the cases were men.
Details on the other clinical and demographic characteristics can be seen in Table 4.

These 86 cases resulted in 3633 possible ordered case pairs where the possible infector was observed
before the possible infectee. These pairs were separated by between 0 and 20 SNPs, with a median of 4
SNPs between them. Of the 86 individuals, 31 (36%) were part of contact investigations performed by the
local health authorities resulting in 51 case pairs with confirmed contact with each other. All individual-level
covariates were transformed into pair-level covariates as detailed in Table 6. We used these covariates to
estimate the relative transmission probability for all case pairs from this outbreak. We trained the model in
two ways: using SNP distances or contact investigations.

Figure 11 shows heatmaps of all potential infectors for each infectee using our method compared to
random probabilities (Figure 11A) and the correct serial interval (Figure 11B). When our method is applied,
either with SNP distance defining links in the training set (Figure 11C) or with confirmed contact defining
links (Figure 11D), the plots display more variation in the relative transmission probability across possible
infectors than the serial interval or random scenarios. For some infectees there are infectors with a higher
probability than all others in the row indicating the likely true infector. However, even for rows without a
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Table 4: Individual-level demographic and clinical characteristics for the Hamburg outbreak
Covariate Level All Individuals

(n = 86)
Nationality Germany 66 (76.7%)

Other 20 (23.3%)

Substance Abuse No 33 (38.4%)
Yes 53 (61.6%)

HIV Negative 81 (94.2%)
Positive 5 (5.8%)

Residence Permanent residence 71 (82.6%)
Homeless 15 (17.4%)

Association with milieu street No 21 (24.4%)
drinking scene Yes 65 (75.6%)

City Hamburg 62 (72.1%)
Schleswig-Holstein 24 (27.9%)

Age Group < 30 years old 10 (11.6%)
30-39 years old 16 (18.6%)
40-49 years old 28 (32.6%)
50-59 years old 15 (17.4%)
≥ 60 years old 17 (19.8%)

clear single infector, many possible infectors have very low probabilities and can be eliminated as possible
infectors.

Table 5: Average effective reproductive number for Hamburg outbreak by method
Scenario R̄t, mean (SD)
Confirmed Contact 0.96 (0.73, 1.18)
SNP Distance 0.89 (0.67, 1.09)
Narrow Serial Interval 1.07 (0.82, 1.31)
Medium Serial Interval 0.98 (0.68, 1.23)
Wide Serial Interval 0.88 (0.64, 1.11)
Random Probabilities 0.78 (0.54, 1.00)

For all of the methods, we calculated Rt per month and R̄t with bootstrap confidence intervals. Since
this was a smaller time frame than our simulations, when estimating R̄t we only removed the last 10% of
the months. The monthly Rt values for each scenario can be seen in Figure 12. All of the methods except
random probabilities show spikes in monthly reproductive numbers right around the second peak in case
counts (Figure 12), but to different degrees.

The estimates of R̄t for all of the methods were approximately 1 with some variation (Table 5, Figure 13).
When the probabilities were estimated using contact investigations to train the model and using the medium
serial interval, we estimated R̄t to be 1.0 (95% confidence interval [CI] 0.73-1.18 and 0.67-1.23, respectively).
When the probabilities were estimated using the SNP distances to train the model and using the wide serial
interval we estimated R̄t to be 0.9 (95% CI 0.67-1.09 and 0.64-1.11, respectively). Using random probabilities
resulted in a lower estimate of 0.8 (95% CI 0.54-1.00) and using the narrow serial interval resulted in a higher
estimate of 1.1 (95% CI 0.81-1.31).
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Discussion

We have developed a method to estimate the relative transmission probability between pairs of infectious
disease cases using clinical, demographic, geographic, and genetic characteristics that accurately distinguishes
between linked and non-linked case pairs. These probabilities can be used to explore possible transmission
chains, rule out transmission events, and estimate the reproductive number. Our method was assessed in a
series of simulation studies as well as applied to a TB outbreak in Germany.

In simulation studies, we found that the probabilities were able to distinguish between linked pairs and
non-linked case pairs with high accuracy. Using a SNP distance proxy for transmission to train the model,
we achieved a classification accuracy of 95% and 94% of the time the true infector was assigned a probability
in the top 25% of all possible infectors. Our method outperformed the serial interval method of estimating
probabilities in all classification and identification metrics.

We also showed that our method accurately estimates the average effective reproductive number in
simulated outbreaks. Although probabilities derived from true serial interval also correctly estimated the
reproductive number, probabilities derived from incorrect serial intervals did not. Therefore, in absence of a
reliable serial interval estimate, the probabilities from our model better estimate the effective reproductive
number than using the serial interval distribution. This result is important because the serial interval is
difficult to estimate and may vary across different settings [7, 8, 40].

The Hamburg outbreak provided a way to evaluate our method using two different ways of defining
probable transmission events in the training set: SNP distance and contact investigation. We found that
either method allowed for the elimination of many transmission links (Figure 11). The two ways of training
the model did not produce identical results which is expected because the two models are trained on different
ways of defining probable transmission events, neither of which perfectly capture the truth. Using contact
investigation to train the model is more discriminating than using SNP distance because the cases are known
to have interacted, but it also could also miss links from unknown contacts. Using SNP distances to train
the model will result in fewer missed links, but it could connect cases who never interacted. The two
methods result in similar estimates for the R̄t and we hypothesize that the true reproductive number for M.
tuberculosis in this context lies in between these two estimates (0.9 - 1.0).

Most established methods for exploring transmission within an outbreak focus on either identifying
clusters of recent transmission [11, 14, 39, 41–44], recreating the transmission chain [12, 13, 15–22, 45], or
attempting to identify the true source case [46–50]. When it comes to estimating transmission parameters,
simply knowing clusters does not provide enough information and identifying the true infector is often
impossible in practical applications. The strength of our method is that it does not aim to find the one
true infector but estimates the relative probability of transmission for all sampled infectors. This gives our
method broad applicability. It can be used to find potential true infectors - pairs with very high probabilities
or identify clusters of transmission - groups of pairs with high probabilities. The probabilistic nature of
the estimates can then be used to further estimate transmission parameters incorporating the uncertainty
around the true infector.

Other methods to estimate the transmission probability between cases either only use genetic data [23]
or require prior knowledge of the relationship between the covariates and transmission [51]. Our method, on
the other hand, harnesses many different sources of information about the characteristics of individual cases
and the differences between cases in a way that does not presuppose any relationship between these factors
and transmission.

Additionally our method is built upon naive Bayes, a simple but powerful machine learning tool that
has been used in a large variety of applications [35–37, 52, 53]. It is straightforward to implement and
computationally efficient. Although traditionally a naive Bayes model is trained with a training set of true
events, this will never be available for real-life infectious disease applications; however, WGS data for a subset
of cases may be readily available in some outbreak settings. We have shown that our method performs almost
as well when SNP distance is used as a proxy for transmission to train the model as when true transmission
is used as to define links in the training set.

The structure of a training and prediction set also means that not all cases need to have the highly
discriminatory information such as contact investigation or pathogen WGS data to estimate the relative
transmission probabilities. This is a useful feature because existing datasets often have rich demographic,
clinical, and spatial data but lack detailed contact investigation or pathogen WGS data because both of these
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data sources require significant time and resources to obtain. As long as a subset of cases, between 10%
and 40% depending on the sample size, has this information, our method can be used to infer transmission
patterns among the remaining cases as well.

Our method, as with any statistical model, makes certain assumptions which may or may not be univer-
sally appropriate. First of all, naive Bayes assumes that the covariates are independent when conditioning
on the outcome, may not be realistic. However, numerous papers have shown that naive Bayes still performs
extremely well even when this assumption is violated [53–56]. Furthermore, many extensions of naive Bayes
have been developed which relax this assumption [35, 57, 58], which could be easily integrated into our
method.

The Wallinga and Teunis [4] approach for estimating the effective reproductive number, which we ap-
plied, assumes that every case has been infected by someone that has been sampled . These authors and
others found that simulations incorporating random incomplete reporting did not substantially decrease the
accuracy of their reproductive number estimates, so we do not expect this to be an issue with our analysis
[4, 59]. Our probability estimates themselves do not assume all cases in an outbreak are sampled because we
are simply estimating how much more likely it is that one case was infected by another than by any other
sampled case. However, our method could be affected by biased sampling - either because only certain types
of cases are observed or only certain types of cases have the information needed to define probable links in
the training set. Future work could more fully examine the effect of biased reporting and biased training
sets.

Finally, our method has the same limitations as many other infectious disease analytical approaches in
that it assumes that cases were infected in the same order that they were observed [44, 60]. This is not a
strong assumption for a disease that has clear symptoms and a short latent period where most patients seek
care shortly after developing symptoms. However, in diseases such as TB, where there can be months to
years between infection and development of disease (if this ever occurs), and where delay in seeking care and
getting properly diagnosed can be substantial [61, 62] it is possible that cases present to care in a different
order than they were infected. Although this assumption is a known problem in infectious disease research,
it is frequently made [46, 47] because relaxing it complicates models substantially.

We have developed a method to estimate the relative transmission probabilities between pairs of cases.
Our method is flexible, using whatever sources of information are available without making any prior as-
sumptions about the relationship between these covariates and transmission. The power of our method is
that only a subset of cases (10-40% depending on the sample size) need to have pathogen WGS data or
contact investigation data, allowing this method to be applied to a wide range of outbreak and surveillance
datasets. These probabilities can be used to better understand the transmission dynamics of an outbreak
by identifying possible transmission events and estimating transmission parameters. In a disease where
determining transmission events can be extremely difficult, using probabilities of transmission between all
possible cases provides a unique and powerful analysis tool.
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Table 6: Pair-level demographic and clinical characteristics for the Hamburg outbreak
Covariate Level All Pairs

(n = 3633)
City Same city 2148 (59.1%)

Different city 1485 (40.9%)

Nationality Both Germany 2129 (58.6%)
Same foreign country 19 (0.5%)
One Germany, one foreign country 1315 (36.2%)
Different foreign countries 170 (4.7%)

Sex Male to male 2401 (66.1%)
Female to female 120 (3.3%)
Male to female 757 (20.8%)
Female to male 355 (9.8%)

Age group Same age group 774 (21.3%)
Different age group 2859 (78.7%)

Smear status Infector smear- 1294 (35.6%)
Infector smear+ 2339 (64.4%)

HIV Infector HIV- 3463 (47.8%)
Infector HIV+ 170 (4.7%)

Substance abuse Both Yes 1372 (37.8%)
Both No 526 (14.5%)
Different 1735 (47.8%)

Residence Both permanent 2062 (56.8%)
Both homeless 105 (2.9%)
Different 1055 (29.0%)

Association with milieu street Both Yes 2062 (56.8%)
drinking scene Both No 210 (5.8%)

Different 1361 (37.5%)

Time difference < 1 year 546 (15.0%)
1-2 years 485 (13.3%)
2-3 years 374 (10.3%)
3-4 years 305 (8.4%)
> 4 years 1923 (52.9%)

SNP distance < 2 SNPs 796 (21.9%)
2-12 SNPs 2452 (67.5%)
> 12 SNPs 385 (10.6%)

Confirmed contact Yes 51 (1.4%)
No 408 (11.2%)
Unknown 3174 (87.4%)
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Figure 1: Flow-chart depicting the algorithm we used to create the training dataset and the iterative proce-
dure to estimate the relative transmission probabilities.13
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Figure 2: Violin plots representing the effect of changing genome length on the SNP distance distribution
between case pairs. Pathogen genomes of various lengths from 50 to 4.4 million base pairs were simulated 100
times each for an outbreak of 200 cases. The resulting SNP distance matix for all case pairs was computed.
The figure shows the relationship between genome length on the quartiles of the SNP distance distribution
as well as the maximum SNP distance and the percent of pairs with less than 2 SNPs and more than 12
SNPs.
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Figure 3: Distribution of the relative transmission probability – how much more likely is it that case i was
infected by case j as opposed to any other sampled case – for linked case pairs and non-linked case pairs in
one of the 1000 simulated outbreaks. Each panel shows a different method of calculating probabilities: our
method with a training set of true links, our method with a training set of links defined by SNP distance,
probabilities derived from the serial interval distribution used to simulate the outbreak: gamma(1.05, 2.0),
probabilities derived from a serial interval distribution that is too wide: gamma(1.3, 3.3) and too narrow:
gamma(0.54, 1.9), and random probabilities.
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Figure 4: Network plots of the true transmission network in one of the 1000 simulated outbreaks. The nodes
represent individual cases and are colored by transmission chain. The edges represent true transmission
events and are colored based on the estimated relative transmission probability; the darker the color the
higher the probabilities. A) Edges colored based on randomly assigned probabilities. B) Edges colored based
on probabilities calculated by the correct serial interval: gamma(1.05, 2.0). C) Edges colored based on the
probabilities calculated using our with a training set of links defined by SNP distance. D) Edges colored
based on the probabilities calculated using our method with a training set of true links.
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Figure 5: Violin plots of the performance metrics for the different scenarios across 1000 simulated out-
breaks. The scenarios were: our method with a training set of true links, our method with a training set
of links defined by SNP distance, probabilities derived from the serial interval distribution used to simulate
the outbreak: gamma(1.05, 2.0), probabilities derived from a serial interval distribution that is too wide:
gamma(1.3, 3.3) and too narrow: gamma(0.54, 1.9), and random probabilities. The metrics shown are the
area under the receiver operating curve (AUC), the proportion of time the true infector was assigned the
highest relative transmission probability (Proportion Correct), and the proportion of time the probability of
the true infector was ranked in the top 5%, 10%, 25%, and 50% of all possible infectors.

17

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 26, 2019. ; https://doi.org/10.1101/612945doi: bioRxiv preprint 

https://doi.org/10.1101/612945


Figure 6: Violin plots of the distribution of the average effective reproductive number for different scenarios
across 1000 simulated outbreaks. The dashed horizontal line indicates the true value of 1.2 that was used to
simulate the outbreaks.

Figure 7: Boxplots of the performance metrics when varying the training set proportion in 300 simulated
outbreaks with sample sizes varying from 50-1000. The plots are colored by the type of gold standard: SNP
distance (red) or true transmission (blue). The metrics shown are the area under the receiver operating curve
(AUC), the proportion of time the true infector was assigned the highest relative transmission probability
(Proportion Correct), and the proportion of time the probability of the true infector was ranked in the top
5%, 10%, 25%, and 50% of all possible infectors.
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Figure 8: Boxplots of the performance metrics by training set proportion in 300 simulated outbreaks stratified
by the total sample size of the outbreak. The metrics shown are the area under the receiver operating curve
(AUC) and the proportion of time the relative transmission probability of the true source case was ranked
in the top 25%. The dotted black line indicates a value of 90% on either metric.

Figure 9: Violin plots of the distribution of the average effective reproductive number when varying the
dataset proportion in 300 simulated outbreaks with sample sizes varying from 50-1000. The plots are colored
by the way of defining links in the training set: SNP distance (red) or true transmission (blue). The dashed
horizontal line indicates the true value of 1.2 that was used to simulate the outbreaks.
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Figure 10: Case counts by year for the Hamburg outbreak described in Roetzer et al. [10]

Figure 11: Heatmaps of the relative probabilities that each infectee (rows) was infected by each possible
infector (columns) in the Hamburg TB outbreak. Darker squares represent higher the probabilities. The
cases are ordered by infection date with the earliest cases on the top and to the left. Each panel shows
the results from a different method of calculating probabilities: A) randomly assigned probabilities, B)
probabilities calculated using a gamma(1.05, 2.0) serial interval distribution, C) probabilities calculated
using our method and a training set with links based on SNP distance, and d) probabilities calculated using
our method and a training set with links based on contact investigations.
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Figure 12: Monthly reproductive number over the course of the 14 years of the Hamburg TB outbreak
estimated from the relative transmission probabilities with bootstrap confidence intervals. Each panel shows
the results from a different method of calculating probabilities: our method and a training set with links
based on contact investigation data; our method and a training set with links based on SNP distance;
probabilities derived from narrow: gamma(0.54, 1.9), medium: gamma(1.05, 2.0), and wide: gamma(1.33,
3.0) serial interval distributions; and random probabilities. The months in between the dotted horizontal
lines were averaged to find the average effective reproductive number for the scenario which is shown by the
solid horizontal line.

Figure 13: Average effective reproductive number for the Hamburg TB outbreak calculated using the relative
transmission probabilities derived from different methods of calculating probabilities: our method and a
training set with links based on contact investigation data; our method and a training set with links based
on SNP distance; probabilities derived from narrow: gamma(0.54, 1.9), medium: gamma(1.05, 2.0), and
wide: gamma(1.33, 3.0) serial interval distributions; and random probabilities. The vertical bars represent
95% bootstrap confidence intervals. The dotted horizontal line represents a R̄t value of 1.
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